1
|
Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. Antioxid Redox Signal 2013; 18:1078-99. [PMID: 22871241 PMCID: PMC3567782 DOI: 10.1089/ars.2012.4824] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/07/2012] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca(2+) homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. RECENT ADVANCES Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. CRITICAL ISSUES Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. FUTURE DIRECTIONS Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance.
Collapse
Affiliation(s)
- Ricardo Carnicer
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mark J. Crabtree
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Vidhya Sivakumaran
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, Maryland
| | - Barbara Casadei
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David A. Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, Maryland
| |
Collapse
|
2
|
Hemodilution does not alter the coronary vasodilating effects of endogenous or exogenous nitric oxide. Can J Anaesth 2008; 55:507-14. [DOI: 10.1007/bf03016670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Pearson PJ, Wei CM, Lin PJ, Burnett JC, Cable DG, Hamner CE, Schaff HV. Endothelium-dependent vasodilation during acute rejection in dogs. J Surg Res 2004; 121:56-61. [PMID: 15313376 DOI: 10.1016/j.jss.2004.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Indexed: 11/28/2022]
Abstract
BACKGROUND Acute rejection, which is a major cause of death after cardiac transplantation, is associated with increased coronary artery resistance and decreased coronary blood flow, leading to congestive heart failure. MATERIALS AND METHODS To examine the contribution of endothelium-derived vasoactive factors on coronary artery tone during acute rejection, dogs underwent orthotopic heart transplantation without immunosuppression. Plasma levels of endothelin, a potent endogenous vasoconstrictor peptide, and atrial natriuretic peptide, an endogenous coronary vasodilator of cardiac origin, were measured daily by radioimmunoassay until sacrifice. RESULTS Over 7 days, all animals developed acute rejection accompanied by progressive increases in plasma endothelin (10 +/- 3 to 25 +/- 4 pg/ml, n = 6, P < 0.05) and atrial natriuretic peptide (57 +/- 10 to 188 +/- 42 pg/ml, n = 6, P < 0.05). However, in organ chamber experiments, coronary artery segments from rejecting hearts exhibited normal endothelium-dependent vasodilation to acetylcholine, adenosine diphosphate, and the calcium ionophore A23187. In addition, coronary arteries exhibited normal relaxation to sodium nitroprusside (cyclic guanosine monophosphate-dependent) and isoproterenol (cyclic adenosine monophosphate-dependent). CONCLUSIONS In early, untreated acute rejection after orthotopic heart transplantation, graft dysfunction is not associated with impaired endothelium-dependent coronary artery vasodilation but may result from enhanced production of endothelin, a potent vasoconstrictor.
Collapse
Affiliation(s)
- Paul J Pearson
- Division of Cardiovascular Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003; 83:59-115. [PMID: 12506127 DOI: 10.1152/physrev.00017.2002] [Citation(s) in RCA: 498] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental work during the past 15 years has demonstrated that endothelial cells in the heart play an obligatory role in regulating and maintaining cardiac function, in particular, at the endocardium and in the myocardial capillaries where endothelial cells directly interact with adjacent cardiomyocytes. The emerging field of targeted gene manipulation has led to the contention that cardiac endothelial-cardiomyocytal interaction is a prerequisite for normal cardiac development and growth. Some of the molecular mechanisms and cellular signals governing this interaction, such as neuregulin, vascular endothelial growth factor, and angiopoietin, continue to maintain phenotype and survival of cardiomyocytes in the adult heart. Cardiac endothelial cells, like vascular endothelial cells, also express and release a variety of auto- and paracrine agents, such as nitric oxide, endothelin, prostaglandin I(2), and angiotensin II, which directly influence cardiac metabolism, growth, contractile performance, and rhythmicity of the adult heart. The synthesis, secretion, and, most importantly, the activities of these endothelium-derived substances in the heart are closely linked, interrelated, and interactive. It may therefore be simplistic to try and define their properties independently from one another. Moreover, in relation specifically to the endocardial endothelium, an active transendothelial physicochemical gradient for various ions, or blood-heart barrier, has been demonstrated. Linkage of this blood-heart barrier to the various other endothelium-mediated signaling pathways or to the putative vascular endothelium-derived hyperpolarizing factors remains to be determined. At the early stages of cardiac failure, all major cardiovascular risk factors may cause cardiac endothelial activation as an adaptive response often followed by cardiac endothelial dysfunction. Because of the interdependency of all endothelial signaling pathways, activation or disturbance of any will necessarily affect the others leading to a disturbance of their normal balance, leading to further progression of cardiac failure.
Collapse
|
5
|
Takeuchi Y, Kihara Y, Inagaki K, Yoneda T, Sasayama S. Endothelin-1 has a unique oxygen-saving effect by increasing contractile efficiency in the isolated rat heart. Circulation 2001; 103:1557-63. [PMID: 11257085 DOI: 10.1161/01.cir.103.11.1557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The effect of endothelin (ET)-1 on cardiac energetics is not fully understood. METHODS AND RESULTS In isolated, coronary-perfused rat hearts, we measured left ventricular contractility index (E(max)), pressure-volume area (PVA), and myocardial oxygen consumption (MVO(2)) before and after administration of ET-1 (1x10(-)(9) mol/L). ET-1 increased E(max) by 48+/-16% (P<0.01) and the total MVO(2) by 24+/-11% (P<0.01). The MVO(2)-PVA relations were linear both before and after ET-1 (r>0.99). ET-1 shifted MVO(2)-PVA upward, increasing the MVO(2) intercept by 24+/-13%. At the same time, ET-1 decreased the slope (S), with 1/S (contractile efficiency) being 46+/-5% before and 56+/-5% after ET-1 (P<0.01). ET-1-induced increases in E(max) and in contractile efficiency were abolished by an ET(A) receptor blocker (S-0139) but not by an ET(B) blocker (BQ-788). Although high [Ca(2+)] perfusion increased E(max) and the intercept to the same extent as ET-1, it did not change S. N(G)-Nitro-L-arginine (an inhibitor of nitric oxide synthase) increased the coronary perfusion pressure as much as ET-1, but S again remained unchanged. Dimethylamyloride (Na(+)/H(+) exchanger inhibitor) partially blocked the positive inotropic effect of ET-1 but not the ET-1-induced increase in the contractile efficiency. CONCLUSIONS Agonistic effects of ET-1 on the ET(A) receptor economized the chemomechanical conversion efficiency of the left ventricular unit myocardium by a mechanism independent of the Na(+)/H(+) exchanger. This unique oxygen-saving effect of ET-1 may play an adaptive role in the failing myocardium, in which local accumulation of ET-1 is present.
Collapse
Affiliation(s)
- Y Takeuchi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | |
Collapse
|
6
|
Zhao G, Zhang X, Xu X, Wolin MS, Hintze TH. Depressed modulation of oxygen consumption by endogenous nitric oxide in cardiac muscle from diabetic dogs. Am J Physiol Heart Circ Physiol 2000; 279:H520-7. [PMID: 10924049 DOI: 10.1152/ajpheart.2000.279.2.h520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study indicated that nitric oxide (NO)-dependent coronary vasodilation was impaired in conscious dogs with diabetes. Our goal was to determine whether modulation of O(2) consumption by NO is depressed in canine cardiac muscle after diabetes. Diabetes was induced by injection of alloxan (40-60 mg/kg iv), dogs were killed after diabetes was induced (4-5 wk), and the cardiac muscle from the left ventricle was cut into 15- to 30-mg slices. O(2) uptake by the muscle slices was measured polarographically with a Clark-type O(2) electrode. S-nitroso-N-acetylpenicillamine decreased O(2) consumption in normal and diabetic tissues (10(-4) M, 61 +/- 7 vs. 61 +/- 8%, P > 0.05). Bradykinin (10(-4) M)- or carbachol (CCh, 10(-4) M)-induced inhibition of O(2) consumption was impaired in diabetic tissues (51 +/- 6 vs. 17 +/- 4% or 48 +/- 4 vs. 19 +/- 3%, respectively, both P < 0.05 compared with normal). The inhibition of O(2) consumption by kininogen or kallikrein was depressed in diabetic tissues as well. In coronary microvessels from diabetic dogs, bradykinin or ACh (10(-5) M) caused smaller increases in NO production than those from normal dogs. Our results indicate that the modulation of O(2) consumption by endogenous, but not exogenous, NO is depressed in cardiac muscle from diabetic dogs, most likely because of decreased release of NO from the vascular endothelium.
Collapse
Affiliation(s)
- G Zhao
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Shinke T, Takaoka H, Takeuchi M, Hata K, Kawai H, Okubo H, Kijima Y, Murata T, Yokoyama M. Nitric oxide spares myocardial oxygen consumption through attenuation of contractile response to beta-adrenergic stimulation in patients with idiopathic dilated cardiomyopathy. Circulation 2000; 101:1925-30. [PMID: 10779458 DOI: 10.1161/01.cir.101.16.1925] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The results of recent studies suggest that NO synthase may increase in the failing myocardium and that NO modulates the myocardial contractile response to beta-adrenergic stimulation. However, there are few data regarding the physiological role of NO in patients with heart failure. The aim of the present study was to address the role of NO in left ventricular (LV) contractile response to beta-adrenergic stimulation and corresponding oxygen expenditure in human heart failure. METHODS AND RESULTS We studied 15 patients with heart failure due to idiopathic dilated cardiomyopathy (mean ejection fraction 0.33). We examined LV contractility (E(max), the slope of end-systolic pressure-volume relation), LV external work (EW), myocardial oxygen consumption (MVO(2)), and mechanical efficiency (measured as EW/MVO(2)) with the use of conductance and coronary sinus thermodilution catheters before and during dobutamine (DOB) infusion via a peripheral vein (4. 8+/-0.3 microg. kg(-1). min(-1) IV). Heart rate was kept constant with atrial pacing. We carried out a similar protocol during the intracoronary infusion of the NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA; 200 micromol). DOB increased E(max), EW, and MVO(2) (by 77+/-17%, 39+/-5%, and 21+/-5%, respectively), leading to an increase in mechanical efficiency (25.4+/-3.1% to 29.6+/-4.1%). L-NMMA alone did not significantly change these variables. Although the concurrent infusion of DOB with L-NMMA increased E(max), EW, and MVO(2) (by 140+/-21%, 64+/-9%, and 35+/-5%, respectively) more than DOB alone, mechanical efficiency did not increase further (24.3+/-3.3% to 29.5+/-4.5%) because EW and MVO(2) increased in parallel. Conclusions-These data suggest that in patients with idiopathic dilated cardiomyopathy, endogenous NO spares MVO(2) through attenuation of LV contractile response to beta-adrenergic stimulation while maintaining LV energy-converting efficiency.
Collapse
Affiliation(s)
- T Shinke
- First Department of Internal Medicine Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chaturvedi RR, Hjortdal VE, Stenbog EV, Ravn HB, White P, Christensen TD, Thomsen AB, Pedersen J, Sorensen KE, Redington AN. Inhibition of nitric oxide synthesis improves left ventricular contractility in neonatal pigs late after cardiopulmonary bypass. Heart 1999; 82:740-4. [PMID: 10573504 PMCID: PMC1729213 DOI: 10.1136/hrt.82.6.740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Following neonatal open heart surgery a nadir occurs in left ventricular function six to 12 hours after cardiopulmonary bypass. Although initiated by intraoperative events, little is known about the mechanisms involved. OBJECTIVE To evaluate the involvement of nitric oxide in this late phase dysfunction in piglets. DESIGN Piglets aged 2 to 3 weeks (4-5 kg) underwent cardiopulmonary bypass (1 h) and cardioplegic arrest (0.5 h) and then remained ventilated with inotropic support. Twelve hours after bypass, while receiving dobutamine (5 microg/kg/min), the left ventricular response to non-selective nitric oxide synthase inhibition (l-N(G)-monomethylarginine (l-NMMA)) was evaluated using load dependent and load independent indices (E(es), the slope of the end systolic pressure-volume relation; M(w), the slope of the stroke work-end diastolic volume relation; [dP/dt(max)](edv), the slope of the dP/dt(max)-end diastolic volume relation), derived from left ventricular pressure-volume loops generated by conductance and microtip pressure catheters. RESULTS 10 pigs received 7.5 mg l-NMMA intravenously and six of these received two additional doses (37.5 mg and 75 mg). E(es) (mean (SD)) increased with all three doses, from 54.9 (40.1) mm Hg/ml (control) to 86.3 (69.5) at 7.5 mg, 117.9 (65.1) at 37.5 mg, and 119 (80.4) at 75 mg (p < 0.05). At the two highest doses, [dP/dt(max)](edv) increased from 260.8 (209.3) (control) to 470.5 (22.8) at 37.5 mg and 474.1 (296.6) at 75 mg (p < 0.05); and end diastolic pressure decreased from 16.5 (5.6) mm Hg (control) to 11.3 (5.0) at 37.5 mg and 11.4 (4.9) at 75 mg (p < 0. 05). CONCLUSIONS In neonatal pigs 12 hours after cardiopulmonary bypass with ischaemic arrest, low dose l-NMMA improved left ventricular function, implying that there is a net deleterious cardiac action of nitric oxide at this time.
Collapse
Affiliation(s)
- R R Chaturvedi
- Department of Paediatric Cardiology, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College of Science, Technology, and Medicine, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Since its discovery over 20 years ago as an intercellular messenger, nitric oxide (NO), has been extensively studied with regard to its involvement in the control of the circulation and, more recently, in the prevention of atherosclerosis. The importance of NO in coronary blood flow control has also been recognized. NO-independent vasodilation causes increased shear stress within the blood vessel which, in turn, stimulates endothelial NO synthase activation, NO release and prolongation of vasodilation. Reactive hyperemia, myogenic vasodilation and vasodilator effects of acetylcholine and bradykinin are all mediated by NO. Ischemic preconditioning, which protects the myocardium from cellular damage and arrhythmias, is itself linked with NO and both the first and second windows of protection may be due to NO release. Exercise increases NO synthesis via increases in shear stress and pulse pressure and so it is likely that NO is an important blood flow regulatory mechanism in exercise. This phenomenon may account for the beneficial effects of exercise seen in atherosclerotic individuals. Whilst NO plays a protective role in preventing atherosclerosis via superoxide anion scavenging, risk factors such as hypercholesterolemia reduce NO release leading the way for endothelial dysfunction and atherosclerotic lesions. Exercise reverses this process by stimulating NO synthesis and release. Other factors impacting on the activity of NO include estrogens, endothelins, adrenomedullin and adenosine, the last appearing to be a compensatory pathway for coronary control in the presence of NO inhibition. These studies reinforce the pivotal role played by the substance in the control of coronary circulation.
Collapse
Affiliation(s)
- D Gattullo
- Dipartimento di Scienze Cliniche e Biologische, Università di Torino, Ospedale S. Luigi, Orbassano, Italy
| | | | | | | |
Collapse
|
11
|
Crystal GJ, Zhou X, Halim AA, Alam S, El-Orbany M, Salem MR. Nitric oxide does not modulate whole body oxygen consumption in anesthetized dogs. J Appl Physiol (1985) 1999; 86:1944-9. [PMID: 10368360 DOI: 10.1152/jappl.1999.86.6.1944] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) and the NO donor sodium nitroprusside (SNP) on whole body O2 consumption (VO2) were assessed in 16 dogs anesthetized with fentanyl or isoflurane. Cardiac output (CO) and mean arterial pressure (MAP) were measured with standard methods and were used to calculate VO2 and systemic vascular resistance (SVR). Data were obtained in each dog under the following conditions: 1) Control 1, 2) SNP (30 microg. kg-1. min-1 iv) 3) Control 2, 4) L-NAME (10 mg/kg iv), and 5) SNP and adenosine (30 and 600 microg. kg-1. min-1 iv, respectively) after L-NAME. SNP reduced MAP by 29 +/- 3% and SVR by 47 +/- 3%, while it increased CO by 39 +/- 9%. L-NAME had opposite effects; it increased MAP and SVR by 24 +/- 4% and 103 +/- 11%, respectively, and it decreased CO by 37 +/- 3%. Neither agent changed VO2 from the baseline value of 4.3 +/- 0.2 ml. min-1. kg-1, since the changes in CO were offset by changes in the arteriovenous O2 difference. Both SNP and adenosine returned CO to pre-L-NAME values, but VO2 was unaffected. We conclude that 1) basally released endogenous NO had a tonic systemic vasodilator effect, but it had no influence on VO2; 2) SNP did not alter VO2 before or after inhibition of endogenous NO production; 3) the inability of L-NAME to increase VO2 was not because CO, i.e., O2 supply, was reduced below the critical level.
Collapse
Affiliation(s)
- G J Crystal
- Department of Anesthesiology, Illinois Masonic Medical Center, Chicago Illinois 60657, USA.
| | | | | | | | | | | |
Collapse
|
12
|
The role of nitric oxide in the regulation of myocardial relaxation and diastolic function. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1328-0163(98)90052-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Affiliation(s)
- R A Kelly
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | |
Collapse
|