1
|
Yacyshyn AF, Mohammadalinejad G, Afsharipour B, Duchcherer J, Bashuk J, Bennett DJ, Negro F, Quinlan KA, Gorassini MA. Sex-related differences in motoneuron firing behavior during typical development. J Neurophysiol 2025; 133:1307-1319. [PMID: 40139255 DOI: 10.1152/jn.00505.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 03/16/2025] [Indexed: 03/29/2025] Open
Abstract
Sex-related differences have been documented for intrinsic motoneuron excitability and firing rates in young adults, with females exhibiting higher excitability than males; however, it is unknown whether these parameters are affected by sex earlier in development. We compared the sex-related differences in firing behavior of single tibialis anterior (TA) motor units decomposed from high-density surface electromyography (EMG) in young (7-17 yr) and older (18-28 yr) developmental males and females during triangular dorsiflexion contractions at 10, 20, and 30% of their maximal voluntary contraction (MVC) torque. The amount of motoneuron self-sustained firing at estimated synaptic inputs below that needed for recruitment was measured [i.e., self-sustained firing (ΔF)], along with start, maximal, and end firing rates and the interspike interval variability across the entire contraction. When taking the recruitment threshold of the motor units into account, both young and older development females had larger ΔF values compared with males, which functionally allows more sustained firing of TA motoneurons in females. Young development females also had faster firing rates compared with males and equivalent firing variability, an effect that disappeared in the older development group, where males exhibited higher start rates and less firing variability. Overall, although female motor unit firing rates became similar to males as they matured, they were more variable, slower at recruitment, and continued to exhibit evidence of greater persistent inward currents that sustained firing (ΔF), the latter indicating that sex-related differences in intrinsic motoneuron excitability are established early during development.NEW & NOTEWORTHY The intrinsic excitability of tibialis anterior (TA) motoneurons was compared between males and females before (7-17 yr) and during (18-28 yr) adulthood. Female motor units exhibited greater self-sustained firing compared with males in both the pre-adult and adult groups, suggesting the intrinsic excitability of motoneurons is established early in life and may not be tightly dependent on the level of sex hormones, unlike the number of decomposed motor units that reflect muscle size.
Collapse
Affiliation(s)
- Alexandra F Yacyshyn
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ghazaleh Mohammadalinejad
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Babak Afsharipour
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Duchcherer
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jack Bashuk
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David J Bennett
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States
| | - Monica A Gorassini
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Guo Y, Jones EJ, Smart TF, Altheyab A, Gamage N, Stashuk DW, Piasecki J, Phillips BE, Atherton PJ, Piasecki M. Sex disparities of human neuromuscular decline in older humans. J Physiol 2025; 603:151-165. [PMID: 38857412 DOI: 10.1113/jp285653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
Females typically live longer than males but, paradoxically, spend a greater number of later years in poorer health. The neuromuscular system is a critical component of the progression to frailty, and motor unit (MU) characteristics differ by sex in healthy young individuals and may adapt to ageing in a sex-specific manner due to divergent hormonal profiles. The purpose of this study was to investigate sex differences in vastus lateralis (VL) MU structure and function in early to late elderly humans. Intramuscular electromyography signals from 50 healthy older adults (M/F: 26/24) were collected from VL during standardized submaximal contractions and decomposed to quantify MU characteristics. Muscle size and neuromuscular performance were also measured. Females had higher MU firing rate (FR) than males (P = 0.025), with no difference in MU structure or neuromuscular junction transmission (NMJ) instability. All MU characteristics increased from low- to mid-level contractions (P < 0.05) without sex × level interactions. Females had smaller cross-sectional area of VL, lower strength and poorer force steadiness (P < 0.05). From early to late elderly, both sexes showed decreased neuromuscular function (P < 0.05) without sex-specific patterns. Higher VL MUFRs at normalized contraction levels previously observed in young are also apparent in old individuals, with no sex-based difference of estimates of MU structure or NMJ transmission instability. From early to late elderly, the deterioration of neuromuscular function and MU characteristics did not differ between sexes, yet function was consistently greater in males. These parallel trajectories underscore the lower initial level for older females and may offer insights into identifying critical intervention periods. KEY POINTS: Females generally exhibit an extended lifespan when compared to males, yet this is accompanied by a poorer healthspan and higher rates of frailty. In healthy young people, motor unit firing rate (MUFR) at normalized contraction intensities is widely reported to be higher in females than in age-matched males. Here we show in 50 people that older females have higher MUFR than older males with little difference in other MU parameters. The trajectory of decline from early to late elderly does not differ between sexes, yet function is consistently lower in females. These findings highlight distinguishable sex disparities in some MU characteristics and neuromuscular function, and suggest early interventions are needed for females to prevent functional deterioration to reduce the ageing health-sex paradox.
Collapse
Affiliation(s)
- Yuxiao Guo
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Eleanor J Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Thomas F Smart
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Abdulmajeed Altheyab
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Nishadi Gamage
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Neurophysiology of Human Movement Group, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Piasecki M. Motor unit adaptation to disuse: crossing the threshold from firing rate suppression to neuromuscular junction transmission. J Physiol 2024. [PMID: 39496497 DOI: 10.1113/jp284159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Neural conditioning to scenarios of muscle disuse is undoubtedly a cause of functional decrements that typically exceed losses of muscle size. Yet establishing the relative contribution of neural adaptation and the specific location in the motor pathway remains technically challenging. Several studies of healthy humans have targeted this system and have established that motor unit firing rate is suppressed following disuse, with a number of critical caveats. It is suppressed in the immobilized limb only, at relative and absolute force levels, and preferentially targets lower-threshold motor units. Concomitantly, electrophysiological investigation of neuromuscular junction transmission (NMJ) stability of lower-threshold motor units reveals minimal change following disuse. These findings contrast with numerous other methods, which show clear involvement of the NMJ but are unable to characterize the motor unit to which they belong. It is physiologically plausible that decrements observed following disuse are a result of suppressed firing rate of lower-threshold motor units and impairment of transmission of the NMJ of higher-threshold motor units. As such, motor units within the pool should be viewed in light of their varying susceptibility to disuse.
Collapse
Affiliation(s)
- Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), NIHR Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| |
Collapse
|
4
|
Popesco T, Bet da Rosa Orssatto L, Hug F, Blazevich AJ, Trajano GS, Place N. Motoneuron persistent inward current contribution to increased torque responses to wide-pulse high-frequency neuromuscular electrical stimulation. Eur J Appl Physiol 2024; 124:3377-3386. [PMID: 38940932 PMCID: PMC11519318 DOI: 10.1007/s00421-024-05538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To assess the effect of a remote handgrip contraction during wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (NMES) on the magnitude of extra torque, progressive increase in torque during stimulation, and estimates of the persistent inward current (PIC) contribution to motoneuron firing in the plantar flexors. METHODS Ten participants performed triangular shaped contractions to 20% of maximal plantar flexion torque before and after WPHF NMES with and without a handgrip contraction, and control conditions. Extra torque, the relative difference between the initial and final torque during stimulation, and sustained electromyographic (EMG) activity were assessed. High-density EMG was recorded during triangular shaped contractions to calculate ∆F, an estimate of PIC contribution to motoneuron firing, and its variation before vs after the intervention referred to as ∆F change score. RESULTS While extra torque was not significantly increased with remote contraction (WPHF + remote) vs WPHF (+ 37 ± 63%, p = 0.112), sustained EMG activity was higher in this condition than WPHF (+ 3.9 ± 4.3% MVC EMG, p = 0.017). Moreover, ∆F was greater (+ 0.35 ± 0.30 Hz) with WPHF + remote than control (+ 0.03 ± 0.1 Hz, p = 0.028). A positive correlation was found between ∆F change score and extra torque in the WPHF + remote (r = 0.862, p = 0.006). DISCUSSION The findings suggest that the addition of remote muscle contraction to WPHF NMES enhances the central contribution to torque production, which may be related to an increased PIC contribution to motoneuron firing. Gaining a better understanding of these mechanisms should enable NMES intervention optimization in clinical and rehabilitation settings, improving neuromuscular function in clinical populations.
Collapse
Affiliation(s)
- Timothée Popesco
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lucas Bet da Rosa Orssatto
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| | - François Hug
- LAMHESS, Université Côte d'Azur, Nice, France
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anthony John Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA, Australia
| | - Gabriel Siqueira Trajano
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Popesco T, Gardet Q, Bossard J, Maffiuletti NA, Place N. Centrally mediated responses to NMES are influenced by muscle group and stimulation parameters. Sci Rep 2024; 14:24918. [PMID: 39438501 PMCID: PMC11496505 DOI: 10.1038/s41598-024-75145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Wide-pulse high-frequency neuromuscular electrical stimulation (WPHF NMES) can generate a progressive increase in tetanic force through reflexive recruitment of motor units, called extra force. This phenomenon has previously been observed on different muscle groups, but little is known on potential inter-muscle differences. We compared extra force and sustained electromyographic (EMG) activity induced by NMES between plantar flexors, knee extensors, elbow flexors and within muscle groups using pulse durations of 0.2, 1 and 2 ms and stimulation frequencies of 20, 50, 100 and 147 Hz. Extra force production and sustained EMG activity were higher for plantar flexors compared to elbow flexors at all tested parameters (except 0.2 ms for extra force). When compared to elbow flexors, extra force of the knee extensors was only higher at 100 Hz and with 1 ms while sustained EMG activity was higher at all frequencies with pulse durations of 0.2 and 2 ms. Peripheral nerve architecture as well as muscle typology and function could influence the occurrence and magnitude of centrally-mediated responses to NMES. The present findings suggest that the use of wide-pulse high-frequency NMES to promote reflexive recruitment seems to be more pertinent for lower limb muscles, plantar flexors in particular.
Collapse
Affiliation(s)
- Timothée Popesco
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Quentin Gardet
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jonathan Bossard
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | | | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
6
|
Lapole T, Mesquita RNO, Baudry S, Souron R, O'Brien EK, Brownstein CG, Rozand V. Persistent inward currents in tibialis anterior motoneurons can be reliably estimated within the same session. J Electromyogr Kinesiol 2024; 78:102911. [PMID: 38879997 DOI: 10.1016/j.jelekin.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), the contribution of which can be estimated through the paired motor unit technique. Yet, the intra-session test-retest reliability of this measurement remains to be fully established. Twenty males performed isometric triangular dorsiflexion contractions to 20 and 50 % of maximal torque at baseline and after a 15-min resting period. High-density electromyographic signals (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. HD-EMG signals were decomposed, and motor units tracked across time points to estimate the contribution of PICs to motoneuron firing through quantification of motor unit recruitment-derecruitment hysteresis (ΔF). A good intraclass correlation coefficient (ICC = 0.75 [0.63, 0.83]) and a large repeated measures correlation coefficient (rrm = 0.65 [0.49, 0.77]; p < 0.001) were found between ΔF values obtained at both time points for 20 % MVC ramps. For 50 % MVC ramps, a good ICC (0.77 [0.65, 0.85]) and a very large repeated measures correlation coefficient (rrm = 0.73 [0.63, 0.80]; p < 0.001) were observed. Our data suggest that ΔF scores can be reliably investigated in tibialis anterior motor units during both low- and moderate-intensity contractions within a single experimental session.
Collapse
Affiliation(s)
- Thomas Lapole
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint-Etienne, France.
| | - Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Neuroscience Research Australia, Sydney, Australia.
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Robin Souron
- Nantes Université, Mouvement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Eleanor K O'Brien
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Centre for Precision Health, Edith Cowan University, Perth, Western Australia, Australia
| | - Callum G Brownstein
- Newcastle University, School of Biomedical, Nutritional and Sports Sciences, Newcastle-upon-Tyne, United Kingdom
| | - Vianney Rozand
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint-Etienne, France; INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| |
Collapse
|
7
|
Mesquita RNO, Taylor JL, Heckman CJ, Trajano GS, Blazevich AJ. Persistent inward currents in human motoneurons: emerging evidence and future directions. J Neurophysiol 2024; 132:1278-1301. [PMID: 39196985 DOI: 10.1152/jn.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/30/2024] Open
Abstract
The manner in which motoneurons respond to excitatory and inhibitory inputs depends strongly on how their intrinsic properties are influenced by the neuromodulators serotonin and noradrenaline. These neuromodulators enhance the activation of voltage-gated channels that generate persistent (long-lasting) inward sodium and calcium currents (PICs) into the motoneurons. PICs are crucial for initiating, accelerating, and maintaining motoneuron firing. A greater accessibility to state-of-the-art techniques that allows both the estimation and examination of PIC modulation in tens of motoneurons in vivo has rapidly evolved our knowledge of how motoneurons amplify and prolong the effects of synaptic input. We are now in a position to gain substantial mechanistic insight into the role of PICs in motor control at an unprecedented pace. The present review briefly describes the effects of PICs on motoneuron firing and the methods available for estimating them before presenting the emerging evidence of how PICs can be modulated in health and disease. Our rapidly developing knowledge of the potent effects of PICs on motoneuron firing has the potential to improve our understanding of how we move, and points to new approaches to improve motor control. Finally, gaps in our understanding are highlighted and methodological advancements are suggested to encourage readers to explore outstanding questions to further elucidate PIC physiology.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - C J Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Gomes MM, Jenz ST, Beauchamp JA, Negro F, Heckman CJ, Pearcey GEP. Voluntary co-contraction of ankle muscles alters motor unit discharge characteristics and reduces estimates of persistent inward currents. J Physiol 2024; 602:4237-4250. [PMID: 39159310 PMCID: PMC11366489 DOI: 10.1113/jp286539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Motoneuronal persistent inward currents (PICs) are facilitated by neuromodulatory inputs but are highly sensitive to local inhibitory circuits. Estimates of PICs are reduced by group Ia reciprocal inhibition, and increased with the diffuse actions of neuromodulators released during remote muscle contraction. However, it remains unknown how motoneurons function in the presence of simultaneous excitatory and inhibitory commands. To probe this topic, we investigated motor unit discharge patterns and estimated PICs during voluntary co-contraction of ankle muscles, which simultaneously demands the contraction of agonist-antagonist pairs. Twenty participants performed triangular ramps of both co-contraction (simultaneous dorsiflexion and plantar flexion) and isometric dorsiflexion to a peak of 30% of their maximum muscle activity from a maximal voluntary contraction. Motor unit spike trains were decomposed from high-density surface EMG activity recorded from tibialis anterior using blind source separation algorithms. Voluntary co-contraction altered motor unit discharge rate characteristics. Discharge rate at recruitment and peak discharge rate were modestly reduced (∼6% change; P < 0.001; d = 0.22) and increased (∼2% change; P = 0.001, d = -0.19), respectively, in the entire dataset but no changes were observed when motor units were tracked across conditions. The largest effects during co-contraction were that estimates of PICs (ΔF) were reduced by ∼20% (4.47 vs. 5.57 pulses per second during isometric dorsiflexion; P < 0.001, d = 0.641). These findings suggest that, during voluntary co-contraction, the inhibitory input from the antagonist muscle overcomes the additional excitatory and neuromodulatory drive that may occur due to the co-contraction of the antagonist muscle, which constrains PIC behaviour. KEY POINTS: Voluntary co-contraction is a unique motor behaviour that concurrently provides excitatory and inhibitory synaptic input to motoneurons. Co-contraction of agonist-antagonist pairs alters agonist motor unit discharge characteristics, consistent with reductions in persistent inward current magnitude.
Collapse
Affiliation(s)
- Matheus M Gomes
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sophia T Jenz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James A Beauchamp
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Illinois, USA
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
9
|
MARTINO GIOVANNI, VALLI GIACOMO, SARTO FABIO, FRANCHI MARTINOV, NARICI MARCOV, DE VITO GIUSEPPE. Neuromodulatory Contribution to Muscle Force Production after Short-Term Unloading and Active Recovery. Med Sci Sports Exerc 2024; 56:1830-1839. [PMID: 38689447 PMCID: PMC11463074 DOI: 10.1249/mss.0000000000003473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE Prior evidence has shown that neural factors contribute to the loss of muscle force after skeletal muscle disuse. However, little is known about the specific neural mechanisms altered by disuse. Persistent inward current (PIC) is an intrinsic property of motoneurons responsible for prolonging and amplifying the synaptic input, proportionally to the level of neuromodulation, thus influencing motoneuron discharge rate and force production. Here, we hypothesized that short-term unilateral lower limb suspension (ULLS) would reduce the neuromodulatory input associated with PIC, contributing to the reduction of force generation capacity. In addition, we tested whether physical exercise would restore the force generation capacity by reestablishing the initial level of neuromodulatory input. METHODS In 12 young adults, we assessed maximal voluntary contraction pre- and post-10 d of ULLS and after 21 d of active recovery (AR) based on resistance exercise. PIC was estimated from high-density surface electromyograms of the vastus lateralis muscle as the delta frequency (Δ F ) of paired motor units calculated during isometric ramped contractions. RESULTS The values of Δ F were reduced after 10 d of ULLS (-33%, P < 0.001), but were fully reestablished after the AR (+29.4%, P < 0.001). The changes in estimated PIC values were correlated ( r = 0.63, P = 0.004) with the reduction in maximal voluntary contraction after ULLS (-29%, P = 0.002) and its recovery after the AR (+28.5%, P = 0.003). CONCLUSIONS Our findings suggest that PIC estimates are reduced by muscle disuse and may contribute to the loss of force production and its recovery with exercise. Overall, this is the first study demonstrating that, in addition to peripheral neuromuscular changes, central neuromodulation is a major contributor to the loss of force generation capacity after disuse, and can be recovered after resistance exercise.
Collapse
Affiliation(s)
- GIOVANNI MARTINO
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - GIACOMO VALLI
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - FABIO SARTO
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - MARTINO V. FRANCHI
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
- CIR-MYO Myology Centre, University of Padova, Padova, ITALY
| | - MARCO V. NARICI
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
- CIR-MYO Myology Centre, University of Padova, Padova, ITALY
| | - GIUSEPPE DE VITO
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
- CIR-MYO Myology Centre, University of Padova, Padova, ITALY
| |
Collapse
|
10
|
Blazevich AJ, Mesquita RNO, Pinto RS, Pulverenti T, Ratel S. Reduction and recovery of self-sustained muscle activity after fatiguing plantar flexor contractions. Eur J Appl Physiol 2024; 124:1781-1794. [PMID: 38340155 PMCID: PMC11130039 DOI: 10.1007/s00421-023-05403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE Persistent inward calcium and sodium currents (PICs) are crucial for initiation and maintenance of motoneuron firing, and thus muscular force. However, there is a lack of data describing the effects of fatiguing exercise on PIC activity in humans. We simultaneously applied tendon vibration and neuromuscular electrical stimulation (VibStim) before and after fatiguing exercise. VibStim induces self-sustained muscle activity that is proposed to result from PIC activation. METHODS Twelve men performed 5-s maximal isometric plantar flexor contractions (MVC) with 5-s rests until joint torque was reduced to 70%MVC. VibStim trials consisted of five 2-s trains of neuromuscular electrical stimulation (20 Hz, evoking 10% MVC) of triceps surae with simultaneous Achilles tendon vibration (115 Hz) without voluntary muscle activation. VibStim was applied before (PRE), immediately (POST), 5-min (POST-5), and 10-min (POST-10) after exercise completion. RESULTS Sustained torque (Tsust) and soleus electromyogram amplitudes (EMG) measured 3 s after VibStim were reduced (Tsust: -59.0%, p < 0.001; soleus EMG: -38.4%, p < 0.001) but largely recovered by POST-5, and changes in MVC and Tsust were correlated across the four time points (r = 0.69; p < 0.001). After normalisation to values obtained at the end of the vibration phase to control for changes in fibre-specific force and EMG signal characteristics, decreases in Tsust (-42.9%) and soleus EMG (-22.6%) remained significant and were each correlated with loss and recovery of MVC (r = 0.41 and 0.46, respectively). CONCLUSION The parallel changes observed in evoked self-sustained muscle activity and force generation capacity provide motivation for future examinations on the potential influence of fatigue-induced PIC changes on motoneuron output.
Collapse
Affiliation(s)
- Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.
| | - Ricardo N O Mesquita
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Neuroscience Research Australia, Sydney, Australia
| | - Ronei S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Timothy Pulverenti
- Department of Physical Therapy, College of Staten Island, Staten Island, NY, USA
| | - Sébastien Ratel
- UFR STAPS - Laboratoire AME2P, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 Rue de la Chebarde, 63170, Clermont-Ferrand, France
| |
Collapse
|
11
|
Pereira HM, Keenan KG, Hunter SK. Influence of visual feedback and cognitive challenge on the age-related changes in force steadiness. Exp Brain Res 2024; 242:1411-1419. [PMID: 38613669 DOI: 10.1007/s00221-024-06831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Force steadiness can be influenced by visual feedback as well as presence of a cognitive tasks and potentially differs with age and sex. This study determined the impact of altered visual feedback on force steadiness in the presence of a difficult cognitive challenge in young and older men and women. Forty-nine young (19-30 yr; 25 women, 24 men) and 25 older (60-85 yr; 15 women; 10 men) performed low force (5% of maximum) static contractions with the elbow flexor muscles in the presence and absence of a cognitive challenge (counting backwards by 13) either with low or high visual feedback gain. The cognitive challenge reduced force steadiness (increased force fluctuation amplitude) particularly in women (cognitive challenge × sex: P < 0.05) and older individuals (cognitive challenge × age: P < 0.05). Force steadiness improved with high-gain visual feedback compared with low-gain visual feedback (P < 0.01) for all groups (all interactions: P > 0.05). Manipulation of visual feedback had no influence on the reduced force steadiness in presence of the cognitive challenge for all groups (all P > 0.05). These findings indicate that older individuals and women have greater risk of impaired motor performance of the upper extremity if steadiness is required during a low-force static contraction. Manipulation of visual feedback had minimal effects on the reduced force steadiness in presence of a difficult cognitive challenge.
Collapse
Affiliation(s)
- Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA.
| | - Kevin G Keenan
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, USA
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, USA
| |
Collapse
|
12
|
Guo Y, Jones EJ, Škarabot J, Inns TB, Phillips BE, Atherton PJ, Piasecki M. Common synaptic inputs and persistent inward currents of vastus lateralis motor units are reduced in older male adults. GeroScience 2024; 46:3249-3261. [PMID: 38238546 PMCID: PMC11009172 DOI: 10.1007/s11357-024-01063-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/02/2024] [Indexed: 04/13/2024] Open
Abstract
Although muscle atrophy may partially account for age-related strength decline, it is further influenced by alterations of neural input to muscle. Persistent inward currents (PIC) and the level of common synaptic inputs to motoneurons influence neuromuscular function. However, these have not yet been described in the aged human quadriceps. High-density surface electromyography (HDsEMG) signals were collected from the vastus lateralis of 15 young (mean ± SD, 23 ± 5 y) and 15 older (67 ± 9 y) men during submaximal sustained and 20-s ramped contractions. HDsEMG signals were decomposed to identify individual motor unit discharges, from which PIC amplitude and intramuscular coherence were estimated. Older participants produced significantly lower knee extensor torque (p < 0.001) and poorer force tracking ability (p < 0.001) than young. Older participants also had lower PIC amplitude (p = 0.001) and coherence estimates in the alpha frequency band (p < 0.001) during ramp contractions when compared to young. Persistent inward currents and common synaptic inputs are lower in the vastus lateralis of older males when compared to young. These data highlight altered neural input to the clinically and functionally important quadriceps, further underpinning age-related loss of function which may occur independently of the loss of muscle mass.
Collapse
Affiliation(s)
- Yuxiao Guo
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Eleanor J Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Thomas B Inns
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK.
| |
Collapse
|
13
|
Orssatto LBR, Thorstensen JR, Scott D, Daly RM. Are we underestimating the potential of neuroactive drugs to augment neuromotor function in sarcopenia? Metabolism 2024; 154:155816. [PMID: 38364901 DOI: 10.1016/j.metabol.2024.155816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Australia.
| | - Jacob R Thorstensen
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David Scott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Australia
| |
Collapse
|
14
|
Goodlich BI, Pearcey GEP, Del Vecchio A, Horan SA, Kavanagh JJ. Antagonism of 5-HT 2 receptors attenuates self-sustained firing of human motor units. J Physiol 2024; 602:1759-1774. [PMID: 38502567 DOI: 10.1113/jp285867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
5-HT2 receptors on motoneurones play a critical role in facilitating persistent inward currents (PICs). Although facilitation of PICs can enhance self-sustained firing after periods of excitation, the relationship between 5-HT2 receptor activity and self-sustained firing in human motor units (MUs) has not been resolved. MU activity was assessed from the tibialis anterior of 10 healthy adults (24.9 ± 2.8 years) during two contraction protocols. Both protocols featured steady-state isometric contractions with constant descending drive to the motoneurone pool. However, one protocol also included an additional phase of superimposed descending drive. Adding and then removing descending drive in the middle of steady-state contractions altered MU firing behaviour across the motor pool, where newly recruited units in the superimposed phase were unable to switch off (P = 0.0002), and units recruited prior to additional descending drive reduced their discharge rates (P < 0.0001, difference in estimated marginal means (∆) = 2.24 pulses/s). The 5-HT2 receptor antagonist, cyproheptadine, was then administered to determine whether changes in MU firing were mediated by serotonergic mechanisms. 5-HT2 receptor antagonism caused reductions in MU discharge rate (P < 0.001, ∆ = 1.65 pulses/s), recruitment threshold (P = 0.00112, ∆ = 1.09% maximal voluntary contraction) and self-sustained firing duration (P < 0.0001, ∆ = 1.77s) after the additional descending drive was removed in the middle of the steady-state contraction. These findings indicate that serotonergic neuromodulation plays a key role in facilitating discharge and self-sustained firing of human motoneurones, where adaptive changes in MU recruitment must occur to meet the demands of the contraction. KEY POINTS: Animal and cellular preparations indicate that somato-dendritic 5-HT2 receptors regulate the intrinsic excitability of motoneurones. 5-HT2 receptor antagonism reduces estimates of persistent inward currents in motoneurones, which contribute to self-sustained firing when synaptic inputs are reduced or removed. This human study employed a contraction task that slowly increased (and then removed) the additional descending drive in the middle of a steady-state contraction where marked self-sustained firing occurred when the descending drive was removed. 5-HT2 receptor antagonism caused widespread reductions in motor unit (MU) discharge rates during contractions, which was accompanied by reduced recruitment threshold and attenuation of self-sustained firing duration after the removal of the additional descending drive to motoneurones. These findings support the role that serotonergic neuromodulation is a key facilitator of MU discharge and self-sustained firing of human motoneurones, where adaptative changes in MU recruitment must occur to meet the demands of the contraction.
Collapse
Affiliation(s)
- Benjamin I Goodlich
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Gregory E P Pearcey
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Canada
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University (FAU), Erlangen-Nuremberg, Erlangen, Germany
| | - Sean A Horan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
15
|
Gomes MM, Jenz ST, Beauchamp JA, Negro F, Heckman CJ, Pearcey GEP. Voluntary co-contraction of ankle muscles alters motor unit discharge characteristics and reduces estimates of persistent inward currents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582534. [PMID: 38464115 PMCID: PMC10925258 DOI: 10.1101/2024.02.28.582534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Motoneuronal persistent inward currents (PICs) are both facilitated by neuromodulatory inputs and highly sensitive to local inhibitory circuits (e.g., Ia reciprocal inhibition). Methods aimed to increase group Ia reciprocal inhibition from the antagonistic muscle have been successful in decreasing PICs, and the diffuse actions of neuromodulators released during activation of remote muscles have increased PICs. However, it remains unknown how motoneurons function in the presence of simultaneous excitatory and inhibitory commands. To probe this topic, we investigated motor unit (MU) discharge patterns and estimated PICs during voluntary co-contraction of ankle muscles, which simultaneously demands the contraction of agonist-antagonist pairs. Twenty young adults randomly performed triangular ramps (10s up and down) of both co-contraction (simultaneous dorsiflexion and plantarflexion) and isometric dorsiflexion to a peak of 30% of their maximum muscle activity from a maximal voluntary contraction. Motor unit spike trains were decomposed from high-density surface electromyography recorded over the tibialis anterior (TA) using blind source separation algorithms. Voluntary co-contraction altered motor unit discharge rate characteristics, decreasing estimates of PICs by 20% (4.47 pulses per second (pps) vs 5.57 pps during isometric dorsiflexion). These findings suggest that, during voluntary co-contraction, the inhibitory input from the antagonist muscle overcomes the additional excitatory and neuromodulatory drive that may occur due to the co-contraction of the antagonist muscle, which constrains PIC behavior.
Collapse
Affiliation(s)
- Matheus M Gomes
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sophia T Jenz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - James A Beauchamp
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
16
|
Goreau V, Hug F, Jannou A, Dernoncourt F, Crouzier M, Cattagni T. Estimates of persistent inward currents in lower limb muscles are not different between inactive, resistance-trained, and endurance-trained young males. J Neurophysiol 2024; 131:166-175. [PMID: 38116611 DOI: 10.1152/jn.00278.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/20/2023] [Accepted: 12/17/2023] [Indexed: 12/21/2023] Open
Abstract
Persistent inward currents (PICs) increase the intrinsic excitability of α-motoneurons. The main objective of this study was to compare estimates of α-motoneuronal PICs between inactive, chronic resistance-trained, and chronic endurance-trained young individuals. We also aimed to investigate whether there is a relationship in the estimates of α-motoneuronal PIC magnitude between muscles. Estimates of PIC magnitude were obtained in three groups of young individuals: resistance-trained (n = 12), endurance-trained (n = 12), and inactive (n = 13). We recorded high-density surface electromyography (HDsEMG) signals from tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus medialis (VM), and vastus lateralis (VL). Then, signals were decomposed with convolutive blind source separation to identify motor unit (MU) spike trains. Participants performed triangular isometric contractions to a peak of 20% of their maximum voluntary contraction. A paired-motor-unit analysis was used to calculate ΔF, which is assumed to be proportional to PIC magnitude. Despite the substantial differences in physical training experience between groups, we found no differences in ΔF, regardless of the muscle. Significant correlations of estimates of PIC magnitude were found between muscles of the same group (VL-VM, SOL-GM). Only two correlations (out of 8) between muscles of different groups were found (TA-GM and VL-GM). Overall, our findings suggest that estimates of PIC magnitude from lower-threshold MUs at low contraction intensities in the lower limb muscles are not influenced by physical training experience in healthy young individuals. They also suggest muscle-specific and muscle group-specific regulations of the estimates of PIC magnitude.NEW & NOTEWORTHY Chronic resistance and endurance training can lead to specific adaptations in motor unit activity. The contribution of α-motoneuronal persistent inward currents (PICs) to these adaptations is currently unknown in healthy young individuals. Therefore, we studied whether estimates of α-motoneuronal PIC magnitude are higher in chronically trained endurance- and resistance-trained individuals. We also studied whether there is a relationship between the estimates of α-motoneuronal PIC magnitude of different lower limb muscles.
Collapse
Affiliation(s)
- Valentin Goreau
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| | | | - Anthony Jannou
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| | - François Dernoncourt
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
- LAMHESS, Université Côte d'Azur, Nice, France
| | - Marion Crouzier
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
- Department of Movement Science, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Thomas Cattagni
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| |
Collapse
|
17
|
Amiez N, Martin A, Gaveau J, Julliand S, Papaxanthis C, Paizis C. Local vibration induces changes in spinal and corticospinal excitability in vibrated and antagonist muscles. J Neurophysiol 2024; 131:379-393. [PMID: 38198664 DOI: 10.1152/jn.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Local vibration (LV) applied over the muscle tendon constitutes a powerful stimulus to activate the muscle spindle primary (Ia) afferents that project to the spinal level and are conveyed to the cortical level. This study aimed to identify the neuromuscular changes induced by a 30-min LV-inducing illusions of hand extension on the vibrated flexor carpi radialis (FCR) and the antagonist extensor carpi radialis (ECR) muscles. We studied the change of the maximal voluntary isometric contraction (MVIC, experiment 1) for carpal flexion and extension, motor-evoked potentials (MEPs, experiment 2), cervicomedullary motor-evoked potentials (CMEPs, experiment 2), and Hoffmann's reflex (H-reflex, experiment 3) for both muscles at rest. Measurements were performed before (PRE) and at 0, 30, and 60 min after LV protocol. A lasting decrease in strength was only observed for the vibrated muscle. The reduction in CMEPs observed for both muscles seems to support a decrease in alpha motoneurons excitability. In contrast, a slight decrease in MEPs responses was observed only for the vibrated muscle. The MEP/CMEP ratio increase suggested greater cortical excitability after LV for both muscles. In addition, the H-reflex largely decreased for the vibrated and the antagonist muscles. The decrease in the H/CMEP ratio for the vibrated muscle supported both pre- and postsynaptic causes of the decrease in the H-reflex. Finally, LV-inducing illusions of movement reduced alpha motoneurons excitability for both muscles with a concomitant increase in cortical excitability.NEW & NOTEWORTHY Spinal disturbances confound the interpretation of excitability changes in motor areas and compromise the conclusions reached by previous studies using only a corticospinal marker for both vibrated and antagonist muscles. The time course recovery suggests that the H-reflex perturbations for the vibrated muscle do not only depend on changes in alpha motoneurons excitability. Local vibration induces neuromuscular changes in both vibrated and antagonist muscles at the spinal and cortical levels.
Collapse
Affiliation(s)
- Nicolas Amiez
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Alain Martin
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Jérémie Gaveau
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Sophie Julliand
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Charalambos Papaxanthis
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Christos Paizis
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
- Centre d'Expertise de la Performance, UFR des Sciences du Sport, Université de Bourgogne, Dijon, France
| |
Collapse
|
18
|
Mesquita RNO, Taylor JL, Trajano GS, Holobar A, Gonçalves BAM, Blazevich AJ. Effects of jaw clenching and mental stress on persistent inward currents estimated by two different methods. Eur J Neurosci 2023; 58:4011-4033. [PMID: 37840191 DOI: 10.1111/ejn.16158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Spinal motoneuron firing depends greatly on persistent inward currents (PICs), which in turn are facilitated by the neuromodulators serotonin and noradrenaline. The aim of this study was to determine whether jaw clenching (JC) and mental stress (MS), which may increase neuromodulator release, facilitate PICs in human motoneurons. The paired motor unit (MU) technique was used to estimate PIC contribution to motoneuron firing. Surface electromyograms were collected using a 32-channel matrix on gastrocnemius medialis (GM) during voluntary, ramp, plantar flexor contractions. MU discharges were identified, and delta frequency (ΔF), a measure of recruitment-derecruitment hysteresis, was calculated. Additionally, another technique was used (VibStim) that evokes involuntary contractions that persist after cessation of combined Achilles tendon vibration and triceps surae neuromuscular electrical stimulation. VibStim measures of plantar flexor torque and soleus activity may reflect PIC activation. ΔF was not significantly altered by JC (p = .679, n = 18, 9 females) or MS (p = .147, n = 14, 5 females). However, all VibStim variables quantifying involuntary torque and muscle activity during and after vibration cessation were significantly increased in JC (p < .011, n = 20, 10 females) and some, but not all, increased in MS (p = .017-.05, n = 19, 10 females). JC and MS significantly increased the magnitude of involuntary contractions (VibStim) but had no effect on GM ΔF during voluntary contractions. Effects of increased neuromodulator release on PIC contribution to motoneuron firing might differ between synergists or be context dependent. Based on these data, the background level of voluntary contraction and, hence, both neuromodulation and ionotropic inputs could influence neuromodulatory PIC enhancement.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Basílio A M Gonçalves
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
19
|
Trajano GS, Orssatto LBR, McCombe PA, Rivlin W, Tang L, Henderson RD. Longitudinal changes in intrinsic motoneuron excitability in amyotrophic lateral sclerosis are dependent on disease progression. J Physiol 2023; 601:4723-4735. [PMID: 37768183 DOI: 10.1113/jp285181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Increased amplitude of persistent inward currents (PICs) is observed in pre-symptomatic genetically modified SOD1 mice models of amyotrophic lateral sclerosis (ALS). However, at the symptomatic stage this reverses and there is a large reduction in PIC amplitude. It remains unclear whether these changes in PICs can be observed in humans, with cross-sectional studies in humans reporting contradictory findings. In people with ALS, we estimated the PIC contribution to self-sustained firing of motoneurons, using the paired-motor unit analysis to calculate the Δfrequency (ΔF), to compare the weaker and stronger muscles during the course of disease. We hypothesised that, with disease progression, ΔFs would relatively increase in the stronger muscles; and decline in the weaker muscles. Forty-three individuals with ALS were assessed in two occasions on average 17 weeks apart. Tibialis anterior high-density electromyograms were recorded during dorsiflexion (40% of maximal capacity) ramped contractions, followed by clinical tests. ∆F increased from 3.14 (2.57, 3.71) peaks per second (pps) to 3.55 (2.94, 4.17) pps on the stronger muscles (0.41 (0.041, 0.781) pps, standardised difference (d) = 0.287 (0.023, 0.552), P = 0.030). ∆F reduced from 3.38 (95% CI 2.92, 3.84) pps to 2.88 (2.40, 3.36) pps on the weaker muscles (-0.50 (-0.80, -0.21) pps, d = 0.353 (0.138, 0.567), P = 0.001). The ALSFRS-R score reduced 3.9 (2.3, 5.5) points. These data indicate that the contribution of PICs to motoneuron self-sustained firing increases over time in early stages of the disease when there is little weakness before decreasing as the disease progresses and muscle weakness exacerbates, in alignment with the findings from studies using SOD1 mice. KEY POINTS: Research on mouse model of amyotrophic lateral sclerosis (ALS) suggests that the amplitude of persistent inward currents (PICs) is increased in early stages before decreasing as the disease progresses. Cross-sectional studies in humans have reported contradictory findings with both higher and lower PIC contributions to motoneuron self-sustained firing. In this longitudinal (∼17 weeks) study we tracked changes in PIC contribution to motoneuron self-sustained firing, using the ΔF calculation (i.e. onset-offset hysteresis of motor unit pairs), in tibialis anterior muscles with normal strength and with clinical signs of weakness in people with ALS. ΔFs decreased over time in muscles with clinical signs of weakness. The PIC contribution to motoneuron self-sustained firing increases before the onset of muscle weakness, and subsequently decreases when muscle weakness progresses.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Warwick Rivlin
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Lily Tang
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Orssatto LBR, Blazevich AJ, Trajano GS. Ageing reduces persistent inward current contribution to motor neurone firing: Potential mechanisms and the role of exercise. J Physiol 2023; 601:3705-3716. [PMID: 37488952 DOI: 10.1113/jp284603] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
Nervous system deterioration is a primary driver of age-related motor impairment. The motor neurones, which act as the interface between the central nervous system and the muscles, play a crucial role in amplifying excitatory synaptic input to produce the desired motor neuronal firing output. For this, they utilise their ability to generate persistent (long-lasting) depolarising currents that increase cell excitability, and both amplify and prolong the output activity of motor neurones for a given synaptic input. Modulation of these persistent inward currents (PICs) contributes to the motor neurones' capacities to attain the required firing frequencies and rapidly modulate them to competently complete most tasks. Thus, PICs are crucial for adequate movement generation. Impairments in intrinsic motor neurone properties can impact motor unit firing capacity, with convincing evidence indicating that the PIC contribution to motor neurone firing is reduced in older adults. Indeed, this could be an important mechanism underpinning the age-related reductions in strength and physical function. Furthermore, resistance training has emerged as a promising intervention to counteract age-associated PIC impairments, with changes in PICs being correlated with improvements in muscular strength and physical function after training. In this review, we present the current knowledge of the PIC magnitude decline during ageing and discuss whether reduced serotonergic and noradrenergic input onto the motor neurones, voltage-gated calcium channel dysfunction or inhibitory input impairments are candidates that: (i) explain age-related reductions in the PIC contribution to motor neurone firing and (ii) underpin the enhanced PIC contribution to motor neurone firing following resistance training in older adults.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
21
|
Jenz ST, Beauchamp JA, Gomes MM, Negro F, Heckman CJ, Pearcey GEP. Estimates of persistent inward currents in lower limb motoneurons are larger in females than in males. J Neurophysiol 2023; 129:1322-1333. [PMID: 37096909 PMCID: PMC10202474 DOI: 10.1152/jn.00043.2023] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Noninvasive recordings of motor unit (MU) spike trains help us understand how the nervous system controls movement and how it adapts to various physiological conditions. The majority of participants in human and nonhuman animal physiology studies are male, and it is assumed that mechanisms uncovered in these studies are shared between males and females. However, sex differences in neurological impairment and physical performance warrant the study of sex as a biological variable in human physiology and performance. To begin addressing this gap in the study of biophysical properties of human motoneurons, we quantified MU discharge rates and estimates of persistent inward current (PIC) magnitude in both sexes. We decomposed MU spike trains from the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL) using high-density surface electromyography and blind source separation algorithms. Ten participants of each sex performed slow triangular (10 s up and down) isometric contractions to a peak of 30% of their maximum voluntary contraction. We then used linear mixed-effects models to determine if peak discharge rate and estimates of PICs were predicted by the fixed effects of sex, muscle, and their interaction. Despite a lack of sex-differences in peak discharge rates across all muscles, estimates of PICs were larger [χ2(1) = 6.26, P = 0.012] in females [4.73 ± 0.242 pulses per second (pps)] than in males (3.81 ± 0.240 pps). These findings suggest that neuromodulatory drive, inhibitory input, and/or biophysical properties of motoneurons differ between the sexes and may contribute to differences in MU discharge patterns.NEW & NOTEWORTHY Sex-related differences in motoneuron analyses have emerged with greater inclusion of female participants, however, mechanisms for these differences remain unclear. Estimates of persistent inward currents (i.e., ΔF) in motoneurons of the lower limb muscles were larger in females than in males. This suggests neuromodulatory drive, monoaminergic signaling, intrinsic motoneuron properties, and/or descending motor commands may differ between the sexes, which provides a potential mechanism underlying previously reported sex-related differences in motoneuron discharge patterns.
Collapse
Affiliation(s)
- Sophia T Jenz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - James A Beauchamp
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States
| | - Matheus M Gomes
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
22
|
Orssatto LBR, Rodrigues P, Mackay K, Blazevich AJ, Borg DN, Souza TRD, Sakugawa RL, Shield AJ, Trajano GS. Intrinsic motor neuron excitability is increased after resistance training in older adults. J Neurophysiol 2023; 129:635-650. [PMID: 36752407 DOI: 10.1152/jn.00462.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This study investigated the effects of high-intensity resistance training on estimates of the motor neuron persistent inward current (PIC) in older adults. Seventeen participants (68.5 ± 2.8 yr) completed a 2-wk nonexercise control period followed by 6 wk of resistance training. Surface electromyographic signals were collected with two 32-channel electrodes placed over soleus to investigate motor unit discharge rates. Paired motor unit analysis was used to calculate delta frequency (ΔF) as an estimate of PIC amplitudes during 1) triangular-shaped contractions to 20% of maximum torque capacity and 2) trapezoidal- and triangular-shaped contractions to 20% and 40% of maximum torque capacity, respectively, to understand their ability to modulate PICs as contraction intensity increases. Maximal strength and functional capacity tests were also assessed. For the 20% triangular-shaped contractions, ΔF [0.58-0.87 peaks per second (pps); P ≤ 0.015] and peak discharge rates (0.78-0.99 pps; P ≤ 0.005) increased after training, indicating increased PIC amplitude. PIC modulation also improved after training. During the control period, mean ΔF differences between 20% trapezoidal-shaped and 40% triangular-shaped contractions were 0.09-0.18 pps (P = 0.448 and 0.109, respectively), which increased to 0.44 pps (P < 0.001) after training. Also, changes in ΔF showed moderate to very large correlations (r = 0.39-0.82) with changes in peak discharge rates and broad measures of motor function. Our findings indicate that increased motor neuron excitability is a potential mechanism underpinning training-induced improvements in motor neuron discharge rate, strength, and motor function in older adults. This increased excitability is likely mediated by enhanced PIC amplitudes, which are larger at higher contraction intensities.NEW & NOTEWORTHY Resistance training elicited important alterations in soleus intrinsic motor neuronal excitability, likely mediated by enhanced persistent inward current (PIC) amplitude, in older adults. Estimates of PICs increased after the training period, accompanied by an enhanced ability to increase PIC amplitudes at higher contraction intensities. Our data also suggest that changes in PIC contribution to self-sustained discharging may contribute to increases in motor neuron discharge rates, maximal strength, and functional capacity in older adults after resistance training.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrick Rodrigues
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - David N Borg
- Australian Centre for Health Services Innovation (AusHSI), School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tiago Rosa de Souza
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raphael L Sakugawa
- Department of Physical Education, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Goodlich BI, Del Vecchio A, Horan SA, Kavanagh JJ. Blockade of 5-HT 2 receptors suppresses motor unit firing and estimates of persistent inward currents during voluntary muscle contraction in humans. J Physiol 2023; 601:1121-1138. [PMID: 36790076 DOI: 10.1113/jp284164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Serotonergic neuromodulation contributes to enhanced voluntary muscle activation. However, it is not known how the likely motoneurone receptor candidate (5-HT2 ) influences the firing rate and activation threshold of motor units (MUs) in humans. The purpose of this study was to determine whether 5-HT2 receptor activity contributes to human MU behaviour during voluntary ramped contractions of differing intensity. High-density surface EMG (HDsEMG) of the tibialis anterior was assessed during ramped isometric dorsiflexions at 10, 30, 50 and 70% of maximal voluntary contraction (MVC). MU characteristics were successfully extracted from HDsEMG of 11 young adults (four female) pre- and post-ingestion of 8 mg cyproheptadine or a placebo. Antagonism of 5-HT2 receptors caused a reduction in MU discharge rate during steady-state muscle activation that was independent of the level of contraction intensity [P < 0.001; estimated mean difference (∆) = 1.06 pulses/s], in addition to an increase in MU derecruitment threshold (P < 0.013, ∆ = 1.23% MVC), without a change in force during MVC (P = 0.652). A reduction in estimates of persistent inward current amplitude was observed at 10% MVC (P < 0.001, ∆ = 0.99 Hz) and 30% MVC (P = 0.003, ∆ = 0.75 Hz) that aligned with 5-HT changes in MU firing behaviour attributable to 5-HT2 antagonism. Overall, these findings indicate that 5-HT2 receptor activity has a role in regulating the discharge rate in populations of spinal motoneurones when performing voluntary contractions. This study provides evidence of a direct link between MU discharge properties, persistent inward current activity and 5-HT2 receptor activity in humans. KEY POINTS: Activation of 5-HT receptors on the soma and dendrites of motoneurones regulates their excitability. Previous work using chlorpromazine and cyproheptadine has demonstrated that the 5-HT2 receptor regulates motoneurone activity in humans with chronic spinal cord injury and non-injured control subjects. It is not known how the 5-HT2 receptor directly influences motor unit (MU) discharge and MU recruitment in larger populations of human motoneurones during voluntary contractions of differing intensity. Despite the absence of change in force during maximal voluntary dorsiflexions, 5-HT2 receptor antagonism caused a reduction in MU discharge rate during submaximal steady-state muscle contraction, in addition to an increase in MU derecruitment threshold, irrespective of the submaximal contraction intensity. Reductions in estimates of persistent inward currents after 5-HT2 receptor antagonism support the viewpoint that the 5-HT2 receptor plays a crucial role in regulating motor activity, whereby a persistent inward current-based mechanism is involved in regulating the excitability of human motoneurones.
Collapse
Affiliation(s)
- Benjamin I Goodlich
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University (FAU), Erlangen-Nuremberg, Erlangen, Germany
| | - Sean A Horan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
24
|
Lapole T, Mesquita RNO, Baudry S, Souron R, Brownstein CG, Rozand V. Can local vibration alter the contribution of persistent inward currents to human motoneuron firing? J Physiol 2023; 601:1467-1482. [PMID: 36852473 DOI: 10.1113/jp284210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), which in turn are enhanced by the neuromodulators serotonin and noradrenaline. Local vibration (LV) induces excitatory Ia input onto motoneurons and may alter neuromodulatory inputs. Therefore, we investigated whether LV influences the contribution of PICs to motoneuron firing. This was assessed in voluntary contractions with concurrent, ongoing LV, as well as after a bout of prolonged LV. High-density surface electromyograms (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. Twenty males performed isometric, triangular, dorsiflexion contractions to 20% and 50% of maximal torque at baseline, during LV of the tibialis anterior muscle, and after 30-min of LV. HD-EMG signals were decomposed, and motor units tracked across time points to estimate PICs through a paired motor unit analysis, which quantifies motor unit recruitment-derecruitment hysteresis (ΔF). During ongoing LV, ΔF was lower for both 20% and 50% ramps. Although significant changes in ΔF were not observed after prolonged LV, a differential effect across the motoneuron pool was observed. This study demonstrates that PICs can be non-pharmacologically modulated by LV. Given that LV leads to reflexive motor unit activation, it is postulated that lower PIC contribution to motoneuron firing during ongoing LV results from decreased neuromodulatory inputs associated with lower descending corticospinal drive. A differential effect in motoneurons of different recruitment thresholds after prolonged LV is provocative, challenging the interpretation of previous observations and motivating future investigations. KEY POINTS: Neuromodulatory inputs from the brainstem influence motoneuron intrinsic excitability through activation of persistent inward currents (PICs). PICs make motoneurons more responsive to excitatory input. We demonstrate that vibration applied on the muscle modulates the contribution of PICs to motoneuron firing, as observed through analysis of the firing of single motor units. The effects of PICs on motoneuron firing were lower when vibration was concurrently applied during voluntary ramp contractions, likely due to lower levels of neuromodulation. Additionally, prolonged exposure to vibration led to differential effects of lower- vs. higher-threshold motor units on PICs, with lower-threshold motor units tending to present an increased and higher-threshold motor units a decreased contribution of PICs to motoneuron firing. These results demonstrate that muscle vibration has the potential to influence the effects of neuromodulation on motoneuron firing. The potential of using vibration as a non-pharmacological neuromodulatory intervention should be further investigated.
Collapse
Affiliation(s)
- T Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - R N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - S Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - R Souron
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, 44000 Nantes, France
| | - C G Brownstein
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - V Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| |
Collapse
|
25
|
Škarabot J. Remote contractions to mitigate reduced persistent inward current magnitudes in motoneurons of older adults. J Physiol 2022; 600:4967-4968. [PMID: 36327131 PMCID: PMC10946521 DOI: 10.1113/jp283964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|