1
|
Cairns SP, Lindinger MI. Lactic acidosis: implications for human exercise performance. Eur J Appl Physiol 2025:10.1007/s00421-025-05750-0. [PMID: 40088272 DOI: 10.1007/s00421-025-05750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
During high-intensity exercise a lactic-acidosis occurs with raised myoplasmic and plasma concentrations of lactate- and protons ([lactate-], [H+] or pH). We critically evaluate whether this causes/contributes to fatigue during human exercise. Increases of [lactate-] per se (to 25 mM in plasma, 50 mM intracellularly) exert little detrimental effect on muscle performance while ingestion/infusion of lactate- can be ergogenic. An exercise-induced intracellular acidosis at the whole-muscle level (pHi falls from 7.1-7.0 to 6.9-6.3), incorporates small changes in slow-twitch fibres (pHi ~ 6.9) and large changes in fast-twitch fibres (pHi ~ 6.2). The relationship between peak force/power and acidosis during fatiguing contractions varies across exercise regimes implying that acidosis is not the sole cause of fatigue. Concomitant changes of other putative fatigue factors include phosphate metabolites, glycogen, ions and reactive oxygen species. Acidosis to pHi 6.7-6.6 at physiological temperatures (during recovery from exercise or induced in non-fatigued muscle), has minimal effect on force/power. Acidosis to pHi ~ 6.5-6.2 per se reduces maximum force (~12%), slows shortening velocity (~5%), and lowers peak power (~22%) in non-fatigued muscles/individuals. A pre-exercise induced-acidosis with ammonium chloride impairs exercise performance in humans and accelerates the decline of force/power (15-40% initial) in animal muscles stimulated repeatedly in situ. Raised [H+]i and diprotonated inorganic phosphate ([H2PO4-]i) act on myofilament proteins to reduce maximum cross-bridge activity, Ca2+-sensitivity, and myosin ATPase activity. Acidosis/[lactate-]o attenuates detrimental effects of large K+-disturbances on action potentials and force in non-fatigued muscle. We propose that depressive effects of acidosis and [H2PO4-]i on myofilament function dominate over the protective effects of acidosis/lactate- on action potentials during fatigue. Raised extracellular [H+]/[lactate-] do not usually cause central fatigue but do contribute to elevated perceived exertion and fatigue sensations by activating group III/IV muscle afferents. Modulation of H+/lactate- regulation (via extracellular H+-buffers, monocarboxylate transporters, carbonic anhydrase, carnosine) supports a role for intracellular acidosis in fatigue. In conclusion, current evidence advocates that severe acidosis in fast-twitch fibres can contribute to force/power fatigue during intense human exercise.
Collapse
Affiliation(s)
- Simeon P Cairns
- Sport and Recreation Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1020, New Zealand.
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1020, New Zealand.
| | - Michael I Lindinger
- Research and Development, The Nutraceutical Alliance Inc, Guelph, ON, L8N 3Z5, Canada
| |
Collapse
|
2
|
Bartlett MF, Fitzgerald LF, Nagarajan R, Kent JA. Measurements of in vivo skeletal muscle oxidative capacity are lower following sustained isometric compared with dynamic contractions. Appl Physiol Nutr Metab 2024; 49:250-264. [PMID: 37906958 DOI: 10.1139/apnm-2023-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Human skeletal muscle oxidative capacity can be quantified non-invasively using 31-phosphorus magnetic resonance spectroscopy (31P-MRS) to measure the rate constant of phosphocreatine (PCr) recovery (kPCr) following contractions. In the quadricep muscles, several studies have quantified kPCr following 24-30 s of sustained maximal voluntary isometric contraction (MVIC). This approach has the advantage of simplicity but is potentially problematic because sustained MVICs inhibit perfusion, which may limit muscle oxygen availability or increase the intracellular metabolic perturbation, and thus affect kPCr. Alternatively, dynamic contractions allow reperfusion between contractions, which may avoid limitations in oxygen delivery. To determine whether dynamic contraction protocols elicit greater kPCr than sustained MVIC protocols, we used a cross-sectional design to compare quadriceps kPCr in 22 young and 11 older healthy adults following 24 s of maximal voluntary: (1) sustained MVIC and (2) dynamic (MVDC; 120°·s-1, 1 every 2 s) contractions. Muscle kPCr was ∼20% lower following the MVIC protocol compared with the MVDC protocol (p ≤ 0.001), though this was less evident in older adults (p = 0.073). Changes in skeletal muscle pH (p ≤ 0.001) and PME accumulation (p ≤ 0.001) were greater following the sustained MVIC protocol, and pH (p ≤ 0.001) and PME (p ≤ 0.001) recovery were slower. These results demonstrate that (i) a brief, sustained MVIC yields a lower value for skeletal muscle oxidative capacity than an MVDC protocol of similar duration and (ii) this difference may not be consistent across populations (e.g., young vs. old). Thus, the potential effect of contraction protocol on comparisons of kPCr in different study groups requires careful consideration in the future.
Collapse
Affiliation(s)
- Miles F Bartlett
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| | - Liam F Fitzgerald
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, MA 01003, USA
| | - Jane A Kent
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
3
|
Flensted-Jensen M, Kleis-Olsen AS, Hassø RK, Lindtofte S, Corral Pérez J, Ortega-Gómez S, Larsen S. Combined changes in temperature and pH mimicking exercise result in decreased efficiency in muscle mitochondria. J Appl Physiol (1985) 2024; 136:79-88. [PMID: 37969081 DOI: 10.1152/japplphysiol.00293.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
It is well known that exercise efficiency declines at intensities above the lactate threshold, yet the underlying mechanisms are poorly understood. Some have suggested it is due to a decline in mitochondrial efficiency, but this is difficult to examine in vivo. Therefore, the aim of the current study was to examine how changes in temperature and pH, mimicking those that occur during exercise, affect mitochondrial efficiency in skeletal muscle mitochondria. This study was performed on quadriceps muscle of 20 wild-type mice. Muscle tissue was dissected and either permeabilized (n = 10) or homogenized for isolation of mitochondria (n = 10), and oxidative phosphorylation capacity and P/O ratio were assessed using high-resolution respirometry. Samples from each muscle were analyzed in both normal physiological conditions (37°C, pH 7.4), decreased pH (6.8), increased temperature (40°C), and a combination of both. The combination of increased temperature and decreased pH resulted in a significantly lower P/O ratio, mirrored by an increase in leak respiration and a decrease in respiratory control ratio (RCR), in isolated mitochondria. In permeabilized fibers, RCR and leak were relatively unaffected, though a main effect of temperature was observed. Oxidative phosphorylation capacity was unaffected by changes in pH and temperature in both isolated mitochondria and permeabilized fibers. These results indicate that exercise-like changes in temperature and pH lead to impaired mitochondrial efficiency. These findings offer some degree of support to the concept of decreased mitochondrial efficiency during exercise, and may have implications for the assessment of mitochondrial function related to exercise.NEW & NOTEWORTHY To the best of our knowledge, this is the first study to examine the effects of combined changes in temperature and pH, mimicking intramuscular alterations during exercise. Our findings suggest that mitochondrial efficiency is impaired during exercise of moderate to high intensity, which could be a possible mechanism contributing to the decline in exercise efficiency at intensities above the lactate threshold.
Collapse
Affiliation(s)
- Mathias Flensted-Jensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sofie Kleis-Olsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kinimond Hassø
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Lindtofte
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan Corral Pérez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Sonia Ortega-Gómez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Fitzgerald LF, Bartlett MF, Kent JA. Muscle fatigue, bioenergetic responses and metabolic economy during load- and velocity-based maximal dynamic contractions in young and older adults. Physiol Rep 2023; 11:e15876. [PMID: 37996974 PMCID: PMC10667588 DOI: 10.14814/phy2.15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
We evaluated whether task-dependent, age-related differences in muscle fatigue (contraction-induced decline in normalized power) develop from differences in bioenergetics or metabolic economy (ME; mass-normalized work/mM ATP). We used magnetic resonance spectroscopy to quantify intracellular metabolites in vastus lateralis muscle of 10 young and 10 older adults during two maximal-effort, 4-min isotonic (20% maximal torque) and isokinetic (120°s-1 ) contraction protocols. Fatigue, inorganic phosphate (Pi), and pH (p ≥ 0.213) differed by age during isotonic contractions. However, older had less fatigue (p ≤ 0.011) and metabolic perturbation (lower [Pi], greater pH; p ≤ 0.031) than young during isokinetic contractions. ME was lower in older than young during isotonic contractions (p ≤ 0.003), but not associated with fatigue in either protocol or group. Rather, fatigue during both tasks was linearly related to changes in [H+ ], in both groups. The slope of fatigue versus [H+ ] was 50% lower in older than young during isokinetic contractions (p ≤ 0.023), consistent with less fatigue in older during this protocol. Overall, regardless of age or task type, acidosis, but not ME, was the primary mechanism for fatigue in vivo. The source of the age-related differences in contraction-induced acidosis in vivo remains to be determined, as does the apparent task-dependent difference in the sensitivity of muscle to [H+ ].
Collapse
Affiliation(s)
- Liam F. Fitzgerald
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Miles F. Bartlett
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Jane A. Kent
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
5
|
Zoladz JA, Majerczak J, Galganski L, Grandys M, Zapart-Bukowska J, Kuczek P, Kołodziejski L, Walkowicz L, Szymoniak-Chochół D, Kilarski W, Jarmuszkiewicz W. Endurance Training Increases the Running Performance of Untrained Men without Changing the Mitochondrial Volume Density in the Gastrocnemius Muscle. Int J Mol Sci 2022; 23:ijms231810843. [PMID: 36142755 PMCID: PMC9503714 DOI: 10.3390/ijms231810843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The activity and quantity of mitochondrial proteins and the mitochondrial volume density (MitoVD) are higher in trained muscles; however, the underlying mechanisms remain unclear. Our goal was to determine if 20 weeks’ endurance training simultaneously increases running performance, the amount and activity of mitochondrial proteins, and MitoVD in the gastrocnemius muscle in humans. Eight healthy, untrained young men completed a 20-week moderate-intensity running training program. The training increased the mean speed of a 1500 m run by 14.0% (p = 0.008) and the running speed at 85% of maximal heart rate by 9.6% (p = 0.008). In the gastrocnemius muscle, training significantly increased mitochondrial dynamics markers, i.e., peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) by 23%, mitochondrial transcription factor A (TFAM) by 29%, optic artrophy-1 (OPA1) by 31% and mitochondrial fission factor (MFF) by 44%, and voltage-dependent anion channel 1 (VDAC1) by 30%. Furthermore, training increased the amount and maximal activity of citrate synthase (CS) by 10% and 65%, respectively, and the amount and maximal activity of cytochrome c oxidase (COX) by 57% and 42%, respectively, but had no effect on the total MitoVD in the gastrocnemius muscle. We concluded that not MitoVD per se, but mitochondrial COX activity (reflecting oxidative phosphorylation activity), should be regarded as a biomarker of muscle adaptation to endurance training in beginner runners.
Collapse
Affiliation(s)
- Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
- Correspondence:
| | - Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Lukasz Galganski
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Marcin Grandys
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Justyna Zapart-Bukowska
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Piotr Kuczek
- Department of Physical Education, Faculty of Health Sciences, University of Applied Sciences in Tarnow, Mickiewicza 8, 33-110 Tarnow, Poland
| | - Leszek Kołodziejski
- Department of Nursing, Faculty of Health Sciences, University of Applied Sciences in Tarnow, Mickiewicza 8, 33-110 Tarnow, Poland
| | - Lucyna Walkowicz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | | | | | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
6
|
MacDougall KB, Falconer TM, MacIntosh BR. Efficiency of cycling exercise: Quantification, mechanisms, and misunderstandings. Scand J Med Sci Sports 2022; 32:951-970. [PMID: 35253274 DOI: 10.1111/sms.14149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
The energetics of cycling represents a well-studied area of exercise science, yet there are still many questions that remain. Efficiency, broadly defined as the ratio of energy output to energy input, is one key metric that, despite its importance from both a scientific as well as performance perspective, is commonly misunderstood. There are many factors that may affect cycling efficiency, both intrinsic (e.g., muscle fiber type composition) and extrinsic (e.g., cycling cadence, prior exercise, and training), creating a complex interplay of many components. Due to its relative simplicity, the measurement of oxygen uptake continues to be the most common means of measuring the energy cost of exercise (and thus efficiency); however, it is limited to only a small proportion of the range of outputs humans are capable of, further limiting our understanding of the energetics of high-intensity exercise and any mechanistic bases therein. This review presents evidence that delta efficiency does not represent muscular efficiency and challenges the notion that the slow component of oxygen uptake represents decreasing efficiency. It is noted that gross efficiency increases as intensity of exercise increases in spite of the fact that fast-twitch fibers are recruited to achieve this high power output. Understanding the energetics of high-intensity exercise will require critical evaluation of the available data.
Collapse
Affiliation(s)
- Keenan B MacDougall
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Tara M Falconer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Erratum. J Physiol 2022; 600:2013. [PMID: 35333403 DOI: 10.1113/jp283084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
|
8
|
Wilkinson JA, Shirwa W. Oxidative ATP synthesis above the lactate threshold: a sexual dimorphism perspective. J Physiol 2021; 599:4409-4410. [PMID: 34318498 DOI: 10.1113/jp281878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Waleed Shirwa
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|