1
|
Ramirez JM, Oliveira L, Miranda N, Lim HK, Severs L, Takakura A, Moreira T, Kalume F. The role of medullary astrocytes in breathing and arousal: insights into glial regulation of respiratory function. RESEARCH SQUARE 2025:rs.3.rs-6063056. [PMID: 40162225 PMCID: PMC11952647 DOI: 10.21203/rs.3.rs-6063056/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Astrocytes play vital roles in regulating brain states across organisms. Specifically, they serve several roles in regulating breathing behaviors and associated brain states, including facilitating transitions between phases of breathing by sensing small changes in O2 and CO2 levels, regulating the sleep-wake cycle, and impacting arousal and wakefulness. Here, we tested the hypothesis that astrocytes in the ventral respiratory column (VRC) are important for arousal and sigh generation in alert mice (Aldh1l1Cre). Using calcium imaging we show that some Aldh1l1 cells are phase-locked with sigh generation and are activated in the VRC by hypoxia. Optogenetic activation (AAV-CAG-ChR2-EYFP) of astrocytes in the VRC increased the probability of evoking sighs and arousal while awake and during non-rapid eye movement (NREM) sleep. Depletion of astrocytes in the VRC by an AAV-CAG-Caspase3 virus (ablation of 77%) does not impact the probability of sigh generation in any sleep-wake state under control conditions. However following the depletion of astrocytes, arousal and sigh generation is significantly delayed in response to hypoxia (65.3 ± 5.5 vs. control: 21.7 ± 1.9 seconds). We conclude that medullary astrocytes play a critical role in the generation of arousal and sighs particularly in response to hypoxia.
Collapse
Affiliation(s)
| | | | | | | | - Liza Severs
- Seattle Children's Research Institute, The University of Wasington
| | | | | | | |
Collapse
|
2
|
Getsy PM, Coffee GA, Bates JN, Baby SM, Seckler JM, Palmer LA, Lewis SJ. Functional evidence that S-nitroso-L-cysteine may be a candidate carotid body neurotransmitter. Neuropharmacology 2025; 265:110229. [PMID: 39577762 DOI: 10.1016/j.neuropharm.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The primary objective of the present study is to provide further evidence that the endogenous S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), plays an essential role in signaling the hypoxic ventilatory response (HVR) in rodents. Key findings were that (1) injection of L-CSNO (50 nmol/kg, IV) caused a pronounced increase in frequency of breathing (Freq), tidal volume (TV) and minute ventilation (MV) in naïve C57BL/6 mice, whereas injection of D-CSNO (50 nmol/kg, IV) elicited minimal responses; (2) L-CSNO elicited minor responses in (a) C57BL/6 mice with bilateral carotid sinus nerve transection (CSNX), (b) C57BL/6 mice treated neonatally with capsaicin (CAP) to eliminate small-diameter C-fibers, and (c) C57BL/6 mice receiving continuous infusion of L-CSNO receptor antagonists, S-methyl-L-cysteine and S-ethyl-L-cysteine (L-SMC + L-SEC, both at 5 μmol/kg/min, IV); and (3) injection of S-nitroso-L-glutathione (L-GSNO, 50 nmol/kg, IV) elicited pronounced ventilatory responses that were not inhibited by L-SMC + L-SEC. Subsequent exposure of naïve C57BL/6 mice to a hypoxic gas challenge (HXC; 10% O2, 90% N2) elicited pronounced increases in Freq, TV and MV that were subject to roll-off. These HXC responses were markedly reduced in CSNX, CAP, and L-SMC + L-SEC-infused C57BL/6 mice. Subsequent exposure of all C57BL/6 mice (naïve, CSNX, CAP, and L-SMC + L-SEC) to a hypercapnic gas challenge (5% CO2, 21% O2, 74% N2) elicited similar robust increases in Freq, TV and MV. Taken together, these findings provide evidence that an endogenous factor with pharmacodynamic properties similar to those of L-CSNO, rather than L-GSNO, mediates the HVR in male C57BL/6 mice.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - James N Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Santhosh M Baby
- Section of Biology, Galleon Pharmaceuticals, Inc, Horsham, PA, USA
| | - James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lisa A Palmer
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Tournissac M, Chaigneau E, Pfister S, Aydin AK, Goulam Houssen Y, O'Herron P, Filosa J, Collot M, Joutel A, Charpak S. Neurovascular coupling and CO 2 interrogate distinct vascular regulations. Nat Commun 2024; 15:7635. [PMID: 39223128 PMCID: PMC11369082 DOI: 10.1038/s41467-024-49698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
Neurovascular coupling (NVC), which mediates rapid increases in cerebral blood flow in response to neuronal activation, is commonly used to map brain activation or dysfunction. Here we tested the reemerging hypothesis that CO2 generated by neuronal metabolism contributes to NVC. We combined functional ultrasound and two-photon imaging in the mouse barrel cortex to specifically examine the onsets of local changes in vessel diameter, blood flow dynamics, vascular/perivascular/intracellular pH, and intracellular calcium signals along the vascular arbor in response to a short and strong CO2 challenge (10 s, 20%) and whisker stimulation. We report that the brief hypercapnia reversibly acidifies all cells of the arteriole wall and the periarteriolar space 3-4 s prior to the arteriole dilation. During this prolonged lag period, NVC triggered by whisker stimulation is not affected by the acidification of the entire neurovascular unit. As it also persists under condition of continuous inflow of CO2, we conclude that CO2 is not involved in NVC.
Collapse
Affiliation(s)
- Marine Tournissac
- Sorbonne Université, Inserm U968, Vision Institute, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
| | | | - Sonia Pfister
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, Strasbourg, F-67400, Illkirch, France
| | - Ali-Kemal Aydin
- Sorbonne Université, Inserm U968, Vision Institute, Paris, France
| | | | - Philip O'Herron
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Jessica Filosa
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, Strasbourg, F-67400, Illkirch, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Serge Charpak
- Sorbonne Université, Inserm U968, Vision Institute, Paris, France.
| |
Collapse
|
4
|
Nanayakkara B, McNamara S. Pathophysiology of Chronic Hypercapnic Respiratory Failure. Sleep Med Clin 2024; 19:379-389. [PMID: 39095137 DOI: 10.1016/j.jsmc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Chronic hypercapnic respiratory failure occurs in several conditions associated with hypoventilation. The mechanisms underlying the development of chronic hypercapnia include a combination of processes that increase metabolic CO2 production, reduce minute ventilation (V'e), or increase dead space fraction (Vd/Vt). Fundamental to the pathophysiology is a mismatch between increased load and a reduction in the capacity of the respiratory pump to compensate. Though neural respiratory drive may be decreased in a subset of central hypoventilation disorders, it is more commonly increased in attempting to maintain the load-capacity homeostatic balance.
Collapse
Affiliation(s)
- Budhima Nanayakkara
- Charles Sturt University, 346 Leeds Parade, Orange, NSW 2800, Australia; Department of Medicine, Orange Health Service, Orange, NSW 2800, Australia; University of Sydney, Camperdown, NSW 2006, Australia.
| | - Stephen McNamara
- Department of Respiratory & Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Adeck A, Millwater M, Bragg C, Zhang R, SheikhBahaei S. Morphological deficits of glial cells in a transgenic mouse model for developmental stuttering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574051. [PMID: 38260402 PMCID: PMC10802298 DOI: 10.1101/2024.01.04.574051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Vocal production involves intricate neural coordination across various brain regions. Stuttering, a common speech disorder, has genetic underpinnings, including mutations in lysosomal-targeting pathway genes. Using a Gnptab-mutant mouse model linked to stuttering, we examined neuron and glial cell morphology in vocal production circuits. Our findings revealed altered astrocyte and microglia processes in these circuits in Gnptab-mutant mice, while control regions remained unaffected. Our results shed light on the potential role of glial cells in stuttering pathophysiology and highlight their relevance in modulating vocal production behaviors.
Collapse
|
7
|
Katayama PL. CO 2 /H + detection in the body: a shared responsibility. J Physiol 2024; 602:15-17. [PMID: 37983634 DOI: 10.1113/jp285738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Affiliation(s)
- Pedro Lourenco Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
Forster HV, Hodges MR. Do peripheral and central sites independently contribute to the CO 2 stimulus for breathing? J Physiol 2024; 602:9-10. [PMID: 38103001 DOI: 10.1113/jp285652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|