1
|
Popescu IR, Buraei Z, Haam J, Weng F, Tasker JG. Lactation induces increased IPSC bursting in oxytocinergic neurons. Physiol Rep 2019; 7:e14047. [PMID: 31008554 PMCID: PMC6475881 DOI: 10.14814/phy2.14047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/24/2022] Open
Abstract
Hypothalamic magnocellular neurosecretory cells (MNCs) undergo dramatic structural reorganization during lactation in female rats that is thought to contribute to the pulsatile secretion of oxytocin critical for milk ejection. MNCs from male rats generate robust bursts of GABAergic synaptic currents, a subset of which are onset-synchronized between MNC pairs, but the functional role of the IPSC bursts is not known. To determine the physiological relevance of IPSC bursts, we compared MNCs from lactating and non-lactating female rats using whole-cell recordings in brain slices. We recorded a sixfold increase in the incidence of IPSC bursts in oxytocin (OT)-MNCs from lactating rats compared to non-lactating rats, whereas there was no change in IPSC bursts in vasopressin (VP)-MNCs. Synchronized bursts of IPSCs were observed in pairs of MNCs in slices from lactating rats. Our data indicate, therefore, that IPSC bursts are upregulated specifically in OT-MNCs during lactation, and may, therefore, contribute via rebound depolarization to the spike trains in OT neurons that lead to reflex milk ejection.
Collapse
Affiliation(s)
- Ion R. Popescu
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansLouisiana
| | - Zafir Buraei
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansLouisiana
- Present address:
Department of BiologyPace UniversityNew York CityNew York
| | - Juhee Haam
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansLouisiana
- Present address:
Neurobiology LaboratoryNational Institute of Environmental Health SciencesDepartment of Health and Human ServicesNational Institutes of HealthResearch Triangle ParkNorth Carolina
| | - Feng‐Ju Weng
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansLouisiana
- Present address:
Department of Brain and Cognitive ScienceMassachusetts Institute of TechnologyBostonMassachusetts
| | - Jeffrey G. Tasker
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansLouisiana
- Tulane Brain InstituteTulane UniversityNew OrleansLouisiana
| |
Collapse
|
2
|
Wormuth C, Lundt A, Henseler C, Müller R, Broich K, Papazoglou A, Weiergräber M. Review: Ca v2.3 R-type Voltage-Gated Ca 2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity. Open Neurol J 2016; 10:99-126. [PMID: 27843503 PMCID: PMC5080872 DOI: 10.2174/1874205x01610010099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| |
Collapse
|
3
|
Popescu IR, Morton LA, Franco A, Di S, Ueta Y, Tasker JG. Synchronized bursts of miniature inhibitory postsynaptic currents. J Physiol 2010; 588:939-51. [PMID: 20123785 DOI: 10.1113/jphysiol.2009.181461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spike-independent miniature postsynaptic currents are generally stochastic and are therefore not thought to mediate information relay in neuronal circuits. However, we recorded endogenous bursts of IPSCs in hypothalamic magnocellular neurones in the presence of TTX, which implicated a coordinated mechanism of spike-independent GABA release. IPSC bursts were identical in the absence of TTX, although the burst incidence increased 5-fold, indicating that IPSC bursts were composed of miniature IPSCs (mIPSCs), and that the probability of burst generation increased with action potential activity. IPSC bursts required extracellular calcium, although they were not dependent on calcium influx through voltage-gated calcium channels or on calcium mobilization from intracellular stores. Current injections simulating IPSC bursts were capable of triggering and terminating action potential trains. In 25% of dual recordings, a subset of IPSC bursts were highly synchronized in onset in pairs of magnocellular neurones. Synchronized IPSC bursts displayed properties that were consistent with simultaneous release at GABA synapses shared between pairs of postsynaptic magnocellular neurones. Synchronized bursts of inhibitory synaptic inputs represent a novel mechanism that may contribute to the action potential burst generation, termination and synchronization responsible for pulsatile hormone release from neuroendocrine cells.
Collapse
Affiliation(s)
- Ion R Popescu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
4
|
Postnova S, Finke C, Jin W, Schneider H, Braun HA. A computational study of the interdependencies between neuronal impulse pattern, noise effects and synchronization. ACTA ACUST UNITED AC 2009; 104:176-89. [PMID: 19948218 DOI: 10.1016/j.jphysparis.2009.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alterations of individual neurons dynamics and associated changes of the activity pattern, especially the transition from tonic firing (single-spikes) to bursts discharges (impulse groups), play an important role for neuronal information processing and synchronization in many physiological processes (sensory encoding, information binding, hormone release, sleep-wake cycles) as well as in disease (Parkinson, epilepsy). We have used Hodgkin-Huxley-type model neurons with subthreshold oscillations to examine the impact of noise on neuronal encoding and thereby have seen significant differences depending on noise implementation as well as on the neuron's dynamic state. The importance of the individual neurons' dynamics is further elucidated by simulation studies with electrotonically coupled model neurons which revealed mutual interdependencies between the alterations of the network's coupling strength and neurons' activity patterns with regard to synchronization. Remarkably, a pacemaker-like activity pattern which revealed to be much more noise sensitive than the bursting patterns also requires much higher coupling strengths for synchronization. This seemingly simple pattern is obviously governed by more complex dynamics than expected from a conventional pacemaker which may explain why neurons more easily synchronize in the bursting than in the tonic firing mode.
Collapse
Affiliation(s)
- Svetlana Postnova
- Institute of Physiology, Philipps University of Marburg, Deutschhaustrasse 2, Marburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Zaki A, Barrett-Jolley R. Rapid neuromodulation by cortisol in the rat paraventricular nucleus: an in vitro study. Br J Pharmacol 2002; 137:87-97. [PMID: 12183334 PMCID: PMC1573460 DOI: 10.1038/sj.bjp.0704832] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We have used a range of in vitro electrophysiological techniques to investigate the mechanism of rapid cortisol neuromodulation of parvocellular neurones in the rat paraventricular nucleus. 2. In our study, we found that cortisol (10 microM) increased spontaneous action-current firing frequency to 193%. This effect was insensitive to the glucocorticoid intracellular-receptor antagonist mifepristone. 3. Cortisol (0.1-10 microM) had no detectable effects on whole-cell GABA current amplitudes, or GABA(A) single-channel kinetics. 4. Cortisol (10 microM) inhibited whole-cell potassium currents in parvocellular neurones by shifting the steady-state activation curve by 14 mV to the right. 5. Additionally, in a cell line expressing both the glucocorticoid intracellular receptor and recombinant, fast inactivating potassium channels (hKv1.3), cortisol (1 and 10 microM) inhibited potassium currents by shifting their steady-state activation curves to the right by 12 mV (10 microM cortisol). This effect was also insensitive to the cortisol antagonist, mifepristone. 6. These data suggest that inhibition of voltage-gated potassium channels may contribute to the rapid neuromodulatory effects of cortisol, possibly by direct interaction with the ion channel itself.
Collapse
Affiliation(s)
- Abu Zaki
- Department of Physiology, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | - R Barrett-Jolley
- Department of Physiology, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT
- Author for correspondence:
| |
Collapse
|
6
|
Costantin JL, Charles AC. Modulation of Ca(2+) signaling by K(+) channels in a hypothalamic neuronal cell line (GT1-1). J Neurophysiol 2001; 85:295-304. [PMID: 11152729 DOI: 10.1152/jn.2001.85.1.295] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pulsatile release of gonadotropin releasing hormone (GnRH) is driven by the intrinsic activity of GnRH neurons, which is characterized by bursts of action potentials correlated with oscillatory increases in intracellular Ca(2+). The role of K(+) channels in this spontaneous activity was studied by examining the effects of commonly used K(+) channel blockers on K(+) currents, spontaneous action currents, and spontaneous Ca(2+) signaling. Whole-cell recordings of voltage-gated outward K(+) currents in GT1-1 neurons revealed at least two different components of the current. These included a rapidly activating transient component and a more slowly activating, sustained component. The transient component could be eliminated by a depolarizing prepulse or by bath application of 1.5 mM 4-aminopyridine (4-AP). The sustained component was partially blocked by 2 mM tetraethylammonium (TEA). GT1-1 cells also express inwardly rectifying K(+) currents (I(K(IR))) that were activated by hyperpolarization in the presence of elevated extracellular K(+). These currents were blocked by 100 microM Ba(2+) and unaffected by 2 mM TEA or 1.5 mM 4-AP. TEA and Ba(2+) had distinct effects on the pattern of action current bursts and the resulting Ca(2+) oscillations. TEA increased action current burst duration and increased the amplitude of Ca(2+) oscillations. Ba(2+) caused an increase in the frequency of action current bursts and Ca(2+) oscillations. These results indicate that specific subtypes of K(+) channels in GT1-1 cells can have distinct roles in the amplitude modulation or frequency modulation of Ca(2+) signaling. K(+) current modulation of electrical activity and Ca(2+) signaling may be important in the generation of the patterns of cellular activity responsible for the pulsatile release of GnRH.
Collapse
Affiliation(s)
- J L Costantin
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095-1769, USA
| | | |
Collapse
|
7
|
Misgeld U, Zeilhofer HU, Swandulla D. Synaptic modulation of oscillatory activity of hypothalamic neuronal networks in vitro. Cell Mol Neurobiol 1998; 18:29-43. [PMID: 9524728 PMCID: PMC11560152 DOI: 10.1023/a:1022571025830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Rhythmic bursts of action potentials in neurosecretory cells are a key factor in hypothalamic neurosecretion. Rhythmicity and synchronization may be accomplished by pacemaker cells synaptically driving follower cells or by a network oscillator. 2. In this review we describe a hypothalamic cell culture which may serve as a model for a hypothalamic network oscillator. An overview is given of neurochemical phenotypes, synaptic mechanisms and their development, properties of receptors for fast synaptic transmission, and membrane properties of cells in dissociated rat embryonic hypothalamic culture. 3. Rhythmic activity spreads in the cultured network through synapses that release glutamate, activating a heteromultimeric AMPA-type receptor containing a GluR2 subunit which is associated with a high-conductance channel for Na+ and K+. Rhythmic activity is controlled by synapses that release GABA to activate GABAA receptors. The presumed function of the two receptor types is facilitated by their respective location, GABAA receptors predominating near the soma and AMPA receptors being abundant in dendrites. 4. Network oscillators may be more reliable for the presumed function than single-cell oscillators. They are controlled through synaptic modulation, which may prove to represent a process important for the release of hormones.
Collapse
Affiliation(s)
- U Misgeld
- I. Physiologisches Institut, Universität Heidelberg, Germany
| | | | | |
Collapse
|
8
|
Lin Y, Carpenter DO. Medial vestibular neurons are endogenous pacemakers whose discharge is modulated by neurotransmitters. Cell Mol Neurobiol 1993; 13:601-13. [PMID: 7910782 PMCID: PMC11566928 DOI: 10.1007/bf00711560] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1993] [Accepted: 10/06/1993] [Indexed: 01/27/2023]
Abstract
1. Neurons in the medial vestibular nucleus (MVN), recorded in a rat brain slice preparation, exhibit a highly regular, high-frequency (5- to 35-Hz) spontaneous discharge. The rhythmic firing rate was constant (< 5% variation) and sustained for a long time (maximum observation, 4 hr). 2. The rhythmic firing was evident even in neurons (n = 15) completely isolated from exogenous input fibers, suggesting that it is due to an endogenous pacemaker property. When recorded intracellularly, the discharge was found to be associated with a smooth, concave pacemaker prepotential, and the rate of firing was reduced in proportion to applied hyperpolarizing current, indicating that these are pacemaker discharges. 3. This conclusion is supported by the observation that perfusion with a low-calcium/high-magnesium Krebs-Ringer solution, which completely and reversibly blocks all synaptic transmission, did not abolish the spontaneous discharge. The low-calcium/high-magnesium solution increased spontaneous firing in some neurons and decreased in others, suggesting that the firing is synaptically modulated and the synaptic influence is tonically active. 4. Application of kynurenate (10 mM), an antagonist of the excitatory amino acid receptors, gradually reduced neuronal discharges in most neurons (22 of 25), while the addition of 10 mM sucrose as an osmotic control had no effect. Depression of neuronal discharges reached its minimum (an average of 60% of the control level) and was maintained at that level until gradually washed out. The rhythmic firing pattern persisted in all neurons even after the excitatory receptors were blocked. 5. When the GABAA receptor antagonist, bicuculline (20 microM), was applied, elevation of neuronal discharges was evident in most neurons (30 of 32) tested. The firing increased gradually, with a final control level of 130% (121-160%). In contrast, the GABAB receptor antagonist, phaclofen (20 microM and 100 microM), had no effect in most neurons (19 of 23) tested. Further, the excitatory and inhibitory action could be detected on the same neuron when bicuculline and kynurenate were both evaluated (n = 10). 6. These results indicate that the spontaneous discharge of MVN neurons is due to an endogenous pacemaker under the tonic influence of both inhibitory and excitatory transmitter actions. The bicuculline-sensitive GABAA receptors and the kynurenate-sensitive glutamate receptors both mediate the tonic modulation.
Collapse
Affiliation(s)
- Y Lin
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany
| | | |
Collapse
|
9
|
Legendre P, Poulain DA. Intrinsic mechanisms involved in the electrophysiological properties of the vasopressin-releasing neurons of the hypothalamus. Prog Neurobiol 1992; 38:1-17. [PMID: 1371015 DOI: 10.1016/0301-0082(92)90032-a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P Legendre
- INSERM U 261, Départment des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
10
|
Renaud LP, Bourque CW. Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Prog Neurobiol 1991; 36:131-69. [PMID: 1998074 DOI: 10.1016/0301-0082(91)90020-2] [Citation(s) in RCA: 292] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- L P Renaud
- Neurology Division, Ottawa Civic Hospital, Ontario, Canada
| | | |
Collapse
|
11
|
Hatton GI. Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol 1990; 34:437-504. [PMID: 2202017 DOI: 10.1016/0301-0082(90)90017-b] [Citation(s) in RCA: 371] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the first known of the mammalian brain's neuropeptide systems, the magnocellular hypothalamo-neurohypophysial system has become a model. A great deal is known about the stimulus conditions that activate or inactivate the elements of this system, as well as about many of the actions of its peptidergic outputs upon peripheral tissues. The well-characterized actions of two of its products, oxytocin and vasopressin, on mammary, uterine, kidney and vascular tissues have facilitated the integration of newly discovered, often initially puzzling, information into the existing body of knowledge of this important regulatory system. At the same time, new conceptions of the ways in which neuropeptidergic neurons, or groups of neurons, participate in information flow have emerged from studies of the hypothalamo-neurohypophysial system. Early views of the SON and PVN nuclei, the neurons of which make up approximately one-half of this system, did not even associate these interesting, darkly staining anterior hypothalamic cells with hormone secretion from the posterior pituitary. Secretion from this part of the pituitary, it was thought, was neurally evoked from the pituicytes that made the oxytocic and antidiuretic "principles" and then released them upon command. When these views were dispelled by the demonstration that the hormones released from the posterior pituitary were synthesized in the interesting cells of the hypothalamus, the era of mammalian central neural peptidergic systems was born. Progress in developing an ever more complete structural and functional picture of this system has been closely tied to advancements in technology, specifically in the areas of radioimmunoassay, immunocytochemistry, anatomical tracing methods at the light and electron microscopic levels, and sophisticated preparations for electrophysiological investigation. Through the judicious use of these techniques, much has been learned that has led to revision of the earlier held views of this system. In a larger context, much has been learned that is likely to be of general application in understanding the fundamental processes and principles by which the mammalian nervous system works.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G I Hatton
- Neuroscience Program, Michigan State University, East Lansing 48824-1117
| |
Collapse
|
12
|
Abstract
The electrotonic properties of tuberal supraoptic neurons were studied from conventional intracellular recordings made in the hypothalamo-neurohypophysial explant in vitro. The cable parameters electrotonic dendritic length, and the dendritic to somatic conductance ratio, were estimated using the slopes and intercepts of the first two peeled exponentials of the voltage transients generated by current steps. The estimations were made assuming an equivalent cylinder model consisting of a soma and an attached, lumped dendrite of finite length. An equalizing time constant was resolved in 12 of 17 neurons, allowing calculation of both cable parameters. In only one of these 12 was it necessary to assume a somatic shunt to account for the data. The average value of the dendritic electrotonic length was 1.02, and that of the dendritic to somatic conductance ratio, 4.11. In the remaining five neurons, an equalizing time constant could not be peeled and consequently the dendritic cable parameters could not be estimated. The average input resistance of these 12 neurons was 162 M omega and the average membrane time constant was 11.86 ms. Principal Components Analysis revealed that the variance of input resistance and time constant was largely explained by one factor, while that of dendritic electrotonic length and the dendritic to somatic conductance ratio was explained by a separate, independent factor, suggesting a separation of electrical and morphological parameters, respectively. In addition, the variability of the data indicates that considerable differences in the morphology and specific membrane resistivity exist across supraoptic neurons. An analysis of spontaneously occurring postsynaptic potentials revealed that the shapes of these potentials could not be explained simply by assuming that they were determined by their passive decay from some point along the equivalent cable to the soma. In conclusion, dendrites make a significant and previously unappreciated contribution to the electrotonic behavior of supraoptic neurons. These electrotonic properties are similar to those of many other, morphologically diverse, central nervous system neurons.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163
| | | |
Collapse
|
13
|
Smith BN, Armstrong WE. Tuberal supraoptic neurons--I. Morphological and electrophysiological characteristics observed with intracellular recording and biocytin filling in vitro. Neuroscience 1990; 38:469-83. [PMID: 2124666 DOI: 10.1016/0306-4522(90)90043-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous studies of the tuberal, or retrochiasmatic, portion of the supraoptic nucleus suggest its functional similarity to the more densely populated anterior supraoptic nucleus, but the basic electrophysiological and morphological features of tuberal supraoptic nucleus neurons have not been described. Using the hypothalamo-neurohypophysial explant preparation in the rat, intracellular recordings and biocytin injections were made in tuberal supraoptic nucleus neurons and the results indicate that the two parts of the nucleus are similar. The generally oval-shaped somata of tuberal supraoptic nucleus neurons exhibited short, irregularly shaped appendages, and possessed 2-5 varicose, sparsely branching dendrites oriented in the horizontal plane. Many tuberal supraoptic nucleus neurons could be antidromically stimulated (mean latency = 6.4 ms). Filled neurons had varicose axons which were traced to the median eminence and even as far as the neural stalk, but which did not bifurcate. Both axons and dendrites were sparsely invested with short, hair-like appendages. The input resistance of the recorded neurons (mean = 177.7 M omega) was positively correlated with the membrane time constant (mean = 13.1 ms; r = 0.83). Tuberal supraoptic nucleus neurons displayed a prominent afterhyperpolarization following individual spikes or bursts of spikes, as well as firing frequency adaptation in response to positive current pulses. Although numbering far fewer than those of the anterior supraoptic nucleus, tuberal supraoptic nucleus neurons have axons which are more often intact in this preparation, and a dendritic tree which radiates within the plane of the explant. Thus these neurons should provide a useful model for further study of the electrophysiological and morphological characteristics of mammalian neurosecretory neurons.
Collapse
Affiliation(s)
- B N Smith
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163
| | | |
Collapse
|
14
|
Swandulla D, Misgeld U. Development of spontaneous synaptic activity in a hypothalamic network grown in culture. J Basic Clin Physiol Pharmacol 1990; 1:57-63. [PMID: 2085529 DOI: 10.1515/jbcpp.1990.1.1-4.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D Swandulla
- Max-Planck-Institute for Psychiatry, Department of Neurophysiology, Planegg-Martinsried, FRG
| | | |
Collapse
|
15
|
Dudek FE, Tasker JG, Wuarin JP. Intrinsic and synaptic mechanisms of hypothalamic neurons studied with slice and explant preparations. J Neurosci Methods 1989; 28:59-69. [PMID: 2566715 DOI: 10.1016/0165-0270(89)90010-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of slice and explant preparations has allowed major advances in our understanding of the membrane physiology of mammalian hypothalamic neurons. This article will review intracellular electrophysiological studies of neurons in or immediately surrounding the supraoptic and paraventricular nuclei. Considerable information is now available on the intrinsic membrane mechanisms that control action potential generation and burst firing in magnocellular neuroendocrine cells (MNCs) within these nuclei. Neurons surrounding the paraventricular nucleus have different electrical properties than the MNCs, including low-threshold Ca2+ spikes and pronounced anomalous rectification. Bicuculline and kynurenic acid strongly depress fast IPSPs and EPSPs in MNCs, thus suggesting that inhibitory and excitatory amino acids mediate fast synaptic transmission in the hypothalamus. The effects of neuromodulators, such as noradrenaline and opioid peptides, have also been examined. Noradrenaline excites supraoptic neurons and leads to phasic firing through an alpha-1 mechanism and decreased K+-conductance. Opioid peptides act directly on mu-receptors to hyperpolarize about half of the neurons through an increased K+-conductance. In conclusion, using the magnocellular neuroendocrine system as a model, in vitro slice and explant preparations have allowed the characterization of electrophysiological properties, the identification of neurotransmitters for synaptic events, and studies on the mechanism of action of neuromodulators.
Collapse
Affiliation(s)
- F E Dudek
- Mental Retardation Research Center, UCLA School of Medicine 90024
| | | | | |
Collapse
|
16
|
Renaud LP. Magnocellular neuroendocrine neurons: update on intrinsic properties, synaptic inputs and neurophamacology. Trends Neurosci 1987. [DOI: 10.1016/0166-2236(87)90129-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Abstract
1. Phasic bursting by magnocellular neuroendocrine cells (m.n.c.s) in vivo causes increased vasopressin release from axon terminals in the neurohypophysis. In the supraoptic nucleus of the coronal hypothalamic slice thirty-two of sixty-five m.n.c.s recorded intracellularly displayed repetitive bursting, either spontaneously or during a low level of tonic current injection. 2. Of the thirty-two repetitive bursters, twenty-four received no apparent patterned synaptic input and the phasic burst behaviour was voltage dependent. The evidence for these cells being bursting pace-makers and the underlying mechanism driving bursting were further investigated. 3. Phasic bursting by m.n.c.s is usually contingent upon two depolarizing events: a slow depolarization (s.d.) between bursts that brings the membrane potential to burst threshold, and the spike depolarizing after-potential (d.a.p.). One or several d.a.p.s can initiate a burst by summing to form a plateau potential which sustains firing. 4. Of eight phasic cells exposed to tetrodotoxin (TTX) and tonically depolarized with current injection, two cells retained the phasic burst pattern and underlying plateau potentials. Of the remaining six cells in TTX, three of four cells tested regained phasic firing with plateau potentials following the addition of Sr2+, a Ca2+ agonist. Evoked post-synaptic potentials were demonstrably blocked throughout TTX exposure, firmly establishing that some m.n.c.s are bursting pace-makers. 5. The s.d., d.a.p. and plateau potential were retained in TTX or low-Na+ saline, augmented in Sr2+ and blocked in low-Ca2+ saline. All three events were activated at membrane potentials depolarized from -70 mV but steadily inactivated with increasing hyperpolarization to -90 mV. The s.d. and d.a.p. apparently represented partial activation of the same process that drives a burst, the plateau potential. 6. Hyperpolarizing pulses of constant current revealed an apparent decrease in cell conductance underlying the s.d., d.a.p. and plateau potential which was not due to membrane rectification. The plateau potential was reduced in low Na+ and eliminated in low Ca2+. However, it remained relatively unaffected by altering the external K+ concentration and it did not reverse below -90 mV, suggesting a less important role for K+ movement relative to Ca2+ or Na+. A hyperpolarizing pulse during the s.d., d.a.p. or plateau potential probably momentarily inactivated inward Ca2+ current, causing the apparent conductance decrease.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R D Andrew
- Department of Anatomy, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|