1
|
Papke RL. The many enigmas of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:327-354. [PMID: 38467485 PMCID: PMC11318566 DOI: 10.1016/bs.apha.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This review discusses the diverse effects of nicotine on the various nicotinic acetylcholine receptors of the central and peripheral nervous system and how those effects may promote the usage and addiction to tobacco products.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
2
|
Harper AA, Adams DJ. Electrical properties and synaptic transmission in mouse intracardiac ganglion neurons in situ. Physiol Rep 2021; 9:e15056. [PMID: 34582125 PMCID: PMC8477906 DOI: 10.14814/phy2.15056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
The intrinsic cardiac nervous system represents the final site of signal integration for neurotransmission to the myocardium to enable local control of cardiac performance. The electrophysiological characteristics and ganglionic transmission of adult mouse intrinsic cardiac ganglion (ICG) neurons were investigated using a whole-mount ganglion preparation of the excised right atrial ganglion plexus and intracellular microelectrode recording techniques. The passive and active electrical properties of ICG neurons and synaptic transmission including synaptic response strength and efficacy as a function of stimulation frequency were examined. The resting membrane potential and input resistance of ICG neurons were -47.9 ± 4.0 mV and 197.2 ± 81.5 MΩ, respectively. All neurons had somatic action potentials with overshoots of >+15 mV and after-hyperpolarizations having an average of 10 mV amplitude and ~45 ms half duration. Phasic discharge activities were recorded from the majority of neurons studied and several types of excitatory synaptic responses were recorded following inputs from the vagus or interganglionic nerve trunk(s). Most postganglionic neurons (>75%) received a strong, suprathreshold synaptic input and reliably followed high-frequency repetitive nerve stimulation up to at least 50 Hz. Nerve-evoked synaptic transmission was blocked by extracellular Cd2+ , ω-conotoxin CVIE, or α-conotoxin RegIIA, a selective α3-containing nicotinic acetylcholine receptor antagonist. Synaptic transmission and the electrical properties of murine ICG neurons contribute to the pattern of discharge which regulates chronotropic, dromotropic, and inotropic elements of cardiac function.
Collapse
Affiliation(s)
- Alexander A. Harper
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
3
|
Scholze P, Huck S. The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2 * and α3β4 * Receptors. Front Synaptic Neurosci 2020; 12:607959. [PMID: 33343327 PMCID: PMC7744819 DOI: 10.3389/fnsyn.2020.607959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Impact of Key Nicotinic AChR Subunits on Post-Stroke Pneumococcal Pneumonia. Vaccines (Basel) 2020; 8:vaccines8020253. [PMID: 32481512 PMCID: PMC7349987 DOI: 10.3390/vaccines8020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumonia is the most frequent severe medical complication after stroke. An overactivation of the cholinergic signaling after stroke contributes to immunosuppression and the development of spontaneous pneumonia caused by Gram-negative pathogens. The α7 nicotinic acetylcholine receptor (α7nAChR) has already been identified as an important mediator of the anti-inflammatory pathway after stroke. However, whether the α2, α5 and α9/10 nAChR expressed in the lung also play a role in suppression of pulmonary innate immunity after stroke is unknown. In the present study, we investigate the impact of various nAChRs on aspiration-induced pneumonia after stroke. Therefore, α2, α5, α7 and α9/10 nAChR knockout (KO) mice and wild type (WT) littermates were infected with Streptococcus pneumoniae (S. pneumoniae) three days after middle cerebral artery occlusion (MCAo). One day after infection pathogen clearance, cellularity in lung and spleen, cytokine secretion in bronchoalveolar lavage (BAL) and alveolar-capillary barrier were investigated. Here, we found that deficiency of various nAChRs does not contribute to an enhanced clearance of a Gram-positive pathogen causing post-stroke pneumonia in mice. In conclusion, these findings suggest that a single nAChR is not sufficient to mediate the impaired pulmonary defense against S. pneumoniae after experimental stroke.
Collapse
|
5
|
Perniss A, Latz A, Boseva I, Papadakis T, Dames C, Meisel C, Meisel A, Scholze P, Kummer W, Krasteva-Christ G. Acute nicotine administration stimulates ciliary activity via α3β4 nAChR in the mouse trachea. Int Immunopharmacol 2020; 84:106496. [PMID: 32304995 DOI: 10.1016/j.intimp.2020.106496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
Mucociliary clearance, the continuous removal of mucus-trapped particles by cilia-driven directed transport of the airway lining fluid, is the primary innate defense mechanism of the airways. It is potently activated by acetylcholine (ACh) addressing muscarinic receptors with a currently less defined role of nicotinic ACh receptors (nAChR). We here set out to determine their contribution in driving ciliary activity in an explanted mouse trachea preparation utilizing selected agonists and antagonists and nAChR-subunit deficient mice. Nicotine (100 µM) induced an increase in ciliary beat frequency, accompanied by a sharp, but not long lasting increase in particle transport speed (PTS) on the mucosal surface showing marked desensitization within the next 30 min. Nicotine-induced PTS acceleration was sensitive to the general nAChR inhibitors mecamylamine and d-tubocurarine as well as to the α3β4-nAChR antagonist α-conotoxin AulB, but not to other antagonists primarily addressing α3β2-nAChR or α4-, α7- and α9-containing nAChR. Agonists at α3β*-nAChR (epibatidine, cytisine), but not cotinine mimicked the effect. Tracheas from mice with genetic deletion of nAChR subunits α5, α7, α9, α10, α9/10, and β2 retained full PTS response to nicotine, whereas this was entirely lost in tracheas from mice lacking the β4-subunit. Collectively, our data show that nicotinic stimulation of α3β4-nAChR acutely increases PTS to the same extent as the established strong activator ATP. In view of the marked desensitization observed in the present setting, the physiological relevance of these receptors in adapting mucociliary clearance to rapidly changing endogenous or environmental stimuli remains open.
Collapse
Affiliation(s)
- Alexander Perniss
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Ariane Latz
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivelina Boseva
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tamara Papadakis
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Claudia Dames
- Charité Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Christian Meisel
- Charité Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Andreas Meisel
- Charité Berlin, Departments of Neurology and Experimental Neurology, NeuroCure Clinical Research Center, Berlin, Germany
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany; Present address: Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
6
|
Dezfuli G, Olson TT, Martin LM, Keum Y, Siegars BA, Desai A, Uitz M, Sahibzada N, Gillis RA, Kellar KJ. α4β2 nicotinic acetylcholine receptors intrinsically influence body weight in mice. Neuropharmacology 2019; 166:107921. [PMID: 31881170 DOI: 10.1016/j.neuropharm.2019.107921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
Desensitization of the nicotinic acetylcholine receptor (nAChR) containing the β2 subunit is a potentially critical mechanism underlying the body weight (BW) reducing effects of nicotine. The purpose of this study was a) to determine the α subunit(s) that partners with the β2 subunit to form the nAChR subtype that endogenously regulates energy balance and b) to probe the extent to which nAChR desensitization could be involved in the regulation of BW. We demonstrate that deletion of either the α4 or the β2, but not the α5, subunit of the nAChR suppresses weight gain in a sex-dependent manner. Furthermore, chronic treatment with the β2-selective nAChR competitive antagonist dihydro-β-erythroidine (DHβE) in mice fed a high-fat diet suppresses weight gain. These results indicate that heteromeric α4β2 nAChRs play a role as intrinsic regulators of energy balance and that desensitizing or inhibiting this nAChR is likely a relevant mechanism and thus could be a strategy for weight loss.
Collapse
Affiliation(s)
- Ghazaul Dezfuli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Thao T Olson
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Lukas M Martin
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Youngshin Keum
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Byron A Siegars
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Anushka Desai
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Mia Uitz
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Niaz Sahibzada
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Richard A Gillis
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Kenneth J Kellar
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA.
| |
Collapse
|
7
|
Broide RS, Winzer-Serhan UH, Chen Y, Leslie FM. Distribution of α7 Nicotinic Acetylcholine Receptor Subunit mRNA in the Developing Mouse. Front Neuroanat 2019; 13:76. [PMID: 31447654 PMCID: PMC6691102 DOI: 10.3389/fnana.2019.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
Homomeric α7 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed in the central and peripheral nervous system (CNS and PNS, respectively), and spinal cord. In addition, expression and functional responses have been reported in non-neuronal tissue. In the nervous system, α7 nAChR subunit expression appears early during embryonic development and is often transiently upregulated, but little is known about their prenatal expression outside of the nervous system. For understanding potential short-term and long-term effects of gestational nicotine exposure, it is important to know the temporal and spatial expression of α7 nAChRs throughout the body. To that end, we studied the expression of α7 nAChR subunit mRNA using highly sensitive isotopic in situ hybridization in embryonic and neonatal whole-body mouse sections starting at gestational day 13. The results revealed expression of α7 mRNA as early as embryonic day 13 in the PNS, including dorsal root ganglia, parasympathetic and sympathetic ganglia, with the strongest expression in the superior cervical ganglion, and low to moderate levels were detected in brain and spinal cord, respectively, which rapidly increased in intensity with embryonic age. In addition, robust α7 mRNA expression was detected in the adrenal medulla, and low to moderate expression in selected peripheral tissues during embryonic development, potentially related to cells derived from the neural crest. Little or no mRNA expression was detected in thymus or spleen, sites of immune cell maturation. The results suggest that prenatal nicotine exposure could potentially affect the nervous system with limited effects in non-neural tissues.
Collapse
Affiliation(s)
- Ron S Broide
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Yling Chen
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Simeone X, Karch R, Ciuraszkiewicz A, Orr‐Urtreger A, Lemmens‐Gruber R, Scholze P, Huck S. The role of the nAChR subunits α5, β2, and β4 on synaptic transmission in the mouse superior cervical ganglion. Physiol Rep 2019; 7:e14023. [PMID: 30891952 PMCID: PMC6424856 DOI: 10.14814/phy2.14023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 01/31/2023] Open
Abstract
Our previous immunoprecipitation analysis of nicotinic acetylcholine receptors (nAChRs) in the mouse superior cervical ganglion (SCG) revealed that approximately 55%, 24%, and 21% of receptors are comprised of α3β4, α3β4α5, and α3β4β2 subunits, respectively. Moreover, mice lacking β4 subunits do not express α5-containing receptors but still express a small number of α3β2 receptors. Here, we investigated how synaptic transmission is affected in the SCG of α5β4-KO and α5β2-KO mice. Using an ex vivo SCG preparation, we stimulated the preganglionic cervical sympathetic trunk and measured compound action potentials (CAPs) in the postganglionic internal carotid nerve. We found that CAP amplitude was unaffected in α5β4-KO and α5β2-KO ganglia, whereas the stimulation threshold for eliciting CAPs was significantly higher in α5β4-KO ganglia. Moreover, intracellular recordings in SCG neurons revealed no difference in EPSP amplitude. We also found that the ganglionic blocking agent hexamethonium was the most potent in α5β4-KO ganglia (IC50 : 22.1 μmol/L), followed by α5β2-KO (IC50 : 126.7 μmol/L) and WT ganglia (IC50 : 389.2 μmol/L). Based on these data, we estimated an IC50 of 568.6 μmol/L for a receptor population consisting solely of α3β4α5 receptors; and we estimated that α3β4α5 receptors comprise 72% of nAChRs expressed in the mouse SCG. Similarly, by measuring the effects of hexamethonium on ACh-induced currents in cultured SCG neurons, we found that α3β4α5 receptors comprise 63% of nAChRs. Thus, in contrast to our results obtained using immunoprecipitation, these data indicate that the majority of receptors at the cell surface of SCG neurons consist of α3β4α5.
Collapse
Affiliation(s)
- Xenia Simeone
- Division of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Rudolf Karch
- Institute of Biosimulation and BioinformaticsCenter for Medical Statistics, Informatics, and Intelligent SystemsMedical University of ViennaViennaAustria
| | - Anna Ciuraszkiewicz
- Division of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
- Present address:
Research Group Molecular PhysiologyLeibniz Institute for NeurobiologyBrenneckestraße 6D‐39118MagdeburgGermany
| | - Avi Orr‐Urtreger
- Genetic InstituteTel Aviv Sourasky Medical Center and Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | | | - Petra Scholze
- Division of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sigismund Huck
- Division of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
9
|
Bagdas D, Alkhlaif Y, Jackson A, Carroll FI, Ditre JW, Damaj MI. New insights on the effects of varenicline on nicotine reward, withdrawal and hyperalgesia in mice. Neuropharmacology 2018; 138:72-79. [PMID: 29860196 DOI: 10.1016/j.neuropharm.2018.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 12/16/2022]
Abstract
Varenicline, a partial agonist for α4β2* nicotinic acetylcholine receptors (nAChRs) and a full agonist for α3β4 and α7 nAChRs, is approved for smoking cessation treatment. Although, partial agonism at α4β2* nAChRs is believed to be the mechanism underlying the effects of varenicline on nicotine reward, the contribution of other nicotinic subtypes to varenicline's effects on nicotine reward is currently unknown. Therefore, we examined the role of α5 and α7 nAChR subunits in the effects of varenicline on nicotine reward using the conditioned place preference (CPP) test in mice. Moreover, the effects of varenicline on nicotine withdrawal-induced hyperalgesia and aversion are unknown. We also examined the reversal of nicotine withdrawal in mouse models of dependence by varenicline. Varenicline dose-dependently blocked the development and expression of nicotine reward in the CPP test. The blockade of nicotine reward by varenicline (0.1 mg/kg) was preserved in α7 knockout mice but reduced in α5 knockout mice. Administration of varenicline at high dose of 2.5 mg/kg resulted in a place aversion that was dependent on α5 nAChRs but not β2 nAChRs. Furthermore, varenicline (0.1 and 0.5 mg/kg) reversed nicotine withdrawal signs such as hyperalgesia and somatic signs and withdrawal-induced aversion in a dose-related manner. Our results indicate that the α5 nAChR subunit plays a role in the effects of varenicline on nicotine reward in mice. Moreover, the mediation of α5 nAChRs, but not β2 nAChRs are probably needed for aversive properties of varenicline at high dose. Varenicline was also shown to reduce several nicotine withdrawal signs.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, United States.
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, United States
| | - Joseph W Ditre
- Department of Psychology, Syracuse University, Syracuse, NY, United States
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
10
|
Bagdas D, AlSharari SD, Freitas K, Tracy M, Damaj MI. The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochem Pharmacol 2015; 97:590-600. [PMID: 25931144 DOI: 10.1016/j.bcp.2015.04.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023]
Abstract
The aim of the present study was to determine the impact of α5 nicotinic acetylcholine receptor (nAChR) subunit deletion in the mouse on the development and intensity of nociceptive behavior in various chronic pain models. The role of α5-containing nAChRs was explored in mouse models of chronic pain, including peripheral neuropathy (chronic constriction nerve injury, CCI), tonic inflammatory pain (the formalin test) and short and long-term inflammatory pain (complete Freund's adjuvant, CFA and carrageenan tests) in α5 knock-out (KO) and wild-type (WT) mice. The results showed that paw-licking time was decreased in the formalin test, and the hyperalgesic and allodynic responses to carrageenan and CFA injections were also reduced. In addition, paw edema in formalin-, carrageenan- or CFA-treated mice were attenuated in α5-KO mice significantly. Furthermore, tumor necrosis factor-alpha (TNF-α) levels of carrageenan-treated paws were lower in α5-KO mice. The antinociceptive effects of nicotine and sazetidine-A but not varenicline were α5-dependent in the formalin test. Both hyperalgesia and allodynia observed in the CCI test were reduced in α5-KO mice. Nicotine reversal of mechanical allodynia in the CCI test was mediated through α5-nAChRs at spinal and peripheral sites. In summary, our results highlight the involvement of the α5 nAChR subunit in the development of hyperalgesia, allodynia and inflammation associated with chronic neuropathic and inflammatory pain models. They also suggest the importance of α5-nAChRs as a target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, United States; Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa 16059, Turkey
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, United States; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Kelen Freitas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, United States
| | - Matthew Tracy
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, United States
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, United States.
| |
Collapse
|
11
|
Xanthos DN, Beiersdorf JW, Thrun A, Ianosi B, Orr-Urtreger A, Huck S, Scholze P. Role of α5-containing nicotinic receptors in neuropathic pain and response to nicotine. Neuropharmacology 2015; 95:37-49. [PMID: 25725336 DOI: 10.1016/j.neuropharm.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
Abstract
Nicotinic receptors in the central nervous system (nAChRs) are known to play important roles in pain processing and modulate behavioral responses to analgesic drugs, including nicotine. The presence of the α5-neuronal nicotinic accessory subunit in the nicotinic receptor complex is increasingly understood to modulate reward and aversive states, addiction, and possibly pathological pain. In the current study, using α5-knockout (KO) mice and subunit-specific antibodies, we assess the role of α5-containing neuronal nicotinic receptors in neuropathic pain and in the analgesic response to nicotine. After chronic constriction injury (CCI) or partial sciatic nerve ligation (PSNL), no differences in mechanical, heat, or cold hyperalgesia were found in wild-type (WT) versus α5-KO littermate mice. The number of α5-containing nAChRs was decreased (rather than increased) after CCI in the spinal cord and in the thalamus. Nevertheless, thermal analgesic response to nicotine was marginally reduced in CCI α5-KO mice at 4 days after CCI, but not at later timepoints or after PSNL. Interestingly, upon daily intermittent nicotine injections in unoperated mice, WT animals developed tolerance to nicotine-induced analgesia to a larger extent than α5-KO mice. Our results suggest that α5-containing nAChRs mediate analgesic tolerance to nicotine but do not play a major role in neuropathic pain.
Collapse
Affiliation(s)
- Dimitris N Xanthos
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria.
| | - Johannes W Beiersdorf
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Ariane Thrun
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Bogdan Ianosi
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Avi Orr-Urtreger
- The Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria.
| |
Collapse
|
12
|
Contribution of Variants in CHRNA5/A3/B4 Gene Cluster on Chromosome 15 to Tobacco Smoking: From Genetic Association to Mechanism. Mol Neurobiol 2014; 53:472-484. [PMID: 25471942 DOI: 10.1007/s12035-014-8997-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Cigarette smoking is the major cause of preventable death and morbidity throughout the world. Many compounds are present in tobacco, but nicotine is the primary addictive one. Nicotine exerts its physiological and pharmacological roles in the brain through neuronal nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels consisting of five membrane-spanning subunits that can modulate the release of neurotransmitters, such as dopamine, glutamate, and GABA and mediate fast signal transmission at synapses. Considering that there are 12 nAChR subunits, it is highly likely that subunits other than α4 and β2, which have been intensively investigated, also are involved in nicotine addiction. Consistent with this hypothesis, a number of genome-wide association studies (GWAS) and subsequent candidate gene-based associated studies investigating the genetic variants associated with nicotine dependence (ND) and smoking-related phenotypes have shed light on the CHRNA5/A3/B4 gene cluster on chromosome 15, which encodes the α5, α3, and β4 nAChR subunits, respectively. These studies demonstrate two groups of risk variants in this region. The first one is marked by single nucleotide polymorphism (SNP) rs16969968 in exon 5 of CHRNA5, which changes an aspartic acid residue into asparagine at position 398 (D398N) of the α5 subunit protein sequence, and it is tightly linked SNP rs1051730 in CHRNA3. The second one is SNP rs578776 in the 3'-untranslated region (UTR) of CHRNA3, which has a low correlation with rs16969968. Although the detailed molecular mechanisms underlying these associations remain to be further elucidated, recent findings have shown that α5* (where "*" indicates the presence of additional subunits) nAChRs located in the medial habenulo-interpeduncular nucleus (mHb-IPN) are involved in the control of nicotine self-administration in rodents. Disruption of α5* nAChR signaling diminishes the aversive effects of nicotine on the mHb-IPN pathway and thereby permits more nicotine consumption. To gain a better understanding of the function of the highly significant genetic variants identified in this region in controlling smoking-related behaviors, in this communication, we provide an up-to-date review of the progress of studies focusing on the CHRNA5/A3/B4 gene cluster and its role in ND.
Collapse
|
13
|
Shell WE, Charuvastra M, Breitstein M, Pavlik SL, Charuvastra A, May L, Silver DS. Administration of an amino Acid-based regimen for the management of autonomic nervous system dysfunction related to combat-induced illness. J Cent Nerv Syst Dis 2014; 6:93-8. [PMID: 25336998 PMCID: PMC4197905 DOI: 10.4137/jcnsd.s13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 11/15/2022] Open
Abstract
The etiology and pathophysiology of posttraumatic stress disorder (PTSD) remains poorly understood. The nutritional deficiencies associated with the altered metabolic processes of PTSD have not previously been studied in detail. This pilot study measured the reduction in symptoms in 21 military veterans reporting moderate to severe symptoms associated with PTSD. Two amino acid–based medical foods specifically formulated with biogenic amines and other nutrients were administered to study subjects targeting specific neurotransmitter deficiencies resulting from altered metabolic activity associated with PTSD. This study included the Physician Checklist – Military (PCL-M), Short Form General Health Survey (SF-36), and Epworth Sleepiness Scale to measure the change in each subject’s score after 30 days of administration. An average decrease of 17 points was seen in the PCL-M, indicating a reduction in PTSD symptoms (P < 0.001). The mental health component of the SF-36 showed an average 57% increase in the subjects’ mental health rating (P < 0.001). The results of this initial study demonstrate that addressing the increased dietary requirements of PTSD can improve symptoms of the disease while eliminating significant side effects. A larger, double-blind, randomized, placebo-controlled trial is warranted.
Collapse
Affiliation(s)
| | | | | | | | - Anthony Charuvastra
- New York University Medical Center, Department of Child and Adolescent Psychiatry, New York, NY, USA
| | | | | |
Collapse
|
14
|
Dash B, Li MD. Analysis of rare variations reveals roles of amino acid residues in the N-terminal extracellular domain of nicotinic acetylcholine receptor (nAChR) alpha6 subunit in the functional expression of human alpha6*-nAChRs. Mol Brain 2014; 7:35. [PMID: 24886653 PMCID: PMC4022547 DOI: 10.1186/1756-6606-7-35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background Functional heterologous expression of naturally-expressed and apparently functional mammalian α6*-nicotinic acetylcholine receptors (nAChRs; where ‘*’ indicates presence of additional subunits) has been difficult. Here we wanted to investigate the role of N-terminal domain (NTD) residues of human (h) nAChR α6 subunit in the functional expression of hα6*-nAChRs. To this end, instead of adopting random mutagenesis as a tool, we used 15 NTD rare variations (i.e., Ser43Pro, Asn46Lys, Asp57Asn, Arg87Cys, Asp92Glu, Arg96His, Glu101Lys, Ala112Val, Ser156Arg, Asn171Lys, Ala184Asp, Asp199Tyr, Asn203Thr, Ile226Thr and Ser233Cys) in nAChR hα6 subunit to probe for their effect on the functional expression of hα6*-nAChRs. Results N-terminal α-helix (Asp57); complementary face/inner β-fold (Arg87 or Asp92) and principal face/outer β-fold (Ser156 or Asn171) residues in the hα6 subunit are crucial for functional expression of the hα6*-nAChRs as variations in these residues reduce or abrogate the function of hα6hβ2*-, hα6hβ4- and hα6hβ4hβ3-nAChRs. While variations at residues Ser43 or Asn46 (both in N-terminal α-helix) in hα6 subunit reduce hα6hβ2*-nAChRs function those at residues Arg96 (β2-β3 loop), Asp199 (loop F) or Ser233 (β10-strand) increase hα6hβ2*-nAChR function. Similarly substitution of NTD α-helix (Asn46), loop F (Asp199), loop A (Ala112), loop B (Ala184), or loop C (Ile226) residues in hα6 subunit increase the function of hα6hβ4-nAChRs. All other variations in hα6 subunit do not affect the function of hα6hβ2*- and hα6hβ4*-nAChRs. Incorporation of nAChR hβ3 subunits always increase the function of wild-type or variant hα6hβ4-nAChRs except for those of hα6(D57N, S156R, R87C or N171K)hβ4-nAChRs. It appears Asp57Lys, Ser156Arg or Asn171Lys variations in hα6 subunit drive the hα6hβ4hβ3-nAChRs into a nonfunctional state as at spontaneously open hα6(D57N, S156R or N171K)hβ4hβ3V9’S-nAChRs (V9’S; transmembrane II 9’ valine-to-serine mutation) agonists act as antagonists. Agonist sensitivity of hα6hβ4- and/or hα6hβ4hβ3-nAChRs is nominally increased due to Arg96His, Ala184Asp, Asp199Tyr or Ser233Cys variation in hα6 subunit. Conclusions Hence investigating functional consequences of natural variations in nAChR hα6 subunit we have discovered additional bases for cell surface functional expression of various subtypes of hα6*-nAChRs. Variations (Asp57Asn, Arg87Cys, Asp92Glu, Ser156Arg or Asn171Lys) in hα6 subunit that compromise hα6*-nAChR function are expected to contribute to individual differences in responses to smoked nicotine.
Collapse
Affiliation(s)
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Ciuraszkiewicz A, Schreibmayer W, Platzer D, Orr-Urtreger A, Scholze P, Huck S. Single-channel properties of α3β4, α3β4α5 and α3β4β2 nicotinic acetylcholine receptors in mice lacking specific nicotinic acetylcholine receptor subunits. J Physiol 2013; 591:3271-88. [PMID: 23613527 PMCID: PMC3717227 DOI: 10.1113/jphysiol.2012.246595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Previous attempts to measure the functional properties of recombinant nicotinic acetylcholine receptors (nAChRs) composed of known receptor subunits have yielded conflicting results. The use of knockout mice that lack α5, β2, α5β2 or α5β2α7 nAChR subunits enabled us to measure the single-channel properties of distinct α3β4, α3β4α5 and α3β4β2 receptors in superior cervical ganglion (SCG) neurons. Using this approach, we found that α3β4 receptors had a principal conductance level of 32.6 ± 0.8 pS (mean ± SEM) and both higher and lower secondary conductance levels. α3β4α5 receptors had the same conductance as α3β4 receptors, but differed from α3β4 receptors by having an increased channel open time and increased burst duration. By contrast, α3β4β2 receptors differed from α3β4 and α3β4α5 receptors by having a significantly smaller conductance level (13.6 ± 0.5 pS). After dissecting the single-channel properties of these receptors using our knockout models, we then identified these properties – and hence the receptors themselves – in wild-type SCG neurons. This study is the first to identify the single-channel properties of distinct neuronal nicotinic receptors in their native environment.
Collapse
Affiliation(s)
- Anna Ciuraszkiewicz
- Division of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Gochberg-Sarver A, Kedmi M, Gana-Weisz M, Bar-Shira A, Orr-Urtreger A. Tnfα, Cox2 and AdipoQ adipokine gene expression levels are modulated in murine adipose tissues by both nicotine and nACh receptors containing the β2 subunit. Mol Genet Metab 2012; 107:561-70. [PMID: 22926197 DOI: 10.1016/j.ymgme.2012.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 12/24/2022]
Abstract
Studies have provided evidences for the effects of nicotine on adipose tissues, as well as in inflammatory response. We hypothesized that nicotine affects adipokine gene expression in adipose tissues via specific neuronal nicotinic acetylcholine receptors (nAChRs). First, we described the expression of multiple nAChR subunit genes in mouse white and brown adipose tissues (WAT and BAT), and detected differential expression in WAT and BAT (α2>α5>β2 and α2>β2>β4, respectively). Additionally, when nicotine was administered to wild-type mice, it significantly affected the expression of adipokine genes, such as Tnfα, AdipoQ, Haptoglobin and Mcp1 in WAT. Next, we demonstrated that in mice deficient for the β2 nAChR subunit (β2-/- mice), the expression levels of Cox2 and Ngfβ genes in WAT, and Leptin, Cox2, AdipoQ and Haptoglobin in BAT, were significantly altered. Furthermore, interactions between mouse β2 subunit and nicotine treatment affected the expression levels of the adipokine genes Tnfα, Cox2 and AdipoQ in WAT and of AdipoQ in BAT. Finally, analysis of a cellular model of cultured adipocytes demonstrated that application of nicotine after silencing of the β2 nAChR subunit significantly elevated the expression level of Cox2 gene. Together, our data suggest a molecular link between the β2 nACh receptor subunit and the expression levels of specific adipokines, which is also affected by nicotine.
Collapse
|
17
|
Scholze P, Koth G, Orr-Urtreger A, Huck S. Subunit composition of α5-containing nicotinic receptors in the rodent habenula. J Neurochem 2012; 121:551-60. [PMID: 22380605 PMCID: PMC3350326 DOI: 10.1111/j.1471-4159.2012.07714.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gene association studies in humans have linked the α5 subunit gene CHRNA5 to an increased risk for nicotine dependence. In the CNS, nicotinic acetylcholine receptors (nAChRs) that contain the α5 subunit are expressed at relatively high levels in the habenulo-interpeduncular system. Recent experimental evidence furthermore suggests that α5-containing receptors in the habenula play a key role in controlling the intake of nicotine in rodents. We have now analysed the subunit composition of hetero-oligomeric nAChRs in the habenula of postnatal day 18 (P18) C57Bl/6J control mice and of mice with deletions of the α5, the β2, or the β4 subunit genes. Receptors consisting of α3β4* clearly outnumbered α4β2*-containing receptors not only in P18 but also in adult mice. We found low levels of α5-containing receptors in both mice (6%) and rats (2.5% of overall nAChRs). Observations in β2 and β4 null mice indicate that although α5 requires the presence of the β4 subunit for assembling (but not of β2), α5 in wild-type mice assembles into receptors that also contain the subunits α3, β2, and β4.
Collapse
Affiliation(s)
- Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
18
|
Dash B, Lukas RJ. Modulation of gain-of-function α6*-nicotinic acetylcholine receptor by β3 subunits. J Biol Chem 2012; 287:14259-69. [PMID: 22315221 DOI: 10.1074/jbc.m111.322610] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously have shown that β3 subunits either eliminate (e.g. for all-human (h) or all-mouse (m) α6β4β3-nAChR) or potentiate (e.g. for hybrid mα6hβ4hβ3- or mα6mβ4hβ3-nAChR containing subunits from different species) function of α6*-nAChR expressed in Xenopus oocytes, and that nAChR hα6 subunit residues Asn-143 and Met-145 in N-terminal domain loop E are important for dominant-negative effects of nAChR hβ3 subunits on hα6*-nAChR function. Here, we tested the hypothesis that these effects of β3 subunits would be preserved even if nAChR α6 subunits harbored gain-of-function, leucine- or valine-to-serine mutations at 9' or 13' positions (L9'S or V13'S) in their second transmembrane domains, yielding receptors with heightened functional activity and more amenable to assessment of effects of β3 subunit incorporation. However, coexpression with β3 subunits potentiates rather than suppresses function of all-human, all-mouse, or hybrid α6((L9'S or V13'S))β4*- or α6(N143D+M145V)(L9'S)β2*-nAChR. This contrasts with the lack of consistent function when α6((L9'S or V13'S)) and β2 subunits are expressed alone or in the presence of wild-type β3 subunits. These results provide evidence that gain-of-function hα6hβ2*-nAChR (i.e. hα6(N143D+M145V)(L9'S)hβ2hβ3 nAChR) could be produced in vitro. These studies also indicate that nAChR β3 subunits can be assembly partners in functional α6*-nAChR and that 9' or 13' mutations in the nAChR α6 subunit second transmembrane domain can act as gain-of-function and/or reporter mutations. Moreover, our findings suggest that β3 subunit coexpression promotes function of α6*-nAChR.
Collapse
Affiliation(s)
- Bhagirathi Dash
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | | |
Collapse
|
19
|
Kandinov B, Korczyn AD, Rabinowitz R, Nefussy B, Drory VE. Autonomic impairment in a transgenic mouse model of amyotrophic lateral sclerosis. Auton Neurosci 2011; 159:84-9. [PMID: 20869331 DOI: 10.1016/j.autneu.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of motor neurons, however it is increasingly recognized that nonmotor manifestations may occur, including autonomic nervous system dysfunction. To better understand the autonomic involvement in ALS we measured autonomic functions in transgenic (TG) mice carrying an SOD1 (G93A) mutation and wild-type (WT) control mice. TG mice had a higher heart rate at rest and following stress than WT mice at all ages except for the advanced stages of the disease (19-20weeks of age). The mean pupil diameter at rest was similar in WT and TG mice; however, TG mice had decreased mydriasis following administration of morphine. The rectal temperature did not differ between TG and WT mice at rest, during exposure to cold stress and following administration of morphine (30mg/kg) except for the advanced stages of the disease in which TG mice had significantly lower temperatures than WT mice during cold stress and following morphine administration. The results suggest autonomic nervous system impairment in this ALS model, consistent with clinical data in humans.
Collapse
Affiliation(s)
- Boris Kandinov
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
20
|
Dash B, Chang Y, Lukas RJ. Reporter mutation studies show that nicotinic acetylcholine receptor (nAChR) α5 Subunits and/or variants modulate function of α6*-nAChR. J Biol Chem 2011; 286:37905-37918. [PMID: 21873428 DOI: 10.1074/jbc.m111.264044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To further the understanding of functional α6α5*-nicotinic acetylcholine receptors (nAChR; the asterisk (*) indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4*-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5(V9)'(S) subunits bearing a valine 290 to serine mutation in the 9' position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR. However, coexpression with mutant chimeric α5/β3(V9)'(S) subunits has a gain-of-function effect (higher functional expression and agonist sensitivity and spontaneous opening inhibited by mecamylamine) on α6β4*-nAChR. Moreover, N143D + M145V mutations in the α6 subunit N-terminal domain enable α5/β3(V9)'(S) subunits to have a gain-of-function effect on α6β2*-nAChR. nAChR containing chimeric α6/α3 subunits plus either β2 or β4 subunits have some function that is modulated in the presence of α5 or α5/β3 subunits. Coexpression with α5/β3(V9)'(S) subunits has a gain-of-function effect more pronounced than that in the presence of α5(V9)'(S) subunits. Gain-of-function effects are dependent, sometimes subtly, on the nature and apparently the extracellular, cytoplasmic, and/or transmembrane domain topology of partner subunits. These studies yield insight into assembly of functional α6α5*-nAChR and provide tools for development of α6*-nAChR-selective ligands that could be important in the treatment of nicotine dependence, and perhaps other neurological diseases.
Collapse
Affiliation(s)
- Bhagirathi Dash
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013.
| |
Collapse
|
21
|
Scholze P, Ciuraszkiewicz A, Groessl F, Orr-Urtreger A, McIntosh JM, Huck S. α4β2 nicotinic acetylcholine receptors in the early postnatal mouse superior cervical ganglion. Dev Neurobiol 2011; 71:390-9. [PMID: 21485013 DOI: 10.1002/dneu.20870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heteropentameric nicotinic acetylcholine receptors (nAChR) mediate fast synaptic transmission in ganglia of the autonomic nervous system. It is undisputed that α3 and β4 are the predominant subunits in the superior cervical ganglion (SCG); however, reports on the presence of receptors that contain α4 have been controversial. Here, we have searched for the presence of α4-containing nAChRs in the postnatal rat and mouse SCG. We now show by immunoprecipitation combined with radioligand binding that α4-containing receptors constitute about 20% of hetero-oligomeric nAChRs in postnatal Day 3 (P3) mice. However, already by P9, the level of α4 approaches zero. In contrast, the number of α4-containing receptors is close to zero in the rat SCG at all times investigated. Deletion of the β2 subunit by using α5β2-double knockout (KO) mice removes all α4-containing receptors, suggesting that in the postnatal mouse SCG, α4 co-assembles only with β2 but not with β4. α4β2 receptors are, on the other hand, up-regulated in the SCG of P3 α5β4-double KO mice, where they make up about 50% of receptors that bind [(3) H]-epibatidine. Nonetheless, receptors on the surface of SCG neurons from α5β4-double KO mice maintained for one to two days in culture comprise <10% of α4β2 and >90% of α3β2, as determined by patch clamp recordings with α4β2- and α3β2-specific ligands. We propose that in the P3 SCG of wild type mice, α3β4 (±α5) represent about 62% of receptors, whereas 17% are α3β2β4, and 21% are α4β2 (±α5) receptors.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
22
|
Huang XZ, Park JT, Kim HG, Lee CK, Won YJ, Park BG, Jeong SW. Phenotype-specific down-regulation of nicotinic acetylcholine receptors in the pelvic ganglia of castrated rats: Implications for neurogenic erectile dysfunction. Neurosci Lett 2011; 501:55-9. [DOI: 10.1016/j.neulet.2011.06.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/23/2011] [Accepted: 06/26/2011] [Indexed: 11/28/2022]
|
23
|
Schirmer SU, Eckhardt I, Lau H, Klein J, DeGraaf YC, Lips KS, Pineau C, Gibbins IL, Kummer W, Meinhardt A, Haberberger RV. The cholinergic system in rat testis is of non-neuronal origin. Reproduction 2011; 142:157-66. [DOI: 10.1530/rep-10-0302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cholinergic system consists of acetylcholine (ACh), its synthesising enzyme, choline acetyltransferase (CHAT), transporters such as the high-affinity choline transporter (SLC5A7; also known as ChT1), vesicular ACh transporter (SLC18A3; also known as VAChT), organic cation transporters (SLC22s; also known as OCTs), the nicotinic ACh receptors (CHRN; also known as nAChR) and muscarinic ACh receptors. The cholinergic system is not restricted to neurons but plays an important role in the structure and function of non-neuronal tissues such as epithelia and the immune system. Using molecular and immunohistochemical techniques, we show in this study that non-neuronal cells in the parenchyma of rat testis express mRNAs forChat,Slc18a3,Slc5a7andSlc22a2as well as for the CHRN subunits in locations completely lacking any form of innervation, as demonstrated by the absence of protein gene product 9.5 labelling. We found differentially expressed mRNAs for eight α and three β subunits of CHRN in testis. Expression of the α7-subunit of CHRN was widespread in spermatogonia, spermatocytes within seminiferous tubules as well as within Sertoli cells. Spermatogonia and spermatocytes also expressed the α4-subunit of CHRN. The presence of ACh in testicular parenchyma (TP), capsule and isolated germ cells could be demonstrated by HPLC. Taken together, our results reveal the presence of a non-neuronal cholinergic system in rat TP suggesting a potentially important role for non-neuronal ACh and its receptors in germ cell differentiation.
Collapse
|
24
|
Improgo MRD, Scofield MD, Tapper AR, Gardner PD. From smoking to lung cancer: the CHRNA5/A3/B4 connection. Oncogene 2010; 29:4874-84. [PMID: 20581870 PMCID: PMC3934347 DOI: 10.1038/onc.2010.256] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/17/2010] [Accepted: 05/27/2010] [Indexed: 12/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that modulate key physiological processes ranging from neurotransmission to cancer signaling. These receptors are activated by the neurotransmitter, acetylcholine, and the tobacco alkaloid, nicotine. Recently, the gene cluster encoding the alpha3, alpha5 and beta4 nAChR subunits received heightened interest after a succession of linkage analyses and association studies identified multiple single-nucleotide polymorphisms in these genes that are associated with an increased risk for nicotine dependence and lung cancer. It is not clear whether the risk for lung cancer is direct or an effect of nicotine dependence, as evidence for both scenarios exist. In this study, we summarize the body of work implicating nAChRs in the pathogenesis of lung cancer, with special focus on the clustered nAChR subunits and their emerging role in this disease state.
Collapse
Affiliation(s)
- Ma. Reina D. Improgo
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, Massachusetts USA 01604
| | - Michael D. Scofield
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, Massachusetts USA 01604
| | - Andrew R. Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, Massachusetts USA 01604
| | - Paul D. Gardner
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, Massachusetts USA 01604
| |
Collapse
|
25
|
Improgo MRD, Scofield MD, Tapper AR, Gardner PD. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer. Prog Neurobiol 2010; 92:212-26. [PMID: 20685379 DOI: 10.1016/j.pneurobio.2010.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/15/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023]
Abstract
More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer.
Collapse
Affiliation(s)
- Ma Reina D Improgo
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, United States
| | | | | | | |
Collapse
|
26
|
Papke RL, Wecker L, Stitzel JA. Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 2010; 333:501-18. [PMID: 20100906 PMCID: PMC2872959 DOI: 10.1124/jpet.109.164566] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/22/2010] [Indexed: 11/22/2022] Open
Abstract
Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida 32610-0267, USA.
| | | | | |
Collapse
|
27
|
David R, Ciuraszkiewicz A, Simeone X, Orr-Urtreger A, Papke RL, McIntosh JM, Huck S, Scholze P. Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes. Eur J Neurosci 2010; 31:978-93. [PMID: 20377613 DOI: 10.1111/j.1460-9568.2010.07133.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in ganglia of the autonomic nervous system. Here, we determined the subunit composition of hetero-pentameric nAChRs in the mouse superior cervical ganglion (SCG), the function of distinct receptors (obtained by deletions of nAChR subunit genes) and mechanisms at the level of nAChRs that might compensate for the loss of subunits. As shown by immunoprecipitation and Western blots, wild-type (WT) mice expressed: alpha 3 beta 4 (55%), alpha 3 beta 4 alpha 5 (24%) and alpha 3 beta 4 beta 2 (21%) nAChRs. nAChRs in beta 4 knockout (KO) mice were reduced to < 15% of controls and no longer contained the alpha 5 subunit. Compound action potentials, recorded from the postganglionic (internal carotid) nerve and induced by preganglionic nerve stimulation, did not differ between alpha 5 beta 4 KO and WT mice, suggesting that the reduced number of receptors in the KO mice did not impair transganglionic transmission. Deletions of alpha 5 or beta2 did not affect the overall number of receptors and we found no evidence that the two subunits substitute for each other. In addition, dual KOs allowed us to study the functional properties of distinct alpha 3 beta4 and alpha 3 beta 2 receptors that have previously only been investigated in heterologous expression systems. The two receptors strikingly differed in the decay of macroscopic currents, the efficacy of cytisine, and their responses to the alpha-conotoxins AuIB and MII. Our data, based on biochemical and functional experiments and several mouse KO models, clarify and significantly extend previous observations on the function of nAChRs in heterologous systems and the SCG.
Collapse
Affiliation(s)
- Reinhard David
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chernyavsky AI, Arredondo J, Galitovskiy V, Qian J, Grando SA. Structure and function of the nicotinic arm of acetylcholine regulatory axis in human leukemic T cells. Int J Immunopathol Pharmacol 2009; 22:461-72. [PMID: 19505399 DOI: 10.1177/039463200902200223] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although acetylcholine (ACh) is widely known as a neurotransmitter, it also functions as a local humoral factor translating environmental stimuli into alterations in T cell development and function. The cholinergic components present in neurons are expressed in T cells where they constitute an independent cholinergic system. Both non-immunologic and immunologic stimulations can alter expression and function of cholinergic elements in T cells. Recent studies have convincingly demonstrated regulation of immune system by auto/paracrine ACh, which provides a basis for development of new immunomodulatory therapies with nicotinic agonists. The purpose of our research is to integrate information about the structure and activity of the ACh regulatory axis with the phenotypic and functional alterations of T cells during their development and commitment. In this study, we used the Ach producing human leukemic T cell line CCRF-CEM (CEM) to investigate auto/paracrine mechanisms of T cell regulation through the nicotinic class of ACh receptors (nAChRs). The intact CEM expressed alpha3, alpha5, alpha6, alpha7, alpha 9, beta2 and beta4 nAChR subunits. Stimulation of CEM with 10 microg/ml of phytohemagglutinin (PHA) for 16 h upregulated expression of the alpha3, alpha5, alpha7, alpha9 and beta2 and downregulated that of alpha6 and beta4 subunits, indicating that TCR activation leads to overexpression of high Ca2+-permeable ACh-gated ion channels. Activation of alpha7- and alpha3 AChRs predominantly abrogated PHA-dependent upregulation of the pro-inflammatory cytokine TNF-alpha and IFN-gamma receptors, respectively, at the mRNA and protein levels. Signaling through alpha7 and alpha3 nAChRs also significantly (p<0.05) altered expression of the cell state regulators p21 and Bcl-2, respectively, suggesting that downregulation of inflammation via nAChRs includes effects on the T cell cycle progression and apoptosis. These findings indicate that constant stimulation of alpha7 and alpha3 nAChRs by endogenously released ACh controls T cell activation and that signaling downstream of distinct nAChR subtypes targets specific inflammatory and cell cycle genes. Learning the cholinergic pharmacology of inflammation should allow to regulate specific types of immune reactions by selectively activating or blocking the types of nAChRs expressed by the immune cells mediating specific immune reactions.
Collapse
Affiliation(s)
- A I Chernyavsky
- Center for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
29
|
Decker MW, Gopalakrishnan M, Meyer MD. The potential of neuronal nicotinic acetylcholine receptor agonists for treating CNS conditions. Expert Opin Drug Discov 2008; 3:1027-40. [DOI: 10.1517/17460441.3.9.1027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Influence of Neuronal Nicotinic Receptors over Nicotine Addiction and Withdrawal. Exp Biol Med (Maywood) 2008; 233:917-29. [DOI: 10.3181/0712-mr-355] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking represents an enormous, global public health threat. Nearly five million premature deaths during a single year are attributable to smoking. Despite the resounding message of risks associated with smoking and numerous public health initiatives, cigarette smoking remains the most common preventable cause of disease in the United States. Fortunately, even in an adult smoker, smoking cessation can reverse many of the potential harmful effects. The symptoms associated with nicotine withdrawal represent the major obstacle to smoking cessation. This minireview examines the roles of various nicotinic receptors in the mechanisms of nicotine dependence, discusses the potential role of the habenula-interpeduncular nucleus axis in nicotine withdrawal, and highlights nicotinic receptors containing the β4 subunit as a potential pharmacological target for smoking cessation strategies.
Collapse
|
31
|
Chronic nicotine exposure has dissociable behavioural effects on control and beta2-/- mice. Behav Genet 2008; 38:503-14. [PMID: 18607712 DOI: 10.1007/s10519-008-9216-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
Nicotine exerts beneficial effects on various neurological and psychiatric pathologies, yet its effects on cognitive performance remain unclear. Mice lacking the beta2 subunit of the nicotinic receptor (beta2-/-) show characteristic deficits in executive functions and are suggested as reliable animal models for some specific endophenotypes of human pathologies, notably ADHD. We use beta2-/- and their controls to investigate the consequences of chronic nicotine exposure on cognitive behaviour. We show that in control mice, this treatment elicits somewhat slight effects, particularly affecting nocturnal activity and self-grooming. By contrast, in beta2-/- mice, chronic nicotine treatment had restorative effects on exploratory behaviour in the open-field and affected rearing, but did not modify motor functions. We confirmed that beta2-/- mice exhibit impaired exploratory and social behaviour, and further demonstrated their nocturnal hyperactivity. These data support the proposal that beta2-/- mice represent a relevant model for cognitive disorders in humans and that nicotine administered chronically at low dose may relieve some of these.
Collapse
|
32
|
Young T, Wittenauer S, Parker R, Vincler M. Peripheral nerve injury alters spinal nicotinic acetylcholine receptor pharmacology. Eur J Pharmacol 2008; 590:163-9. [PMID: 18573248 DOI: 10.1016/j.ejphar.2008.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/22/2008] [Accepted: 06/05/2008] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors are widely expressed in the rat spinal cord and modulate innocuous and nociceptive transmission. The present studies were designed to investigate the plasticity of spinal nicotinic acetylcholine receptors modulating mechanosensitive information following spinal nerve ligation. A tonic inhibitory cholinergic tone mediated by dihydro-beta-erythroidine- (DHbetaE) and methyllycaconitine- (MLA) sensitive nicotinic acetylcholine receptors was identified in the normal rat spinal cord and cholinergic tone at both populations of nicotinic acetylcholine receptors was lost ipsilateral to spinal nerve ligation. The administration of intrathecal nicotinic acetylcholine receptor agonists reduced mechanical paw pressure thresholds with a potency of epibatidine=A-85380>>nicotine>choline in the normal rat. Following spinal nerve ligation, intrathecal epibatidine and nicotine produced an ipsilateral antinociception, but intrathecal A-85380 and choline did not. The antinociceptive response to intrathecal nicotine was blocked with the alpha7 and alpha9alpha10-selective nicotinic acetylcholine receptor antagonist, MLA, and the alphabeta heteromeric nicotinic acetylcholine receptor antagonist, DHbetaE. The antinociceptive effects of both intrathecal nicotine and epibatidine were mediated by GABA(A) receptors. Spinal [(3)H]epibatidine saturation binding was unchanged in spinal nerve-ligated rats, but spinal nerve ligation did increase the ability of nicotine to displace [(3)H]epibatidine from spinal cord membranes. Spinal nerve ligation altered the expression of nicotinic acetylcholine receptor subunits ipsilaterally, with a large increase in the modulatory alpha5 subunit. Taken together these results suggest that pro- and antinociceptive populations of spinal nicotinic acetylcholine receptors modulate the transmission of mechanosensitive information and that spinal nerve ligation-induced changes in spinal nicotinic acetylcholine receptors likely result from a change in subunit composition rather than overt loss of nicotinic acetylcholine receptor subtypes.
Collapse
Affiliation(s)
- Tracey Young
- Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
33
|
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 2008; 22:1356-68. [PMID: 18450646 DOI: 10.1096/fj.07-9965.com] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tobacco products and nicotine alter the cell cycle and lead to squamatization of oral keratinocytes (KCs) and squamous cell carcinoma. Activation of nicotinic acetylcholine receptors (nAChRs) elicits Ca(2+) influx that varies in magnitude between different nAChR subtypes. Normal differentiation of KCs is associated with sequential expression of the nAChR subtypes with increasing Ca(2+) permeability, such as alpha5-containing alpha3 nAChR and alpha7 nAChR. Exposure to environmental tobacco smoke (ETS) or an equivalent concentration of nicotine accelerated by severalfold the alpha5 and alpha7 expression in KCs, which could be abolished by mecamylamine and alpha-bungarotoxin with different efficacies, suggesting the following sequence of autoregulation of the expression of nAChR subtypes: alpha3(beta2/beta4) > alpha3(beta2/beta4)alpha5 > alpha7 > alpha7. This conjecture was corroborated by results of quantitative assays of subunit mRNA and protein levels, using nAChR-specific pharmacologic antagonists and small interfering RNAs. The genomic effects of ETS and nicotine involved the transcription factor GATA-2 that showed a multifold increase in quantity and activity in exposed KCs. Using protein kinase inhibitors and dominant negative and constitutively active constructs, we characterized the principal signaling cascades mediating a switch in the nAChR subtype. Cumulative results indicated that the alpha3(beta2/beta4) to alpha3(beta2/beta4)alpha5 nAChR transition predominantly involved protein kinase C, alpha3(beta2/beta4)alpha5 to alpha7 nAChR transition-Ca(2+)/calmodulin-dependent protein kinase II and p38 MAPK, and alpha7 self-up-regulation-the p38 MAPK/Akt pathway, and JAK-2. These results provide a mechanistic insight into the genomic effects of ETS and nicotine on KCs and characterize signaling pathways mediating autoregulation of stepwise overexpression of nAChR subtypes with increasing Ca(2+) permeability in exposed cells. These observations have salient clinical implications, because a switch in the nAChR subunit composition can bring about a corresponding switch in receptor function, leading to profound pathobiologic effects observed in KCs exposed to tobacco products.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Dermatology, University of California, Irvine, C340 Medical Sciences I, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
34
|
Portugal GS, Gould TJ. Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: converging evidence from human and animal research. Behav Brain Res 2008; 193:1-16. [PMID: 18571741 DOI: 10.1016/j.bbr.2008.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/08/2008] [Accepted: 05/10/2008] [Indexed: 12/13/2022]
Abstract
Tobacco smoking is a leading preventable cause of death in the United States and produces a major health and economic burden. Although the majority of smokers want to quit, few are successful. These data highlight the need for additional research into the neurobiology of tobacco dependence. Addiction to nicotine, the main psychoactive component of tobacco, is influenced by multiple factors that include individual differences in genetic makeup. Twin studies have demonstrated that genetic factors can influence vulnerability to nicotine addiction, and subsequent research has identified genes that may alter sensitivity to nicotine. In humans, genome-wide and candidate gene association studies have demonstrated that genes encoding nicotinic acetylcholine receptor (nAChR) proteins are associated with multiple smoking phenotypes. Similarly, research in mice has provided evidence that naturally occurring variability in nAChR genes is associated with changes in nicotine sensitivity. Furthermore, the use of genetic knockout mice has allowed researchers to determine the nAChR genes that mediate the effects of nicotine, whereas research with knockin mice has demonstrated that changes to nAChR genes can dramatically alter nicotine sensitivity. This review will examine the genetic factors that alter susceptibility to nicotine addiction, with an emphasis on the genes that encode nAChR proteins.
Collapse
Affiliation(s)
- George S Portugal
- Department of Psychology, Weiss Hall, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | | |
Collapse
|
35
|
Perry T, Heckel DG, McKenzie JA, Batterham P. Mutations in Dalpha1 or Dbeta2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:520-528. [PMID: 18405830 DOI: 10.1016/j.ibmb.2007.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 05/26/2023]
Abstract
Resistance to insecticides by modification of their molecular targets is a serious problem in chemical control of many arthropod pests. Neonicotinoids target the nicotinic acetylcholine receptor (nAChR) of arthropods. The spectrum of possible resistance-conferring mutations of this receptor is poorly understood. Prediction of resistance is complicated by the existence of multiple genes encoding the different subunits of this essential component of neurotransmission. We focused on the cluster of three Drosophila melanogaster nAChR subunit genes at cytological region 96A. EMS mutagenesis and selection for resistance to nitenpyram was performed on hybrids carrying a deficiency for this chromosomal region. Two complementation groups were defined for the four strains isolated. Molecular characterisation of the mutations found lesions in two nAChR subunit genes, Dalpha1 (encoding an alpha-type subunit) and Dbeta2 (beta-type). Mutations conferring resistance in beta-type receptors have not previously been reported, but we found several lesions in the Dbeta2 sequence, including locations distant from the predicted neonicotinoid-binding site. This study illustrates that mutations in a single-receptor subunit can confer nitenpyram resistance. Moreover, some of the mutations may protect the insect against nitenpyram by interfering with subunit assembly or channel activation, rather than affecting binding affinities of neonicotinoids to the channel.
Collapse
Affiliation(s)
- Trent Perry
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
36
|
Putz G, Kristufek D, Orr-Urtreger A, Changeux JP, Huck S, Scholze P. Nicotinic acetylcholine receptor-subunit mRNAs in the mouse superior cervical ganglion are regulated by development but not by deletion of distinct subunit genes. J Neurosci Res 2008; 86:972-81. [PMID: 17975828 DOI: 10.1002/jnr.21559] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mice with deletions of nicotinic ACh receptor (nAChR) subunit genes are valuable models for studying nAChR functions. We could previously show in the mouse superior cervical ganglion (SCG) that the absence of distinct subunits affects the functional properties of receptors. Here, we have addressed the question of whether deletions of the subunits alpha5, alpha7, or beta2 are compensated at the mRNA level, monitored by reverse transcription and quantitative real-time polymerase chain reaction. Relative to our reference gene, alpha3, which is expressed in all SCG nAChRs, mRNA levels of beta4 showed little change from birth until adult ages in intact ganglia of wild-type mice. In contrast, alpha4 declined sharply after birth and was barely detectable in adult animals. alpha5, alpha7, and beta2 subunit message levels also declined, though more slowly and less completely than alpha4. The subunits alpha6 and beta3 were detected by conventional polymerase chain reaction at very low levels, if at all, whereas alpha2 was never seen in any of our samples. The developmental profile of nAChR mRNA levels in the three knockout strains did not differ markedly from that of wild-type mice. Likewise, message levels of nAChR subunits were similar in cultures prepared from either wild-type or knockout animals. Our observations indicate a developmental regulation of nAChR subunit mRNAs in the SCG of mice after birth that was not affected by the three knockouts under investigation.
Collapse
Affiliation(s)
- G Putz
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
37
|
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J 2007; 274:3799-845. [PMID: 17651090 DOI: 10.1111/j.1742-4658.2007.05935.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.
Collapse
Affiliation(s)
- Dimitra Kalamida
- Department of Pharmacy, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Brown RWB, Collins AC, Lindstrom JM, Whiteaker P. Nicotinic alpha5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers. J Neurochem 2007; 103:204-15. [PMID: 17573823 DOI: 10.1111/j.1471-4159.2007.04700.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuronal nicotinic acetylcholine receptor subunit alpha5 mRNA is widely expressed in the CNS. An alpha5 gene polymorphism has been implicated in behavioral differences between mouse strains, and alpha5-null mutation induces profound changes in mouse acute responses to nicotine. In this study, we have examined the distribution and prevalence of alpha5* nicotinic acetylcholine receptor in mouse brain, and quantified the effects of alpha5-null mutation on pre-synaptic nicotinic acetylcholine receptor function (measured using synaptosomal (86)Rb(+) efflux) and overall [(125)I]epibatidine binding site expression. alpha5* nicotinic acetylcholine receptor expression was found in nine of fifteen regions examined, although < 20% of the total nicotinic acetylcholine receptor population in any region contained alpha5. Deletion of the alpha5 subunit gene resulted in localized loss of function (thalamus, striatum), which was itself confined to the DHbetaE-sensitive receptor population. No changes in receptor expression were seen. Consequently, functional changes must occur as a result of altered function per unit of receptor. The selective depletion of high agonist activation affinity sites results in overall nicotinic function being reduced, and increases the overall agonist activation affinity. Together, these results describe the receptor-level changes underlying altered behavioral responses to nicotine in nicotinic acetylcholine receptor alpha5 subunit-null mutants.
Collapse
Affiliation(s)
- Robert W B Brown
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
39
|
Mineur YS, Picciotto MR. Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction. Biochem Pharmacol 2007; 75:323-33. [PMID: 17632086 PMCID: PMC2212607 DOI: 10.1016/j.bcp.2007.06.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Human twin studies have suggested that there is a substantial genetic component underlying nicotine dependence, ongoing smoking and ability to quit. Similarly, animal studies have identified a number of genes and gene products that are critical for behaviors related to nicotine addiction. Classical genetic approaches, gene association studies and genetic engineering techniques have been used to identify the gene products involved in nicotine dependence. One class of genes involved in nicotine-related behavior is the family of nicotinic acetylcholine receptors (nAChRs). These receptors are the primary targets for nicotine in the brain. Genetic engineering studies in mice have identified a number of subunits that are critical for the ability of nicotine to activate the reward system in the brain, consisting of the dopaminergic cell bodies in the ventral tegmental area and their terminals in the nucleus accumbens and other portions of the mesolimbic system. In this review we will discuss the various lines of evidence suggesting that nAChRs may be involved in smoking behavior, and will review the human and animal studies that have been performed to date examining the genetic basis for nicotine dependence and smoking.
Collapse
Affiliation(s)
| | - Marina R. Picciotto
- * To whom correspondence should be addressed Marina R. Picciotto, Dept. of Psychiatry, Yale University School of Medicine, 34 Park Street – 3rd floor research, New Haven, CT 06508, Phone: 203-737-2041; Fax: 203-737-2043;
| |
Collapse
|
40
|
Silva GJJ, Pereira AC, Krieger EM, Krieger JE. Genetic mapping of a new heart rate QTL on chromosome 8 of spontaneously hypertensive rats. BMC MEDICAL GENETICS 2007; 8:17. [PMID: 17419875 PMCID: PMC1865373 DOI: 10.1186/1471-2350-8-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 04/09/2007] [Indexed: 01/19/2023]
Abstract
Background Tachycardia is commonly observed in hypertensive patients, predominantly mediated by regulatory mechanisms integrated within the autonomic nervous system. The genetic loci and genes associated with increased heart rate in hypertension, however, have not yet been identified. Methods An F2 intercross of Spontaneously Hypertensive Rats (SHR) × Brown Norway (BN) linkage analysis of quantitative trait loci mapping was utilized to identify candidate genes associated with an increased heart rate in arterial hypertension. Results Basal heart rate in SHR was higher compared to that of normotensive BN rats (365 ± 3 vs. 314 ± 6 bpm, p < 0.05 for SHR and BN, respectively). A total genome scan identified one quantitative trait locus in a 6.78 cM interval on rat chromosome 8 (8q22–q24) that was responsible for elevated heart rate. This interval contained 241 genes, of which 65 are known genes. Conclusion Our data suggest that an influential genetic region located on the rat chromosome 8 contributes to the regulation of heart rate. Candidate genes that have previously been associated with tachycardia and/or hypertension were found within this QTL, strengthening our hypothesis that these genes are, potentially, associated with the increase in heart rate in a hypertension rat model.
Collapse
Affiliation(s)
- Gustavo JJ Silva
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - Alexandre C Pereira
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - Eduardo M Krieger
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - José E Krieger
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo, Brazil, Av. Dr. Enéas de Carvalho Aguiar, 44 São Paulo, Brazil
| |
Collapse
|
41
|
Mandl P, Kiss JP. Role of presynaptic nicotinic acetylcholine receptors in the regulation of gastrointestinal motility. Brain Res Bull 2007; 72:194-200. [PMID: 17452281 DOI: 10.1016/j.brainresbull.2007.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/02/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Presynaptic nicotinic acetylcholine receptors (nAChRs) located on cholinergic terminals facilitate the release of acetylcholine (ACh), thereby constituting a fail-safe mechanism at strategic locations, such as the neuromuscular junction, where reliable transmission is vital. Accumulating data indicate that myenteric neurons in the enteric nervous system possess not only somatodendritic nAChRs, which mediate cholinergic transmission between neurons, but also presynaptic nAChRs. Functional evidence shows that these receptors mediate a positive feedback with respect to ACh release from myenteric motoneurons, and might therefore play an important role in the regulation of gastrointestinal motility. These presynaptic nAChRs were found to be more sensitive to nicotinic ligands than somatodendritic nAChRs and could therefore be primary targets of exogenous compounds, such as nicotine. This interaction might provide a neurochemical basis for the effect of smoking on gastrointestinal motility. Another important human pharmacological implication is based on our recent observation that monoamine uptake inhibitor-type antidepressant drugs are able to inhibit presynaptic nAChRs in the enteric nervous system. The disruption of the nAChR-mediated positive feedback modulation by antidepressants might explain the frequent occurrence of constipation, a common side effect, attributed to these drugs. Clarification of the role of presynaptic nAChRs in feedback mechanisms in the enteric nervous system might be instrumental in the development of new drugs affecting gastrointestinal motility.
Collapse
Affiliation(s)
- P Mandl
- Laboratory of Drug Resesarch Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Postural tachycardia syndrome is an autonomic disorder primarily of younger women. The patient population is heterogeneous, making diagnosis and treatment a challenge. A mutation in the norepinephrine (noradrenaline) transporter gene prompted further genetic analysis. RECENT FINDINGS Eleven new mutations were found in the human norepinephrine transporter gene, although none were directly associated with postural tachycardia syndrome. The 5'-flanking -1012C --> T variant of the dopamine beta-hydroxylase gene was slightly increased and protection was associated with a reduced incidence of two mutations in the endothelial nitric oxide synthase gene, and one in endothelin-1. Mutations in other disease-related genes suggest a potential relationship with the pathogenesis of postural tachycardia syndrome. Benign joint hypermobility syndrome, for example, shares similar autonomic symptoms and is linked to a mutation in tenascin-X. Additional genetic findings are discussed as potential contributors to vascular health and neurodegeneration. SUMMARY Genetic testing can reveal molecular mechanisms of disease and provide an additional strategy for diagnosis and treatment of heterogeneous patient populations such as postural tachycardia syndrome. It is quite likely that the pathogenesis of this disorder will be attributed to numerous genetic mutations, both subtle and overt. Therefore, continued study of the relationships between genotype and phenotype are necessary to better understand this syndrome and others with associated dysautonomia.
Collapse
Affiliation(s)
- Nancy R Keller
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Departments of Medicine, Pharmacology and Neurology, Tennessee, USA
| | | |
Collapse
|
43
|
Mao D, Yasuda RP, Fan H, Wolfe BB, Kellar KJ. Heterogeneity of nicotinic cholinergic receptors in rat superior cervical and nodose Ganglia. Mol Pharmacol 2006; 70:1693-9. [PMID: 16882879 DOI: 10.1124/mol.106.027458] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic cholinergic receptors (nAChRs) are present in ganglia in the peripheral nervous system. In autonomic ganglia, they are responsible for fast synaptic transmission, whereas in the sensory ganglia and sensory neurons, they may be involved in modulation of neurotransmission. The present study measured nAChRs in several rat autonomic ganglia: the superior cervical ganglia (SCG), sensory nodose ganglia, stellate ganglia, and pelvic ganglia. The densities of the heteromeric nAChRs determined by receptor binding assay in those four ganglia are 481, 45, 9, and 11 fmol/mg protein, respectively. Immunoprecipitation studies with subunit-specific antibodies showed that a majority of the nAChRs in the SCG and nodose ganglia contain the alpha3 and beta4 subunits, but a significant percentage of the nAChRs in these ganglia also contain alpha5 and beta2 subunits. A small percentage of the nAChRs in nodose ganglia also contain alpha2 and alpha4 subunits. Sequential immunoprecipitation assays indicated that in the SCG, all alpha5 subunits are associated with alpha3 and beta4 subunits, forming the mixed heteromeric alpha3beta4alpha5 subtype. A receptor composed of alpha3, beta2, and beta4 subunits in the SCG was also detected. In rat SCG, we found the following distribution of nAChRs subtypes: 55 to 60% simple alpha3beta4 subtype, 25 to 30% alpha3beta4alpha5 subtype, and 10 to 15% alpha3beta4beta2 subtype. These findings indicate that the nAChRs in SCG and nodose ganglia are heterogeneous, which suggests that different receptor subtypes may play different roles in these ganglia or may be activated under different conditions.
Collapse
Affiliation(s)
- Danyan Mao
- Department of Pharmacology and Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
44
|
Park KS, Cha SK, Kim MJ, Kim DR, Jeong SW, Lee JW, Kong ID. An α3β4 subunit combination acts as a major functional nicotinic acetylcholine receptor in male rat pelvic ganglion neurons. Pflugers Arch 2006; 452:775-83. [PMID: 16715294 DOI: 10.1007/s00424-006-0086-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
We identified major subunits of the nicotinic acetylcholine receptor (nAChR) involved in excitatory postsynaptic potential and intracellular Ca(2+) ([Ca(2+)]i) increase in the major pelvic ganglion (MPG) neurons of the male rat. ACh elicited fast inward currents in both sympathetic and parasympathetic MPG neurons. Mecamylamine, a selective antagonist for alpha3beta4 nAChR, potently inhibited the ACh-induced currents in sympathetic and parasympathetic neurons (IC(50); 0.53 and 0.22 microM, respectively). Furthermore, alpha-conotoxin AuIB (10 microM), a new selective antagonist for alpha3beta4 nAChR, blocked more than 80% of the ACh-induced currents in MPG neurons. Conversely, alpha-bungarotoxin, alpha-methyllycaconitine, and dihydro-beta-erythroidine, known as blockers of the alpha7 or alpha4beta2, did not show selective blocking effects on MPG neurons. ACh transiently increased [Ca(2+)]i which was subsequently abolished in the extracellular Ca(2+)-free environment. Simultaneous recording of [Ca(2+)]i and ionic currents revealed that ACh increased [Ca(2+)]i under the conditions of the voltage-clamped (at -80 mV) state, and this resulted from the influx through nAChR itself. ACh-induced [Ca(2+)]i increase was blocked by mecamylamine (10 microM), but was not affected by atropine (1 microM). RT-PCR analysis showed that, among subunits of nAChR, alpha3 and beta4 were predominantly expressed in MPG. We suggest that activation of alpha3 and beta4 nAChR subunits in MPG neurons induce fast inward currents and [Ca(2+)]i increase, possibly mediating a major role in pelvic autonomic synaptic transmission.
Collapse
MESH Headings
- Acetylcholine/antagonists & inhibitors
- Acetylcholine/pharmacology
- Animals
- Calcium/metabolism
- Calcium/physiology
- Calcium Channel Blockers
- Conotoxins/pharmacology
- Electrophysiology
- Ganglia, Parasympathetic/cytology
- Ganglia, Parasympathetic/drug effects
- Ganglia, Parasympathetic/physiology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/physiology
- In Vitro Techniques
- Male
- Membrane Potentials/physiology
- Neurons/drug effects
- Neurons/physiology
- Nicotinic Antagonists/pharmacology
- Patch-Clamp Techniques
- Rats
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Fluorescence
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Kyu-Sang Park
- Department of Physiology and Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Kamendi H, Stephens C, Dergacheva O, Wang X, Huang ZG, Bouairi E, Gorini C, McIntosh JM, Mendelowitz D. Prenatal nicotine exposure alters the nicotinic receptor subtypes that modulate excitation of parasympathetic cardiac neurons in the nucleus ambiguus from primarily alpha3beta2 and/or alpha6betaX to alpha3beta4. Neuropharmacology 2006; 51:60-6. [PMID: 16690087 DOI: 10.1016/j.neuropharm.2006.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 02/27/2006] [Accepted: 03/02/2006] [Indexed: 11/24/2022]
Abstract
Nicotinic receptors play an essential role in central cardiorespiratory function, however, the types of nicotinic receptors responsible for activating cardiac vagal neurons in the nucleus ambiguus that control heart rate are unknown. This study tests whether alpha-conotoxin MII and alpha-conotoxin AuIB sensitive nicotinic receptors are involved in augmentation of glutamatergic neurotransmission and changes in holding current in cardiac vagal neurons, and whether exposure to nicotine in the prenatal period alters these responses. The nicotinic agonist cytisine significantly increased the holding current and amplitude of glutamatergic mEPSCs. In unexposed animals alpha-conotoxin MII (100nM) significantly reduced the increase in mEPSC amplitude and change in holding current evoked by cytisine. However, in animals prenatally exposed to nicotine, alpha-conotoxin MII blunted but did not block the increase in mEPSC amplitude but blocked the increase in holding current evoked by cytisine. In unexposed animals, alpha-conotoxin AuIB (10microM) blocked the cytisine evoked increase in mEPSC amplitude and inhibited but did not abolish the increase in holding current. In contrast, in animals exposed to nicotine, alpha-conotoxin AuIB blunted the increase in mEPSC amplitude, and completely abolished the cytisine evoked increase in holding current. These data demonstrate that the prenatal nicotine exposure alters the nicotinic receptors involved in excitation of cardiac vagal neurons.
Collapse
Affiliation(s)
- Harriet Kamendi
- Department of Pharmacology and Physiology, George Washington University, 2300 Eye Street, N.W. Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Khan IM, Wennerholm M, Singletary E, Polston K, Zhang L, Deerinck T, Yaksh TL, Taylor P. Ablation of primary afferent terminals reduces nicotinic receptor expression and the nociceptive responses to nicotinic agonists in the spinal cord. ACTA ACUST UNITED AC 2005; 33:543-56. [PMID: 15906161 DOI: 10.1007/s11068-004-0516-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 01/31/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
A variety of studies indicate that spinal nicotinic acetylcholine receptors modulate the behavioral and autonomic responses elicited by afferent stimuli. To examine the location of and role played by particular subtypes of nicotinic receptors in mediating cardiovascular and nociceptive responses, we treated neonatal and adult rats with capsaicin to destroy C-fibers in primary afferent terminals. Reduction of C-fiber terminals was ascertained by the loss of isolectin B4, CGRP and vanilloid receptors as monitored by immunofluorescence. Receptor autoradiography shows a reduction in number of epibatidine binding sites following capsaicin treatment. The reduction is particularly marked in the dorsal horn and primarily affects the class of high affinity epibatidine binding sites thought to modulate nociceptive responses. Accompanying the loss of terminals and nicotinic binding sites were significant reductions in the expression of alpha 3, alpha 4, alpha 5, beta 2 and beta 4 nicotinic receptor subunits in the superficial layers of the spinal cord as determined by antibody staining and confocal microscopy. The loss of nicotinic receptors that follows capsaicin treatment results in attenuation of the nociceptive responses to both spinal cytisine and epibatidine. Capsaicin treatment also diminishes the capacity of cytisine to desensitize nicotinic receptors mediating nociception, but it shows little effect on intrathecal nicotinic agonist elicited pressor and heart rate responses. Hence, our data suggest that alpha 3, alpha 4, alpha 5, beta 2 and beta 4 subunits of nicotinic receptors are localized in the spinal cord on primary afferent terminals that mediate nociceptive input. A variety of convergent data based on functional studies and subunit expression suggest that alpha 3 and alpha 4, in combination with beta 2 and alpha 5 subunits, form the majority of functional nicotinic receptors on C-fiber primary afferent terminals. Conversely, spinal nicotinic receptors not located on C-fibers play a primary role in the spinal pathways evoking spinally coordinated autonomic cardiovascular responses.
Collapse
Affiliation(s)
- Imran M Khan
- Department of Pharmacology, University of California, San Diego, CA 92093-0636, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Orr-Urtreger A, Kedmi M, Rosner S, Karmeli F, Rachmilewitz D. Increased severity of experimental colitis in alpha5 nicotinic acetylcholine receptor subunit-deficient mice. Neuroreport 2005; 16:1123-7. [PMID: 15973160 DOI: 10.1097/00001756-200507130-00018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substantial evidence suggests a negative association between cigarette smoking and the incidence and severity of ulcerative colitis, a common human inflammatory bowel disease. Nicotine has been implicated in this association. The detection of nicotinic acetylcholine receptors in colonic epithelium, the primary tissue affected in ulcerative colitis, suggests a role for these receptors in the beneficial effect of nicotine on colonic inflammation. Using an animal model, we demonstrate for the first time that alpha5 nicotinic acetylcholine receptor knockout mice have significantly more severe experimental colitis than wild-type controls and that nicotine significantly ameliorates its course when compared with wild-type controls. These findings suggest that alpha5-containing nicotinic acetylcholine receptors participate in the modulation of colitis in mice, but other nicotinic acetylcholine receptor subunits also mediate the antiinflammatory effects of nicotine.
Collapse
Affiliation(s)
- Avi Orr-Urtreger
- The Genetics Institute, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
49
|
Sack R, Gochberg-Sarver A, Rozovsky U, Kedmi M, Rosner S, Orr-Urtreger A. Lower core body temperature and attenuated nicotine-induced hypothermic response in mice lacking the beta4 neuronal nicotinic acetylcholine receptor subunit. Brain Res Bull 2005; 66:30-6. [PMID: 15925141 DOI: 10.1016/j.brainresbull.2005.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/16/2005] [Accepted: 02/27/2005] [Indexed: 11/24/2022]
Abstract
Diverse physiological and pathological effects of nicotine, including the alteration of body temperature, are presumably mediated by neuronal nicotinic acetylcholine receptors (nAChR). Previous studies have suggested the involvement of distinct nAChR subunits in nicotine-induced thermoregulation. We studied genetically manipulated knockout mice lacking the alpha7, alpha5 or beta4 subunit genes, in order to assess the effects of subunit deficiency on temperature regulation. Using a telemetry system, core body temperature was monitored continuously prior to and following nicotine administration in mutant mice and in wild-type littermates. Mice lacking in the beta4 nAChR subunit gene had significantly lower baseline core body temperature than all other mouse strains studied. beta4 null mice also demonstrated a reduced nicotine-induced hypothermic response and impaired desensitization following repeat nicotine exposure. These findings suggest the involvement of the beta4 nAChR subunit in both core body temperature homeostasis and nicotine-elicited thermo-alterations in mice.
Collapse
Affiliation(s)
- Ram Sack
- The Genetics Institute, Tel-Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 64239, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2005; 74:363-96. [PMID: 15649582 DOI: 10.1016/j.pneurobio.2004.09.006] [Citation(s) in RCA: 716] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 09/29/2004] [Indexed: 02/07/2023]
Abstract
Neuronal nicotinic receptors (NAChRs) form a heterogeneous family of ion channels that are differently expressed in many regions of the central nervous system (CNS) and peripheral nervous system. These different receptor subtypes, which have characteristic pharmacological and biophysical properties, have a pentameric structure consisting of the homomeric or heteromeric combination of 12 different subunits (alpha2-alpha10, beta2-beta4). By responding to the endogenous neurotransmitter acetylcholine, NAChRs contribute to a wide range of brain activities and influence a number of physiological functions. Furthermore, it is becoming evident that the perturbation of cholinergic nicotinic neurotransmission can lead to various diseases involving nAChR dysfunction during development, adulthood and ageing. In recent years, it has been discovered that NAChRs are present in a number of non-neuronal cells where they play a significant functional role and are the pathogenetic targets in several diseases. NAChRs are also the target of natural ligands and toxins including nicotine (Nic), the most widespread drug of abuse. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining their regional and cellular localisation and the molecular basis of their functional diversity mainly in pharmacological and biochemical terms. The recent availability of mice with the genetic ablation of single or double nicotinic subunits or point mutations have shed light on the role of nAChRs in major physiological functions, and we will here discuss recent data relating to their behavioural phenotypes. Finally, the role of NAChRs in disease will be considered in some details.
Collapse
Affiliation(s)
- C Gotti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | |
Collapse
|