1
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
2
|
Role of Glutamate and GABA in Mechanisms Underlying Respiratory Control. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Zhao MG, Hülsmann S, Winter SM, Dutschmann M, Richter DW. Calcium-regulated potassium currents secure respiratory rhythm generation after loss of glycinergic inhibition. Eur J Neurosci 2006; 24:145-54. [PMID: 16800867 DOI: 10.1111/j.1460-9568.2006.04877.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutant oscillator mice (Glra1(spd -/-)) are characterized by a developmental loss of glycinergic inhibition. These mice die during the third postnatal week presumably due to gradually increasing disturbances of breathing and motor behaviour. Some irregular rhythmic respiratory activity, however, is persevered until they die. Here we analysed cellular mechanisms that compensate for the loss of glycinergic inhibition and contribute to the maintenance of the respiratory rhythm. In a medullary slice preparation including the pre-Bötzinger complex we performed a comparative analysis of after-hyperpolarizations following action potentials (AP-AHP) and burst discharges (burst-AHP) in identified respiratory neurons from oscillator and control mice. Both AHP forms were increased in neurons from oscillator mice. These changes were combined with an augmented adaptation of firing frequency. Assuming that oscillator mice might upregulate calcium-activated K currents (BKCa) in compensation for the loss of glycinergic inhibition, we blocked the big KCa conductances with iberiotoxin and verified that the respiratory rhythm was indeed arrested by BK channel blockade.
Collapse
Affiliation(s)
- Ming-Gao Zhao
- Department of Neuro- and Sensory Physiology, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen
| | | | | | | | | |
Collapse
|
4
|
Elsen FP, Ramirez JM. Postnatal development differentially affects voltage-activated calcium currents in respiratory rhythmic versus nonrhythmic neurons of the pre-Bötzinger complex. J Neurophysiol 2005; 94:1423-31. [PMID: 15888528 DOI: 10.1152/jn.00237.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian respiratory network reorganizes during early postnatal life. We characterized the postnatal developmental changes of calcium currents in neurons of the pre-Bötzinger complex (pBC), the presumed site for respiratory rhythm generation. The pBC contains not only respiratory rhythmic (R) but also nonrhythmic neurons (nR). Both types of neurons express low- and high-voltage-activated (LVA and HVA) calcium currents. This raises the interesting issue: do calcium currents of the two co-localized neuron types have similar developmental profiles? To address this issue, we used the whole cell patch-clamp technique to compare in transverse slices of mice LVA and HVA calcium current amplitudes of the two neuron populations (R and nR) during the first and second postnatal week (P0-P16). The amplitude of HVA currents did not significantly change in R pBC-neurons (P0-P16), but it significantly increased in nR pBC-neurons during P8-P16. The dehydropyridine (DHP)-sensitive current amplitudes did not significantly change during the early postnatal development, suggesting that the observed amplitude changes in nR pBC-neurons are caused by (DHP) insensitive calcium currents. The ratio between HVA calcium current amplitudes dramatically changed during early postnatal development: At P0-P3, current amplitudes were significantly larger in R pBC-neurons, whereas at P8-P16, current amplitudes were significantly larger in nR pBC-neurons. Our results suggest that calcium currents in pBC neurons are differentially altered during postnatal development and that R pBC-neurons have fully expressed calcium currents early during postnatal development. This may be critical for stable respiratory rhythm generation in the underlying rhythm generating network.
Collapse
Affiliation(s)
- Frank P Elsen
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
5
|
Onimaru H, Ballanyi K, Homma I. Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro. J Physiol 2003; 552:727-41. [PMID: 12937288 PMCID: PMC2343467 DOI: 10.1113/jphysiol.2003.049312] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca2+-dependent conductances were studied in respiratory interneurons in the brainstem-spinal cord preparation of newborn rats. omega-Conotoxin-GVIA attenuated evoked postsynaptic potentials, spontaneous or evoked inspiratory spinal nerve activity and blocked spike afterhyperpolarization. Furthermore, omega-conotoxin-GVIA augmented rhythmic drive potentials of pre-inspiratory and inspiratory neurons and increased respiratory-related spike frequency of pre-inspiratory cells with no effect on inspiratory hyperpolarization. In contrast, omega-agatoxin-IVA depressed drive potentials of pre-inspiratory and inspiratory neurons and attenuated inspiratory hyperpolarization and spike frequency of pre-inspiratory cells. It did not affect spike shape and exerted only minor, non-significant, attenuating effects on spontaneous or evoked nerve bursts or evoked postsynaptic potentials. Nifedipine diminished drive potentials and spike frequency of pre-inspiratory neurons and shortened drive potentials in some cells. omega-Conotoxin-MVIIC attenuated drive potentials and intraburst firing rate of pre-inspiratory neurons and decreased substantially respiratory frequency. Respiratory rhythm disappeared following combined application of omega-conotoxin-GVIA, omega-conotoxin-MVIIC, omega-agatoxin-IVA and nifedipine. Apamin potentiated drive potentials and abolished spike afterhyperpolarization, whereas charybdotoxin and tetraethylammonium prolonged spike duration without effect on shape of drive potentials. The results show that specific sets of voltage-activated L-, N- and P/Q-type Ca2+ channels determine the activity of particular subclasses of neonatal respiratory neurons, whereas SK- and BK-type K+ channels attenuate drive potentials and shorten spikes, respectively, independent of cell type. We hypothesize that modulation of spontaneous activity of pre-inspiratory neurons via N-, L- and P/Q-type Ca2+ channels is important for respiratory rhythm or pattern generation.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
| | | | | |
Collapse
|
6
|
Richter DW, Spyer KM. Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci 2001; 24:464-72. [PMID: 11476886 DOI: 10.1016/s0166-2236(00)01867-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In all mammalian species, breathing is controlled by a neuronal network within the lower brainstem. A component known as the ventral respiratory group produces rhythmic activity, which is transmitted to spinal motoneurons to produce a periodic contraction of respiratory muscles. A dispute about the mechanisms of 'normal' respiratory rhythm generation arose from the differences between experimental preparations that have been used to dissect the process. It is, therefore, essential to compare the various experimental approaches and to discuss the differences between experimental data. We conclude that the various preparations all have great value, but that they define different operational conditions of the network, including maturation of neurons and synaptic processes. We have taken note of these in formulating a 'maturational network-burster model' for rhythm generation that includes most features of the existing models of respiratory rhythm generation.
Collapse
Affiliation(s)
- D W Richter
- Dept of Physiology II, Georg August Universität Göttingen, 37073, Göttingen, Germany.
| | | |
Collapse
|
7
|
Haji A, Takeda R, Okazaki M. Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol Ther 2000; 86:277-304. [PMID: 10882812 DOI: 10.1016/s0163-7258(00)00059-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes the current understanding of the neurotransmitters and neuromodulators that are involved, firstly, in respiratory rhythm and pattern generation, where glutamate plays an essential role in the excitatory mechanisms and glycine and gamma-aminobutyric acid mediate inhibitory postsynaptic effects, and secondly, in the transmission of input signals from the central and peripheral chemoreceptors and of motor outputs to respiratory motor neurons. Finally, neuronal mechanisms underlying respiratory modulations caused by respiratory depressants and excitants, such as general anesthetics, benzodiazepines, opioids, and cholinergic agents, are described.
Collapse
Affiliation(s)
- A Haji
- Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | |
Collapse
|
8
|
Zhang W, Elsen F, Barnbrock A, Richter DW. Postnatal development of GABAB receptor-mediated modulation of voltage-activated Ca2+ currents in mouse brain-stem neurons. Eur J Neurosci 1999; 11:2332-42. [PMID: 10383622 DOI: 10.1046/j.1460-9568.1999.00655.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABAB receptors modulate respiratory rhythm generation in adult mammals. However, little is currently known of their functional significance during postnatal development. In the present investigation, the effects of GABAB receptor activation on voltage-activated Ca2+ currents were examined in rhythmically active neurons of the pre-Bötzinger complex (PBC). Both low- (LVA) and high-voltage-activated (HVA) Ca2+ currents were present from the first postnatal day (P1). The density of LVA Ca2+ currents increased during the first week, whilst the density of HVA Ca2+ currents increased after the first week. In the second postnatal week, the HVA Ca2+ currents were composed of L- (47 +/- 10%) and N-type (21 +/- 8%) currents plus a 'residual' current, whilst there were no N-type currents detectable in the first few days. The GABAB receptor agonist baclofen (30 microM) increased LVA Ca2+ currents (30 +/- 11%) at P1-P3, but it decreased the currents (35 +/- 11%) at P7-P15 without changing its time course. At all ages, baclofen (30 microM) decreased the HVA Ca2+ currents by approximately 54%. Threshold of baclofen effects on both LVA and HVA Ca2+ currents was 5 microM at P1-P3 and lower than 1 microM at P7-P15. The effect of baclofen was abolished in the presence of the GABAB receptor antagonist CGP 55845A (50 nM). We conclude that both LVA and HVA Ca2+ currents increased postnatally. The GABAB receptor-mediated modulation of these currents undergo marked developmental changes during the first two postnatal weeks, which may contribute essentially to modulation of respiratory rhythm generation.
Collapse
Affiliation(s)
- W Zhang
- Centre of Physiology, University of Göttingen, 37073 Germany.
| | | | | | | |
Collapse
|
9
|
Abstract
To obtain a quantitative characterization of voltage-activated calcium currents in respiratory neurons, we performed voltage-clamp recordings in the transverse brainstem slice of mice from neurons located within the ventral respiratory group. It is assumed that this medullary region contains the neuronal network responsible for generating the respiratory rhythm. This study represents one of the first attempts to analyze quantitatively the currents in respiratory neurons. The inward calcium currents of VRG neurons consisted of two components: a high voltage-activated (HVA) and a low voltage-activated (LVA) calcium current. The activation threshold of the HVA current was at -40 mV. It was fully activated (peak voltage) between -10 and 0 mV. The half-maximal activation (V50) was at -27. 29 mV +/- 1.15 (n = 24). The HVA current was inactivated completely at a holding potential of -35 mV and fully deinactivated at a holding potential of -65 mV (V50, -52.26 mV +/- 0.27; n = 18). The threshold for the activation of the LVA current was at -65 mV. This current had its peak voltage between -50 and -40 mV (mean, V50 = -59. 15 mV +/- 0.21; n = 15). The LVA current was inactivated completely at a holding potential of -65 mV and deinactivated fully at a holding potential of -95 mV (mean, V50 = -82.40 mV +/- 0.32; n = 38). These properties are consistent with other studies suggesting that the LVA current is a T-type current. The properties of these inward currents are discussed with respect to their role in generating Ca2+ potentials that may contribute to the generation of the mammalian respiratory rhythm.
Collapse
|
10
|
Frermann D, Keller BU, Richter DW. Calcium oscillations in rhythmically active respiratory neurones in the brainstem of the mouse. J Physiol 1999; 515 ( Pt 1):119-31. [PMID: 9925883 PMCID: PMC2269125 DOI: 10.1111/j.1469-7793.1999.119ad.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 10/21/1998] [Indexed: 11/30/2022] Open
Abstract
1. The rhythmically active respiratory network in the brainstem slice of the mouse was investigated under in vitro conditions using patch clamp and microfluorometric techniques. Rhythmic respiratory activity persisted over the whole course of an experiment. 2. Electrophysiologically recorded rhythmic activity in respiratory neurones was accompanied by oscillations in intracellular calcium, which displayed a maximal concentration of 300 nM and decayed to basal levels with a mean time constant of 1.6 +/- 0.9 s. 3. Elevations of calcium concentrations were highly correlated with the amplitude of rhythmic membrane depolarization of neurones, indicating that they were initiated by a calcium influx across the plasma membrane through voltage-gated calcium channels. 4. Voltage clamp protocols activating either high voltage-activated (HVA) or both HVA and low voltage-activated (LVA) calcium channels showed that intracellular calcium responses were mainly evoked by calcium currents through HVA channels. 5. Somatic calcium signals depended linearly on transmembrane calcium fluxes, suggesting that calcium-induced calcium release did not substantially contribute to the response. 6. For calcium elevations below 1 microM, decay time constants were essentially independent of the amplitude of calcium rises, indicating that calcium extrusion was adequately approximated by a linear extrusion mechanism. 7. Cytosolic calcium oscillations observed in neurones of the ventral respiratory group provide further evidence for rhythmic activation of calcium-dependent conductances or second messenger systems participating in the generation and modulation of rhythmic activity in the central nervous system.
Collapse
Affiliation(s)
- D Frermann
- Zentrum Physiologie und Pathophysiologie, Universitat Gottingen, Humboldtallee 23, 37073 Gottingen, Germany
| | | | | |
Collapse
|
11
|
Elsen FP, Ramirez JM. Calcium currents of rhythmic neurons recorded in the isolated respiratory network of neonatal mice. J Neurosci 1998; 18:10652-62. [PMID: 9852600 PMCID: PMC6793347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
To obtain a quantitative characterization of voltage-activated calcium currents in respiratory neurons, we performed voltage-clamp recordings in the transverse brainstem slice of mice from neurons located within the ventral respiratory group. It is assumed that this medullary region contains the neuronal network responsible for generating the respiratory rhythm. This study represents one of the first attempts to analyze quantitatively the currents in respiratory neurons. The inward calcium currents of VRG neurons consisted of two components: a high voltage-activated (HVA) and a low voltage-activated (LVA) calcium current. The activation threshold of the HVA current was at -40 mV. It was fully activated (peak voltage) between -10 and 0 mV. The half-maximal activation (V50) was at -27. 29 mV +/- 1.15 (n = 24). The HVA current was inactivated completely at a holding potential of -35 mV and fully deinactivated at a holding potential of -65 mV (V50, -52.26 mV +/- 0.27; n = 18). The threshold for the activation of the LVA current was at -65 mV. This current had its peak voltage between -50 and -40 mV (mean, V50 = -59. 15 mV +/- 0.21; n = 15). The LVA current was inactivated completely at a holding potential of -65 mV and deinactivated fully at a holding potential of -95 mV (mean, V50 = -82.40 mV +/- 0.32; n = 38). These properties are consistent with other studies suggesting that the LVA current is a T-type current. The properties of these inward currents are discussed with respect to their role in generating Ca2+ potentials that may contribute to the generation of the mammalian respiratory rhythm.
Collapse
Affiliation(s)
- F P Elsen
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
12
|
Abstract
1. The central pattern generator (CPG) for respiration is located in the brainstem and produces rhythmic synaptic drive for motoneurons controlling respiratory muscles. Based on respiratory nerve discharge, the respiratory cycle can be divided into three phases: inspiration, postinspiration and stage 2 expiration. 2. Six basic types of respiratory neuron participate in respiratory rhythmogenesis. Their firing and membrane potential patterns are locked to different phases of the respiratory cycle. 3. In adult mammals, respiratory neurons are subject to excitatory and inhibitory synaptic inputs and show extensive synaptic interconnections that are mainly inhibitory. There are differences in the relative importance of excitatory and inhibitory synaptic drives and the neurotransmitters involved in respiratory rhythmogenesis in neonates compared with adults. 4. Respiratory neurons possess a number of intrinsic membrane currents that may be involved in central pattern generation, including low- and high-voltage-activated calcium, potassium, calcium-dependent potassium, sodium and mixed cationic currents. More quantitative information is needed about the distribution and characteristics of these ionic currents if we are to understand rhythmogenesis. 5. The two main theories for the origin of respiratory rhythm are those of pacemaker neuron-driven and synaptic network-driven CPG. Evidence derived from in vivo and in vitro experiments exists to support both of these theories. There may be a significant switch in the underlying mechanism driving the respiratory CPG during postnatal development.
Collapse
Affiliation(s)
- M C Bellingham
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
13
|
Mironov SL, Langohr K, Haller M, Richter DW. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice. J Physiol 1998; 509 ( Pt 3):755-66. [PMID: 9596797 PMCID: PMC2230998 DOI: 10.1111/j.1469-7793.1998.755bm.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The respiratory centre of neonatal mice (4 to 12 days old) was isolated in 700 micro(m) thick brainstem slices. Whole-cell K+ currents and single ATP-dependent potassium (KATP) channels were analysed in inspiratory neurones. 2. In cell-attached patches, KATP channels had a conductance of 75 pS and showed inward rectification. Their gating was voltage dependent and channel activity decreased with membrane hyperpolarization. Using Ca2+-containing pipette solutions the measured conductance was lower (50 pS at 1.5 mM Ca2+), indicating tonic inhibition by extracellular Ca2+. 3. KATP channel activity was reversibly potentiated during hypoxia. Maximal effects were attained 3-4 min after oxygen removal from the bath. Hypoxic potentiation of open probability was due to an increase in channel open times and a decrease in channel closed times. 4. In inside-out patches and symmetrical K+ concentrations, channel currents reversed at about 0 mV. Channel activity was blocked by ATP (300-600 microM), glibenclamide (10-70 microM) and tolbutamide (100-300 microM). 5. In the presence of diazoxide (10-60 microM), the activity of KATP channels was increased both in inside-out, outside-out and cell-attached patches. In outside-out patches, that remained within the slice after excision, the activity of KATP channels was enhanced by hypoxia, an effect that could be mediated by a release of endogenous neuromodulators. 6. The whole-cell K+ current (IK) was inactivated at negative membrane potentials, which resembled the voltage dependence of KATP channel gating. After 3-4 min of hypoxia, K+ currents at both hyperpolarizing and depolarizing membrane potentials increased. IK was partially blocked by tolbutamide (100-300 microM) and in its presence, hypoxic potentiation of IK was abolished. 7. We conclude that KATP channels are involved in the hypoxic depression of medullary respiratory activity.
Collapse
Affiliation(s)
- S L Mironov
- II Department of Physiology, University of Gottingen, Humboldtallee 23, Gottingen 37073, Germany
| | | | | | | |
Collapse
|
14
|
Rybak IA, Paton JF, Schwaber JS. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons. J Neurophysiol 1997; 77:1994-2006. [PMID: 9114250 DOI: 10.1152/jn.1997.77.4.1994] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The general objectives of our research, presented in this series of papers, were to develop a computational model of the brain stem respiratory neural network and to explore possible neural mechanisms that provide the genesis of respiratory oscillations and the specific firing patterns of respiratory neurons. The present paper describes models of single respiratory neurons that have been used as the elements in our network models of the central respiratory pattern generator presented in subsequent papers. The models of respiratory neurons were developed in the Hodgkin-Huxley style employing both physiological and biophysical data obtained from brain stem neurons in mammals. Two single respiratory neuron models were developed to match the two distinct firing behaviors of respiratory neurons described in vivo: neuron type I shows an adapting firing pattern in response to synaptic excitation, and neuron type II shows a ramp firing pattern during membrane depolarization after a period of synaptic inhibition. We found that a frequency ramp firing pattern can result from intrinsic membrane properties, specifically from the combined influence of calcium-dependent K(AHP)(Ca), low-threshold Ca(T) and K(A) channels. The neuron models with these ionic channels (type II) demonstrated ramp firing patterns similar to those recorded from respiratory neurons in vivo. Our simulations show that K(AHP)(Ca) channels in combination with high-threshold Ca(L) channels produce spike frequency adaptation during synaptic excitation. However, in combination with low-threshold Ca(T) channels, they cause a frequency ramp firing response after release from inhibition. This promotes a testable hypothesis that the main difference between the respiratory neurons that adapt (for example, early inspiratory, postinspiratory, and decrementing expiratory) and those that show ramp firing patterns (for example, ramp inspiratory and augmenting expiratory) consists of a ratio between the two types of calcium channels: Ca(L) channels predominate in the former and Ca(T) channels in the latter respiratory neuron types. We have analyzed the dependence of adapting and ramp firing patterns on maximal conductances of different ionic channels and values of synaptic drive. The effect of adjusting specific membrane conductances and synaptic interactions revealed plausible neuronal mechanisms that may underlie modulatory effects on respiratory neuron firing patterns and network performances. The results of computer simulation provide useful insight into functional significance of specific intrinsic membrane properties and their interactions with phasic synaptic inputs for a better understanding of respiratory neuron firing behavior.
Collapse
Affiliation(s)
- I A Rybak
- Central Research Department, DuPont Experimental Station E-328/B31, Delaware 19880-0328, USA
| | | | | |
Collapse
|
15
|
Rybak IA, Paton JF, Schwaber JS. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator. J Neurophysiol 1997; 77:2007-26. [PMID: 9114251 DOI: 10.1152/jn.1997.77.4.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present paper describes several models of the central respiratory pattern generator (CRPG) developed employing experimental data and current hypotheses for respiratory rhythmogenesis. Each CRPG model includes a network of respiratory neuron types (e.g., early inspiratory; ramp inspiratory; late inspiratory; decrementing expiratory; postinspiratory; stage II expiratory; stage II constant firing expiratory; preinspiratory) and simplified models of lung and pulmonary stretch receptors (PSR), which provide feedback to the respiratory network. The used models of single respiratory neurons were developed in the Hodgkin-Huxley style as described in the previous paper. The mechanism for termination of inspiration (the inspiratory off-switch) in all models operates via late-I neuron, which is considered to be the inspiratory off-switching neuron. Several two- and three-phase CRPG models have been developed using different accepted hypotheses of the mechanism for termination of expiration. The key elements in the two-phase models are the early-I and dec-E neurons. The expiratory off-switch mechanism in these models is based on the mutual inhibitory connections between early-I and dec-E and adaptive properties of the dec-E neuron. The difference between the two-phase models concerns the mechanism for ramp firing patterns of E2 neurons resulting either from the intrinsic neuronal properties of the E2 neuron or from disinhibition from the adapting dec-E neuron. The key element of the three-phase models is the pre-I neuron, which acts as the expiratory off-switching neuron. The three-phase models differ by the mechanisms used for termination of expiration and for the ramp firing patterns of E2 neurons. Additional CRPG models were developed employing a dual switching neuron that generates two bursts per respiratory cycle to terminate both inspiration and expiration. Although distinctly different each model generates a stable respiratory rhythm and shows physiologically plausible firing patterns of respiratory neurons with and without PSR feedback. Using our models, we analyze the roles of different respiratory neuron types and their interconnections for the respiratory rhythm and pattern generation. We also investigate the possible roles of intrinsic biophysical properties of different respiratory neurons in controlling the duration of respiratory phases and timing of switching between them. We show that intrinsic membrane properties of respiratory neurons are integrated with network properties of the CRPG at three hierarchical levels: at the cellular level to provide the specific firing patterns of respiratory neurons (e.g., ramp firing patterns); at the network level to provide switching between the respiratory phases; and at the systems level to control the duration of inspiration and expiration under different conditions (e.g., lack of PSR feedback).
Collapse
Affiliation(s)
- I A Rybak
- Central Research Department, DuPont Experimental Station E-328/B31, Wilmington, Delaware 19880-0328, USA
| | | | | |
Collapse
|
16
|
Lalley PM, Pierrefiche O, Bischoff AM, Richter DW. cAMP-dependent protein kinase modulates expiratory neurons in vivo. J Neurophysiol 1997; 77:1119-31. [PMID: 9084586 DOI: 10.1152/jn.1997.77.3.1119] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) second-messenger system influences neuronal excitability by modulating voltage-regulated and transmitter-activated channels. In this study we investigated the influence of the cAMP-PKA system on the excitability of expiratory (E) neurons in the caudal medulla of anesthetized, paralyzed, and artificially ventilated adult cats. We intracellularly injected the PKA inhibitors cAMP-dependent PKA inhibitor 5-22 amide (Walsh inhibitory peptide) and Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPS), the PKA activator Sp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Sp-cAMPS), and the adenylyl cyclase activator forskolin and measured membrane potential, neuronal input resistance, and synaptic membrane currents. Inhibition of cAMP-PKA activity by Walsh inhibitory peptide or Rp-cAMPS injections hyperpolarized neurons, decreased input resistance, and depressed spontaneous bursts of action potentials. Action potential duration was shortened and afterhyperpolarizations were increased. Inhibitory synaptic currents increased significantly. Stimulation of cAMP-PKA activity by Sp-cAMPS or forskolin depolarization neurons and increased input resistance. Spontaneous inhibitory synaptic currents were reduced and excitatory synaptic currents were increased. Rp-cAMPs depressed stimulus-evoked excitatory postsynaptic potentials and currents, whereas Sp-cAMPS increased them. Sp-cAMPS also blocked postsynaptic inhibition of E neurons by 8-hydroxy-dipropylaminotetralin, a serotonin-1A (5-HT-1A) receptor agonist that depresses neuronal cAMP-PKA activity. To determine the predominant effect of G protein-mediated neuromodulation of E neurons, we injected guanosine-5'-O-(3-thiotriphosphate) tetralithium salt (GTP-gamma-S), an activator of both stimulatory and inhibitory G proteins. GTP-gamma-S hyperpolarized E neurons, reduced input resistance, and increased action potential afterhyperpolarization. We conclude that the intracellular cAMP-PKA messenger system play an important role in the activity-dependent modulation of excitability in E neurons of the caudal medulla. In addition, the cAMP-PKA pathway itself is downregulated during activation of 5-HT-1A receptors.
Collapse
Affiliation(s)
- P M Lalley
- II. Institut Physiologisches, Universität Goettingen, Humboldtallee, Germany
| | | | | | | |
Collapse
|
17
|
Abstract
New, improved in vivo and in vitro approaches have led to a better understanding of the mechanisms that generate respiratory rhythm, which depends on a complex interaction between network and intrinsic membrane properties. The pre-Bötzinger complex in the ventrolateral medulla is particularly important for respiratory rhythm generation. This complex can be studied in isolation, and it contains all the known types of respiratory neurons that are now amenable to detailed cellular and molecular analyses.
Collapse
Affiliation(s)
- J M Ramirez
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
18
|
Jacquin TD, Borday V, Schneider-Maunoury S, Topilko P, Ghilini G, Kato F, Charnay P, Champagnat J. Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 1996; 17:747-58. [PMID: 8893031 DOI: 10.1016/s0896-6273(00)80206-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have shown previously that the inactivation of the zinc finger gene Krox-20 affects hindbrain segmentation, resulting in the elimination of rhombomeres 3 and 5. We demonstrate here that Krox-20 homozygous mutant mice exhibit abnormally slow respiratory and jaw opening rhythms, indicating that a modification of hindbrain segmentation influences the function of neuronal networks after birth. Central neuronal networks that control respiratory frequency are made predominantly depressant by the elimination of a previously undescribed rhythm-promoting system. Recordings of rhythmic activity from the isolated hindbrain following progressive tissue transections indicate that the reorganization takes place in the caudal pontine reticular formation. The newborn (PO) Krox-20-/- mice, in which apneas are ten times longer than in wild-type animals, may be a valuable model for the study of life-threatening apneas during early infancy.
Collapse
Affiliation(s)
- T D Jacquin
- Biologie Fonctionnelle du Neurone, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Haji A, Pierrefiche O, Takeda R, Foutz AS, Champagnat J, Denavit-Saubié M. Membrane potentials of respiratory neurones during dizocilpine-induced apneusis in adult cats. J Physiol 1996; 495 ( Pt 3):851-61. [PMID: 8887787 PMCID: PMC1160786 DOI: 10.1113/jphysiol.1996.sp021637] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. In the vagotomized cat, blockade of NMDA receptors by dizocilpine (MK-801) produces an apneustic pattern of respiration characterized by a large increase in the duration of inspiration. 2. To identify dizocilpine-induced disfacilitations and disinhibitions in respiratory neurones generating the respiratory rhythm, membrane potential and input resistance of augmenting inspiratory (I; n = 11) and post-inspiratory (PI; n = 9) neurones were examined in the ventral respiratory group area, before and after administration of dizocilpine (0.1-0.3 mg kg-1 i.v.) in decerebrate, vagotomized, paralysed and artificially ventilated cats. 3. In I neurones, dizocilpine decreased the ramp depolarization and an 82% increase in input resistance was observed during inspiration. The inspiratory phase was prolonged, leading to a sustained level of depolarization during apneusis. The amplitude of stage 1 expiratory hyperpolarization decreased and its decay, which is normally slow, was faster. Throughout the remainder of expiration (stage 2) the membrane potential levelled off and the input resistance increased slightly (by 15%). 4. In PI neurones, dizocilpine depressed depolarization and suppressed firing in eight out of nine cells during the stage 1 expiratory phase. This was associated with a large (91%) increase of input resistance. The membrane potential switched quickly to stage 2 expiratory repolarization, during which a slight (19%) increase in input resistance occurred. 5. The hyperpolarization of PI neurones during early inspiration was reduced in amplitude by dizocilpine and input resistance was increased by 75% during inspiration, indicating that dizocilpine reduced the activity of the presynaptic inhibitory early-inspiratory (eI) neurones. 6. We conclude that NMDA receptor blockade in the respiratory network disfacilitates eI, I and PI neurones during their active phase. Decreased inhibitory processes during the inspiratory phase probably play a major role in the prolongation of inspiration.
Collapse
Affiliation(s)
- A Haji
- Institut Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
20
|
Pierrefiche O, Bischoff AM, Richter DW. ATP-sensitive K+ channels are functional in expiratory neurones of normoxic cats. J Physiol 1996; 494 ( Pt 2):399-409. [PMID: 8842000 PMCID: PMC1160643 DOI: 10.1113/jphysiol.1996.sp021501] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. We analysed spontaneously active expiratory neurones (n = 48) of anaesthetized cats for the presence of ATP-sensitive K+ (KATP) channels. 2. Intracellular injection of ATP reversibly depolarized neurones during all phases of the respiratory cycle. During expiration, membrane potential depolarized by an average of 1.5 +/- 0.1 mV leading to a 25% increase of discharge frequency. During inspiration, ATP induced a 1.8 +/- 0.2 mV depolarization, which was accompanied by a maximum of 20% increase of input resistance (Rn). 3. Extracellular application of diazoxide, an agonist of KATP channels, resulted in reversible membrane hyperpolarization in 68% of neurones (n = 19). This hyperpolarization (2.5 mV during expiration and 3.1 mV during inspiration) was accompanied by a 22% decrease in Rn. 4. Extracellular application of tolbutamide and glibenclamide, two antagonists of KATP channels, evoked reversible depolarizations in 76% of neurones (n = 21). The depolarization was relatively constant throughout the respiratory cycle (1.4 mV during expiration and 2.3 mV during inspiration). Rn increased by 22%. 5. The same sulphonylureas also changed the steepness of membrane depolarization when neurones escaped spontaneous synaptic inhibition during postinspiration. Extracellularly applied tolbutamide and glibenclamide increased the steepness of depolarization by 21%, while diazoxide reduced it by 20%. 6. Antagonism of drugs was verified by simultaneous extra- and intracellular application of diazoxide and glibenclamide, respectively. 7. During voltage clamp at holding potential at -60 to -67 mV, intracellular or extracellular application of tolbutamide and glibenclamide blocked a persistent outward current. 8. We conclude that KATP channels are functional in expiratory neurones of adult cats and contribute to the control of excitability even during normoxia.
Collapse
Affiliation(s)
- O Pierrefiche
- II. Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
21
|
Haji A, Pierrefiche O, Lalley PM, Richter DW. Protein kinase C pathways modulate respiratory pattern generation in the cat. J Physiol 1996; 494 ( Pt 1):297-306. [PMID: 8814623 PMCID: PMC1160631 DOI: 10.1113/jphysiol.1996.sp021492] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The significance of protein kinase C (PKC) in respiratory pattern generation was investigated in forty-three expiratory neurones of anaesthetized cats. 2. Intracellular injection of R-2,6-diamino-N-([1-(oxotridecyl)-2-piperidinyl]-methyl)-hexana mide dihydrochloride reversibly hyperpolarized twenty-six neurones. Respiratory drive potentials decreased to 92% of control, and action potential discharges were reduced. Neuronal input resistance (Rin) decreased during inspiration and increased during expiration. 3. Voltage clamp revealed that blockade of PKC induced an increase of inhibitory drive currents and a decrease of excitatory drive currents in sixteen neurones. The amplitude of respiratory drive currents was decreased to 91% of control. The slope of synaptic inward currents during postinspiration was reduced. 4. After blockade of K+ conductances by TEA, additional blockade of PKC caused a hyperpolarization during postinspiration and expiration, but depolarization during inspiration in fourteen neurones. The respiratory drive currents were reduced to 61% of control. Respiratory drive potentials decreased to 72% of control, leading to reduced spontaneous discharge. Rin was increased throughout the respiratory cycle. 5. Stimulus-evoked postsynaptic currents and potentials decreased after blockade of PKC with and without TEA. 6. The results indicate that PKC is endogenously active in expiratory neurones, modulating their excitability in three different ways: (a) it downregulates persistent K+ currents, (b) it upregulates Cl(-)-mediated inhibitory postsynaptic currents (IPSCs), and (c) it upregulates excitatory postsynaptic currents (EPSCs).
Collapse
Affiliation(s)
- A Haji
- II. Physiologisches Institut, Universität Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Onimaru H, Ballanyi K, Richter DW. Calcium-dependent responses in neurons of the isolated respiratory network of newborn rats. J Physiol 1996; 491 ( Pt 3):677-95. [PMID: 8815203 PMCID: PMC1158810 DOI: 10.1113/jphysiol.1996.sp021249] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Membrane potentials (Em) and currents (Im) were measured using whole-cell patch clamp techniques in inspiratory (Insp, types I-III), preinspiratory (Pre-I) and tonic expiratory (Exp) neurons of the ventral respiratory group (VRG) in the isolated brainstem-spinal cord preparation of 0- to 4-day-old rats. 2. After blocking on-going synaptic activity with 0.2-0.5 microM tetrodotoxin (TTX), Ca(2+)-dependent responses were analysed using patch pipettes containing 120 mM Cs+ and 20 mM tetraethylammonium (TEA) to block K+ conductances. 3. In all cells studied, all-or-none high voltage-activated (HVA) Ca2+ spikes with an activation threshold of -33 +/- 6.9 mV (n = 37) were evoked by depolarizing current pulses. 4. In less than 15% of Insp and Pre-I cells and in 20% of Exp neurons, termination of hyperpolarizing pulses led to low voltage-activated (LVA) Ca2+ spikes with a threshold potential of between -70 and -60 mV (n = 7). 5. In more than 50% of Insp III and Pre-I neurons, depolarizing pulses evoked graded 'plateau' potentials with an amplitude of 5-20 mV. Slow voltage ramp commands revealed that this type of Ca2+ response was due to an inward current with a mean activation threshold of -42 +/- 2.1 mV (n = 5). These intermediate voltage-activated (IVA) plateau potentials persisted for several seconds after termination of depolarizing current pulses and decreased in amplitude at more negative holding potentials. 6. The HVA and LVA Ca2+ spikes as well as the IVA plateau potentials and the underlying inward current were potentiated after extracellular addition of 2 mM Ba2+ whereas 1-2 mM Co2+ led to blockade of these responses. 7. Nifedipine (10 microM) selectively suppressed HVA Ca2+ potentials whereas 0.2-0.4 microM omega-agatoxin-IVA reduced the IVA response without major effects on HVA Ca2+ spikes. omega-Conotoxin-GVIA (2 microM) led to a partial blockade of both IVA and HVA potentials. 8. After extracellular application of TTX, Ba2+ and/or TEA, HVA and LVA Ca2+ spikes as well as IVA plateau potentials were also revealed using patch pipettes containing K+ instead of Cs+ and TEA. 9. The results indicate that neonatal respiratory neurons have a complex set of Ca(2+)-dependent membrane conductances. The relevance of these conductances for initiation and maintenance of respiratory bursts is discussed.
Collapse
Affiliation(s)
- H Onimaru
- II. Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
23
|
Funk GD, Feldman JL. Generation of respiratory rhythm and pattern in mammals: insights from developmental studies. Curr Opin Neurobiol 1995; 5:778-85. [PMID: 8805408 DOI: 10.1016/0959-4388(95)80106-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Our understanding of the cellular, synaptic and network mechanisms underlying respiratory rhythm generation in mammals is progressing rapidly as researchers focus on a site hypothesized as the source of rhythm generation, the preBötzinger complex, in the rostral ventrolateral medulla. Furthermore, ontogenetic and modulatory factors affecting respiratory neuronal circuits are receiving considerable attention, as postnatal development of motor systems becomes increasingly apparent.
Collapse
Affiliation(s)
- G D Funk
- Department of Physiology, University of Auckland, New Zealand.
| | | |
Collapse
|
24
|
Pierrefiche O, Champagnat J, Richter DW. Calcium-dependent conductances control neurones involved in termination of inspiration in cats. Neurosci Lett 1995; 184:101-4. [PMID: 7724040 DOI: 10.1016/0304-3940(94)11179-m] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intracellular injection of the calcium chelator BAPTA into postinspiratory (PI) and late inspiratory neurones (late-I) of the ventral respiratory group of anaesthetised cat was performed to study the role of intracellular free calcium in patterning the activity of neurones controlling termination of inspiration. BAPTA injection into neurones resulted in an increase of input resistance and prolongation of action potential discharge with reduced adaptation. In addition, late-I neurones developed a secondary burst of action potentials during the postinspiratory phase of the cycle. We conclude that intracellular free calcium controls (1) the duration of activation and the degree of adaptation of PI neurones and (2) repolarisation of late-I neurones during postinspiration.
Collapse
Affiliation(s)
- O Pierrefiche
- II. Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|