1
|
Takeuchi H. Olfactory cilia, regulation and control of olfaction. Physiol Rep 2024; 12:e70057. [PMID: 39358841 PMCID: PMC11446836 DOI: 10.14814/phy2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The sense of smell is still considered a fuzzy sensation. Softly wafting aromas can stimulate the appetite and trigger memories; however, there are many unexplored aspects of its underlying mechanisms, and not all of these have been elucidated. Although the final sense of smell takes place in the brain, it is greatly affected during the preliminary stage, when odorants are converted into electrical signals. After signal conversion through ion channels in olfactory cilia, action potentials are generated through other types of ion channels located in the cell body. Spike trains through axons transmit this information as digital signals to the brain, however, before odorants are converted into digital electric signals, such as an action potential, modification of the transduction signal has already occurred. This review focuses on the early stages of olfactory signaling. Modification of signal transduction mechanisms and their effect on the human sense of smell through three characteristics (signal amplification, olfactory adaptation, and olfactory masking) produced by olfactory cilia, which is the site of signal transduction are being addressed in this review.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Graduated School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
2
|
Takeuchi H, Kurahashi T. Segregation of Ca2+ signaling in olfactory signal transduction. J Gen Physiol 2023; 155:213865. [PMID: 36787110 PMCID: PMC9960254 DOI: 10.1085/jgp.202213165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
Olfactory signal transduction is conducted through a cAMP-mediated second messenger cascade. The cytoplasmic Ca2+ concentration increases through the opening of CNG channels, a phenomenon that underlies two major functions, namely, signal boosting and olfactory adaptation. Signal boosting is achieved by an additional opening of the Ca2+-activated Cl- channel whereas adaptation is regulated by Ca2+ feedback to the CNG channel. Thus, the influx of Ca2+ and the resultant increase in cytoplasmic Ca2+ levels play seemingly opposing effects: increasing the current while reducing the current through adaptation. The two functions could be interpreted as compensating for each other. However, in real cells, both functions should be segregated. Ca2+ dynamics in olfactory cilia need to be directly measured, but technical difficulties accompanying the thin structure of olfactory cilia have prevented systematic analyses. In this study, using a combination of electrophysiology, local photolysis of caged cAMP, and Ca2+ imaging, we found that free Ca2+ in the local ciliary cytoplasm decreased along with a reduction in the current containing Ca2+-activated Cl- components returning to the basal level, whereas Ca2+-dependent adaptation persisted for a longer period. The activity of Cl- channels is highly likely to be regulated by the free Ca2+ that is present only immediately after the influx through the CNG channel, and an exclusive interaction between Ca2+ and Ca2+-binding proteins that mediate the adaptation may modulate the adaptation lifetime.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Correspondence to Hiroko Takeuchi:
| | - Takashi Kurahashi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res 2021; 383:429-443. [PMID: 33447881 DOI: 10.1007/s00441-020-03391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), Genova, Italy.
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Nakashima N, Nakashima K, Nakashima A, Takano M. Olfactory marker protein interacts with adenosine nucleotide derivatives. Biochem Biophys Rep 2021; 25:100887. [PMID: 33490644 PMCID: PMC7806522 DOI: 10.1016/j.bbrep.2020.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Olfactory marker protein (OMP) is a genetic signature for mature olfactory receptor neurons (ORNs). Recently, it has been proposed that OMP directly captures odour-induced cAMP to swiftly terminate the olfactory signal transduction to maintain neuronal sensitivity. In the present study, we show that OMP can also interact with other adenosine nucleotides as ATP, ADP and AMP with different affinities. We performed bioluminescent resonant energy transfer (BRET) assay to measure the binding actions of the adenosine nucleotide derivatives in competition to cAMP. Amongst all, ATP showed the bell-shape affinity to OMP in the presence of cAMP; ADP and AMP showed fewer affinities to OMP than ATP. In the absence of cAMP analogues, ATP alone bound to OMP in a dose dependent manner with a lower affinity than to cAMP. Thus, OMP possessed different affinities to ATP in the presence or absence of cAMP. OMP may interact differentially with ATP and cAMP depending on its supply and demand along the cAMP-associated signalling in the limited spaces of cilia of ORNs. Olfactory marker protein (OMP) contains cAMP-binding sites. The affinity of OMP towards adenosine nucleotide derivatives was studied. OMP showed sigmoid-shaped affinity towards ATP. OMP showed U-shaped affinity towards ATP in competition with cAMP. OMP dose-dependently and differentially captured ATP.
Collapse
Affiliation(s)
- Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Kie Nakashima
- Laboratory of Developmental Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto, 606-8501, Japan
| | - Akiko Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
5
|
Nakashima A, Nakagawa T, Takano M, Nakashima N. Olfactory marker protein contributes to the evaluation of odour values by olfactory glomerular processing. Neurosci Lett 2020; 739:135445. [PMID: 33148443 DOI: 10.1016/j.neulet.2020.135445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023]
Abstract
Olfaction starts from olfactory receptor neurons (ORNs) that express olfactory marker protein (OMP). OMP deficit results in various behavioural phenotypes indicating olfactory dysfunction due to the impaired responses of ORNs. Recently, OMP was demonstrated to maintain strong olfaction by buffering olfactory cAMP signalling. However, the impact of OMP on olfaction behaviours, the assessment of which requires time to evaluate odour values, remains largely unexplained. Here, we examined the behaviour of heterozygous OMP+/GFP (HET) mice vs. homologous GFP-knock-in OMP-deficient OMP GFP/ GFP (KI) mice during the olfactory investigation of odours with different values. When a swab containing an organic odour was presented, both HET and KI mice swiftly approached and investigated the swab with gradual habituation over test sessions. However, when another similar odour was presented, KI mice investigated the new swab much less intensively than HET mice. Next, mice were placed in a chamber with an aversive odour source in one corner of a test chamber. KI mice more frequently approached the compartment containing the aversive odour source than HET mice. Finally, we trained mice to associate two odours with solutions by utilizing reward-penalty values. HET mice stayed close to the reward-associated odour, while KI mice initially approached the reward-associated odour, occasionally turned towards the penalty-associated odour source and eventually stayed in the reward-odour compartment. Histologically, c-Fos-expressing juxtaglomerular cells were fewer and more broadly distributed around glomeruli in KI mice than HET mice. In conclusion, OMP contributes to the evaluation of odour values by glomerular processing during an olfactory investigation task.
Collapse
Affiliation(s)
- Akiko Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Taku Nakagawa
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan; Department of Anaesthesiology, Graduate School of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
6
|
Nakashima N, Nakashima K, Nakashima A, Takano M. Olfactory marker protein elevates basal cAMP concentration. Biochem Biophys Res Commun 2020; 531:203-208. [PMID: 32792198 DOI: 10.1016/j.bbrc.2020.07.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
Olfactory marker protein (OMP), which is expressed abundantly in mature olfactory receptor neurons, operates as a cAMP-binding protein. OMP captures phasic cAMP surges induced by sensory stimuli and punctuates the downstream signalling in the cilia. On the other hand, OMP is also abundant in the soma. At equilibrium, OMP should exhibit association/dissociation reactions with cAMP. To examine the steady-state function of OMP, we expressed OMP in an HEK293 heterologous expression system and measured the activity of cAMP-dependent protein kinase (PKA) using a cAMP response element/luciferase reporter assay. In the presence of OMP, the basal activity level of PKA was elevated to approximately twice as much as that in the absence of OMP. Upon tonic stimulation by membrane-permeable cAMP, the PKA activity increased in a dose-dependent manner and was greater in the presence of OMP at all doses until saturation. These results indicate that OMP, a cytosolic cAMP-binding protein, operates as a cAMP reservoir by increases the basal cAMP concentration and enhances tonic cAMP actions. Together with the previous finding that OMP acutely sequesters cAMP-related responses, these results indicate that OMP can buffer acute surges in cAMP and tonic production, which stabilizes the basal cAMP pool in the long run.
Collapse
Affiliation(s)
- Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| | - Kie Nakashima
- Laboratory of Developmental Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto, 606-8501, Japan
| | - Akiko Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
7
|
Olfactory marker protein captures cAMP produced via Gαs-protein-coupled receptor activation. Biochem Biophys Res Commun 2020; 529:341-346. [PMID: 32703433 DOI: 10.1016/j.bbrc.2020.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022]
Abstract
Olfactory marker protein (OMP) labels the matured stage of olfactory receptor neurons (ORN) and has promoted the investigation on the physiology of olfaction. OMP regulates olfactory sensitivity and axonal projection of ORNs, both of which are under the control of the olfactory signaling mediator cAMP. Recently, it has been reported that OMP contains cAMP-binding sites. OMP directly captures the photo-uncaged cAMP in the cytosol and rapidly terminates the olfactory cyclic nucleotide-gated (CNG) channels activity to sharpen the olfactory responses. Here, we investigate the contribution of OMP to cAMP acutely produced via activation of Gαs-protein coupled receptors (GPCR). We expressed OMP and non-desensitizing CNGA2 channels in HEK293T cells together with β1-adrenergic receptors (ADRB1) or photo-sensitive β2-adrenergic receptors (opto-β2). Continuous puff of adrenergic agonist isoproterenol to HEK29T cells with ADRB1 induced the lasting CNGA2 currents in the absence of OMP, while OMP rapidly deactivated the CNGA2 channel activity with residual currents. Photo-activation of opto-β2 in the absence of OMP induced the CNGA2 currents with a prolonged increase, while OMP swiftly deactivated the CNGA2 channels after the initial surge. Therefore, cytosolic OMP rapidly uncouples CNGA2 channels and cAMP-signaling produced via GPCRs in the submembrane compartment.
Collapse
|
8
|
Misawa R, Minami T, Okamoto A, Ikeuchi Y. A Light-Inducible Hedgehog Signaling Activator Modulates Proliferation and Differentiation of Neural Cells. ACS Chem Biol 2020; 15:1595-1603. [PMID: 32343549 DOI: 10.1021/acschembio.0c00195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hedgehog signaling pathway shapes our body by regulating the proliferation and differentiation of cells. The spatial and temporal distribution pattern of its ligands finely controls the activity of the Hedgehog pathway during development. To model the control of Hedgehog signaling activities in vitro, we developed a light-inducible Hedgehog signaling activator 6-nitroveratryloxy-carbonyl Smoothened agonist (NVOC-SAG). NVOC-SAG controls the proliferation of mouse cerebellar granule neuron precursor cells and ventral and neural differentiation of human iPS cells in a light dependent manner. The compound provides a new method to control Hedgehog signaling activities.
Collapse
|
9
|
Nakashima N, Nakashima K, Taura A, Takaku-Nakashima A, Ohmori H, Takano M. Olfactory marker protein directly buffers cAMP to avoid depolarization-induced silencing of olfactory receptor neurons. Nat Commun 2020; 11:2188. [PMID: 32366818 PMCID: PMC7198493 DOI: 10.1038/s41467-020-15917-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/06/2020] [Indexed: 01/05/2023] Open
Abstract
Olfactory receptor neurons (ORNs) use odour-induced intracellular cAMP surge to gate cyclic nucleotide-gated nonselective cation (CNG) channels in cilia. Prolonged exposure to cAMP causes calmodulin-dependent feedback-adaptation of CNG channels and attenuates neural responses. On the other hand, the odour-source searching behaviour requires ORNs to be sensitive to odours when approaching targets. How ORNs accommodate these conflicting aspects of cAMP responses remains unknown. Here, we discover that olfactory marker protein (OMP) is a major cAMP buffer that maintains the sensitivity of ORNs. Upon the application of sensory stimuli, OMP directly captured and swiftly reduced freely available cAMP, which transiently uncoupled downstream CNG channel activity and prevented persistent depolarization. Under repetitive stimulation, OMP-/- ORNs were immediately silenced after burst firing due to sustained depolarization and inactivated firing machinery. Consequently, OMP-/- mice showed serious impairment in odour-source searching tasks. Therefore, cAMP buffering by OMP maintains the resilient firing of ORNs.
Collapse
Affiliation(s)
- Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan. .,Department of Physiology and Neurobiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Kie Nakashima
- Department of Physiology and Neurobiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, 606-8501, Japan.,Laboratory of Developmental Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto, 606-8501, Japan
| | - Akiko Taura
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Hospital, 54 Kawaracho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Medical Engineering, Faculty of Health Science, Aino University, 4-5-4 Higashioda, Ibaraki, Osaka, 567-0012, Japan
| | - Akiko Takaku-Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.,Post Graduate Training Program, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Harunori Ohmori
- Department of Physiology and Neurobiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Physiology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
10
|
Abstract
2,4,6-Trichloroanisole (TCA) is a well-known, potent off-flavour compound present in various foods and beverages. TCA has been hypothesised to be a universal cause of flavour loss experienced in daily life. Here, however, we show that titres for the suppression of olfactory transducer channels caused by low-quality bananas are much higher than those for that caused by the TCA itself contained in the banana. We resurveyed other components of low-quality bananas and found that bananas also contain an insecticide (chlorpyrifos), and that it suppresses olfactory transducer channels. Other insecticides also suppressed olfactory transducer channels. Hence, even after passing safety examinations, certain insecticides may decrease the quality of foods and beverages by reducing their intrinsic scents.
Collapse
|
11
|
Takeuchi H, Kurahashi T. Second messenger molecules have a limited spread in olfactory cilia. J Gen Physiol 2018; 150:1647-1659. [PMID: 30352795 PMCID: PMC6279364 DOI: 10.1085/jgp.201812126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/12/2018] [Accepted: 10/03/2018] [Indexed: 01/12/2023] Open
Abstract
Olfactory responses in the cilia of olfactory receptor cells last for longer than 10 s, which cannot be explained by free diffusion of second messengers. Takeuchi and Kurahashi show that these signaling molecules have a limited spread and remain at the site of generation for a long time. Odorants are detected by olfactory receptors on the sensory cilia of olfactory receptor cells (ORCs). These cylindrical cilia have a diameters of 100–200 nm, within which the components required for signal transduction by the adenylyl cyclase–cAMP system are located. The kinetics of odorant responses are determined by the lifetimes of active proteins as well as the production, diffusion, and extrusion/degradation of second messenger molecules (cAMP and Ca2+). However, there is limited information about the molecular kinetics of ORC responses, mostly because of the technical limitations involved in studying such narrow spaces and fine structures. In this study, using a combination of electrophysiology, photolysis of caged substances, and spot UV laser stimulation, we show that second messenger molecules work only in the vicinity of their site of generation in the olfactory cilia. Such limited spreading clearly explains a unique feature of ORCs, namely, the integer multiple of unitary events that they display in low Ca2+ conditions. Although the small ORC uses cAMP and Ca2+ for various functions in different regions of the cell, these substances seem to operate only in the compartment that has been activated by the appropriate stimulus. We also show that these substances remain in the same vicinity for a long time. This enables the ORC to amplify the odorant signal and extend the lifetime of Ca2+-dependent adaptation. Cytoplasmic buffers and extrusion/degradation systems seem to play a crucial role in limiting molecular spreading. In addition, binding sites on the cytoplasmic surface of the plasma membrane may limit molecular diffusion in such a narrow space because of the high surface/volume ratio. Such efficient energy conversion may also be broadly used in other biological systems that have not yet been subjected to systematic experiments.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takashi Kurahashi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Aquila M, Benedusi M, Fasoli A, Rispoli G. Characterization of Zebrafish Green Cone Photoresponse Recorded with Pressure-Polished Patch Pipettes, Yielding Efficient Intracellular Dialysis. PLoS One 2015; 10:e0141727. [PMID: 26513584 PMCID: PMC4626105 DOI: 10.1371/journal.pone.0141727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
The phototransduction enzymatic cascade in cones is less understood than in rods, and the zebrafish is an ideal model with which to investigate vertebrate and human vision. Therefore, here, for the first time, the zebrafish green cone photoresponse is characterized also to obtain a firm basis for evaluating how it is modulated by exogenous molecules. To this aim, a powerful method was developed to obtain long-lasting recordings with low access resistance, employing pressure-polished patch pipettes. This method also enabled fast, efficient delivery of molecules via a perfusion system coupled with pulled quartz or plastic perfusion tubes, inserted very close to the enlarged pipette tip. Sub-saturating flashes elicited responses in different cells with similar rising phase kinetics but with very different recovery kinetics, suggesting the existence of physiologically distinct cones having different Ca2+ dynamics. Theoretical considerations demonstrate that the different recovery kinetics can be modelled by simulating changes in the Ca2+-buffering capacity of the outer segment. Importantly, the Ca2+-buffer action preserves the fast response rising phase, when the Ca2+-dependent negative feedback is activated by the light-induced decline in intracellular Ca2+.
Collapse
Affiliation(s)
- Marco Aquila
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Fasoli
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgio Rispoli
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
13
|
Antunes G, Sebastião AM, Simoes de Souza FM. Mechanisms of regulation of olfactory transduction and adaptation in the olfactory cilium. PLoS One 2014; 9:e105531. [PMID: 25144232 PMCID: PMC4140790 DOI: 10.1371/journal.pone.0105531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought.
Collapse
Affiliation(s)
- Gabriela Antunes
- Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal; Laboratory of Neural Systems, Psychobiology Sector, Department of Psychology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Maria Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Fabio Marques Simoes de Souza
- Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal; Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
14
|
2,4,6-trichloroanisole is a potent suppressor of olfactory signal transduction. Proc Natl Acad Sci U S A 2013; 110:16235-40. [PMID: 24043819 DOI: 10.1073/pnas.1300764110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the sensitivity of single olfactory receptor cells to 2,4,6-trichloroanisole (TCA), a compound known for causing cork taint in wines. Such off-flavors have been thought to originate from unpleasant odor qualities evoked by contaminants. However, we here show that TCA attenuates olfactory transduction by suppressing cyclic nucleotide-gated channels, without evoking odorant responses. Surprisingly, suppression was observed even at extremely low (i.e., attomolar) TCA concentrations. The high sensitivity to TCA was associated with temporal integration of the suppression effect. We confirmed that potent suppression by TCA and similar compounds was correlated with their lipophilicity, as quantified by the partition coefficient at octanol/water boundary (pH 7.4), suggesting that channel suppression is mediated by a partitioning of TCA into the lipid bilayer of plasma membranes. The rank order of suppression matched human recognition of off-flavors: TCA equivalent to 2,4,6-tribromoanisole, which is much greater than 2,4,6-trichlorophenol. Furthermore, TCA was detected in a wide variety of foods and beverages surveyed for odor losses. Our findings demonstrate a potential molecular mechanism for the reduction of flavor.
Collapse
|
15
|
Almassy J, Yule DI. Photolysis of caged compounds: studying Ca(2+) signaling and activation of Ca(2+)-dependent ion channels. Cold Spring Harb Protoc 2013; 2013:2013/1/pdb.top066076. [PMID: 23282631 DOI: 10.1101/pdb.top066076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A wide variety of signaling molecules have been chemically modified by conjugation to a photolabile chromophore to render the substance temporarily biologically inert. Subsequent exposure to ultraviolet (UV) light can release the active moiety from the "caged" precursor in an experimentally controlled manner. This allows the concentration of active molecule to be precisely manipulated in both time and space. These techniques are particularly useful in experimental protocols designed to investigate the mechanisms underlying Ca(2+) signaling and the activation of Ca(2+)-dependent effectors.
Collapse
Affiliation(s)
- Janos Almassy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
16
|
Matsumura K, Matsumoto M, Kurahashi T, Takeuchi H. Recordings from cultured newt olfactory receptor cells. Zoolog Sci 2012; 29:340-5. [PMID: 22559969 DOI: 10.2108/zsj.29.340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Freshly dissociated olfactory receptor cells (ORCs) are commonly used in electrophysiological research investigations of the physicochemical mechanisms of olfactory signal transduction. Because the morphology of cultured cells clearly becomes worse over time, the ORCs are examined traditionally within several days after dissociation. However, there has been a major concern that cells are affected soon after dissociation. To gain a better understanding of the reliability of data obtained from solitary cells, we obtained electrical data during the lifetime of single ORCs dissociated from the newt. The time course for the deterioration could be revealed by monitoring the membrane properties during culture. Although the number of living cells that were identified by trypan blue extrusion declined day by day, the remaining cells retained morphology and their fundamental electrical features until day 19. In some cells, the cilia and dendrite were observed until day 21, and the bipolar morphology until day 31. The fundamental features of cell excitation were maintained during culture without showing remarkable changes when they retained morphological features. The results suggest that electrical properties of cells are almost unchanged within several days. Furthermore, the dissociated newt ORCs can be used for several weeks that are almost comparable to the intrinsic lifetime of the ORCs in vivo.
Collapse
Affiliation(s)
- Kyohei Matsumura
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | | | |
Collapse
|
17
|
De Palo G, Boccaccio A, Miri A, Menini A, Altafini C. A dynamical feedback model for adaptation in the olfactory transduction pathway. Biophys J 2012; 102:2677-86. [PMID: 22735517 DOI: 10.1016/j.bpj.2012.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/30/2022] Open
Abstract
Olfactory transduction exhibits two distinct types of adaptation, which we denote multipulse and step adaptation. In terms of measured transduction current, multipulse adaptation appears as a decrease in the amplitude of the second of two consecutive responses when the olfactory neuron is stimulated with two brief pulses. Step adaptation occurs in response to a sustained steplike stimulation and is characterized by a return to a steady-state current amplitude close to the prestimulus value, after a transient peak. In this article, we formulate a dynamical model of the olfactory transduction pathway, which includes the kinetics of the CNG channels, the concentration of Ca ions flowing through them, and the Ca-complexes responsible for the regulation. Based on this model, a common dynamical explanation for the two types of adaptation is suggested. We show that both forms of adaptation can be well described using different time constants for the kinetics of Ca ions (faster) and the kinetics of the feedback mechanisms (slower). The model is validated on experimental data collected in voltage-clamp conditions using different techniques and animal species.
Collapse
|
18
|
Louvi A, Grove EA. Cilia in the CNS: the quiet organelle claims center stage. Neuron 2011; 69:1046-60. [PMID: 21435552 DOI: 10.1016/j.neuron.2011.03.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2011] [Indexed: 01/19/2023]
Abstract
The primary cilium is a cellular organelle that is almost ubiquitous in eukaryotes, yet its functions in vertebrates have been slow to emerge. The last fifteen years have been marked by accelerating insight into the biology of primary cilia, arising from the synergy of three major lines of research. These research programs describe a specialized mode of protein trafficking in cilia, reveal that genetic disruptions of primary cilia cause complex human disease syndromes, and establish that Sonic hedgehog (Shh) signal transduction requires the primary cilium. New lines of research have branched off to investigate the role of primary cilia in neuronal signaling, adult neurogenesis, and brain tumor formation. We review a fast expanding literature to determine what we now know about the primary cilium in the developing and adult CNS and what new directions should lead to further clarity.
Collapse
Affiliation(s)
- Angeliki Louvi
- Departments of Neurosurgery and Neurobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
19
|
Kishino Y, Kato H, Kurahashi T, Takeuchi H. Chemical structures of odorants that suppress ion channels in the olfactory receptor cell. J Physiol Sci 2011; 61:231-45. [PMID: 21431980 PMCID: PMC10717247 DOI: 10.1007/s12576-011-0142-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/08/2011] [Indexed: 01/30/2023]
Abstract
It has been proposed that odorant suppression of the cyclic nucleotide-gated (CNG) channel is responsible for olfactory masking. In this study, the effect of odorant chain length and functional group on this suppression was investigated. Because similar suppression has been observed for voltage-gated channels also, we used voltage-gated Na channels in the olfactory receptor cell as a tool for substance screening. These features were then re-examined using CNG channels. Interestingly, both CNG and Na channels were suppressed in a similar manner-carboxylic acids had little effect and suppression became stronger when the chain length of the alcohol or ester was increased. Degree of suppression was correlated with the distribution coefficients (Log D), irrespective of the molecules used. Results obtained here may provide information for the development of novel masking agents based on molecular architecture.
Collapse
Affiliation(s)
- Yukako Kishino
- Graduate School of Frontier Bioscience, Osaka University, Osaka, 560-8531 Japan
| | - Hiroyuki Kato
- Departments of Chemistry and Materials Science, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
| | - Takashi Kurahashi
- Graduate School of Frontier Bioscience, Osaka University, Osaka, 560-8531 Japan
| | - Hiroko Takeuchi
- Graduate School of Frontier Bioscience, Osaka University, Osaka, 560-8531 Japan
| |
Collapse
|
20
|
Castillo K, Restrepo D, Bacigalupo J. Cellular and molecular Ca2+ microdomains in olfactory cilia support low signaling amplification of odor transduction. Eur J Neurosci 2010; 32:932-8. [PMID: 20849528 DOI: 10.1111/j.1460-9568.2010.07393.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signal transduction depends critically on the spatial localization of protein constituents. A key question in odor transduction is whether chemotransduction proteins organize into discrete molecular complexes throughout olfactory cilia or distribute homogeneously along the ciliary membrane. Our recordings of Ca(2+) changes in individual cilia with unprecedented spatial and temporal resolution, by the use of two-photon microscopy, provide solid evidence for Ca(2+) microdomains (transducisomes). Dissociated frog olfactory neurons were preloaded with caged-cAMP and fluo-4 acetoxymethyl ester probe Ca(2+) indicator. Ca(2+) influx through cyclic nucleotide-gated (CNG) channels was evoked by uniformly photoreleasing cAMP, while ciliary Ca(2+) was measured. Discrete fluorescence events were clearly resolved. Events were missing in the absence of external Ca(2+) , consistent with the absence of internal Ca(2+) sources. Fluorescence events at individual microdomains resembled single-CNG channel fluctuations in shape, mean duration and kinetics, indicating that transducisomes typically contain one to three CNG channels. Inhibiting the Na(+) /Ca(2+) exchanger or the Ca(2+) -ATPase prolonged the decay of evoked intraciliary Ca(2+) transients, supporting the participation of both transporters in ciliary Ca(2+) clearance, and suggesting that both molecules localize close to the CNG channel. Chemosensory transducisomes provide a physical basis for the low amplification and for the linearity of odor responses at low odor concentrations.
Collapse
Affiliation(s)
- Karen Castillo
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Las Palmeras 3525, Nuñoa, Santiago 7800024
| | | | | |
Collapse
|
21
|
Ionotropic and metabotropic mechanisms in chemoreception: 'chance or design'? EMBO Rep 2010; 11:173-9. [PMID: 20111052 DOI: 10.1038/embor.2010.8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/07/2010] [Indexed: 12/29/2022] Open
Abstract
Chemosensory receptors convert an enormous diversity of chemical signals from the external world into a common language of electrical activity in the brain. Mammals and insects use several families of transmembrane receptor proteins to recognize distinct classes of volatile and non-volatile chemicals that are produced by conspecifics or other environmental sources. A comparison of the signalling mechanisms of mammalian and insect receptors has revealed an unexpected functional distinction: mammals rely almost exclusively on metabotropic ligand-binding receptors, which use second messenger signalling cascades to indirectly activate ion channels, whereas insects use ionotropic receptors, which are gated directly by chemical stimuli, thereby leading to neuronal depolarization. In this review, we consider possible reasons for this dichotomy, taking into account biophysical, cell biological, ecological and evolutionary influences on how information is extracted from chemosensory cues by these animal classes.
Collapse
|
22
|
Modelling and sensitivity analysis of the reactions involving receptor, G-protein and effector in vertebrate olfactory receptor neurons. J Comput Neurosci 2009; 27:471-91. [PMID: 19533315 DOI: 10.1007/s10827-009-0162-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 04/08/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
A biochemical model of the receptor, G-protein and effector (RGE) interactions during transduction in the cilia of vertebrate olfactory receptor neurons (ORNs) was developed and calibrated to experimental recordings of cAMP levels and the receptor current (RC). The model describes the steps from odorant binding to activation of the effector enzyme which catalyzes the conversion of ATP to cAMP, and shows how odorant stimulation is amplified and delayed by the RGE transduction cascade. A time-dependent sensitivity analysis was performed on the model. The model output-the cAMP production rate-is particularly sensitive to a few, dominant parameters. During odorant stimulation it depends mainly on the initial density of G-proteins and the catalytic constant for cAMP production.
Collapse
|
23
|
Takeuchi H, Ishida H, Hikichi S, Kurahashi T. Mechanism of olfactory masking in the sensory cilia. J Gen Physiol 2009; 133:583-601. [PMID: 19433623 PMCID: PMC2713142 DOI: 10.1085/jgp.200810085] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 04/22/2009] [Indexed: 12/02/2022] Open
Abstract
Olfactory masking has been used to erase the unpleasant sensation in human cultures for a long period of history. Here, we show a positive correlation between the human masking and the odorant suppression of the transduction current through the cyclic nucleotide-gated (CNG) and Ca2+-activated Cl- (Cl(Ca)) channels. Channels in the olfactory cilia were activated with the cytoplasmic photolysis of caged compounds, and their sensitiveness to odorant suppression was measured with the whole cell patch clamp. When 16 different types of chemicals were applied to cells, cyclic AMP (cAMP)-induced responses (a mixture of CNG and Cl(Ca) currents) were suppressed widely with these substances, but with different sensitivities. Using the same chemicals, in parallel, we measured human olfactory masking with 6-rate scoring tests and saw a correlation coefficient of 0.81 with the channel block. Ringer's solution that was just preexposed to the odorant-containing air affected the cAMP-induced current of the single cell, suggesting that odorant suppression occurs after the evaporation and air/water partition of the odorant chemicals at the olfactory mucus. To investigate the contribution of Cl(Ca), the current was exclusively activated by using the ultraviolet photolysis of caged Ca, DM-nitrophen. With chemical stimuli, it was confirmed that Cl(Ca) channels were less sensitive to the odorant suppression. It is interpreted, however, that in the natural odorant response the Cl(Ca) is affected by the reduction of Ca2+ influx through the CNG channels as a secondary effect. Because the signal transmission between CNG and Cl(Ca) channels includes nonlinear signal-boosting process, CNG channel blockage leads to an amplified reduction in the net current. In addition, we mapped the distribution of the Cl(Ca) channel in living olfactory single cilium using a submicron local [Ca2+]i elevation with the laser photolysis. Cl(Ca) channels are expressed broadly along the cilia. We conclude that odorants regulate CNG level to express masking, and Cl(Ca) in the cilia carries out the signal amplification and reduction evenly spanning the entire cilia. The present findings may serve possible molecular architectures to design effective masking agents, targeting olfactory manipulation at the nano-scale ciliary membrane.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 560-8531, Japan
| | - Hirohiko Ishida
- Perfumery Development Research Laboratories, Kao Corporation, Tokyo, 131-8501, Japan
| | - Satoshi Hikichi
- Perfumery Development Research Laboratories, Kao Corporation, Tokyo, 131-8501, Japan
| | - Takashi Kurahashi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|
24
|
Kleene SJ. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 2008; 33:839-59. [PMID: 18703537 DOI: 10.1093/chemse/bjn048] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Most vertebrate olfactory receptor neurons share a common G-protein-coupled pathway for transducing the binding of odorant into depolarization. The depolarization involves 2 currents: an influx of cations (including Ca2+) through cyclic nucleotide-gated channels and a secondary efflux of Cl- through Ca2+-gated Cl- channels. The relation between stimulus strength and receptor current shows positive cooperativity that is attributed to the channel properties. This cooperativity amplifies the responses to sufficiently strong stimuli but reduces sensitivity and dynamic range. The odor response is transient, and prolonged or repeated stimulation causes adaptation and desensitization. At least 10 mechanisms may contribute to termination of the response; several of these result from an increase in intraciliary Ca2+. It is not known to what extent regulation of ionic concentrations in the cilium depends on the dendrite and soma. Although many of the major mechanisms have been identified, odor transduction is not well understood at a quantitative level.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Cancer and Cell Biology, University of Cincinnati, PO Box 670667, 231 Albert Sabin Way, Cincinnati, OH 45267-0667, USA.
| |
Collapse
|
25
|
Abstract
Most animals have evolved multiple olfactory systems to detect general odors as well as social cues. The sophistication and interaction of these systems permit precise detection of food, danger, and mates, all crucial elements for survival. In most mammals, the nose contains two well described chemosensory apparatuses (the main olfactory epithelium and the vomeronasal organ), each of which comprises several subtypes of sensory neurons expressing distinct receptors and signal transduction machineries. In many species (e.g., rodents), the nasal cavity also includes two spatially segregated clusters of neurons forming the septal organ of Masera and the Grueneberg ganglion. Results of recent studies suggest that these chemosensory systems perceive diverse but overlapping olfactory cues and that some neurons may even detect the pressure changes carried by the airflow. This review provides an update on how chemosensory neurons transduce chemical (and possibly mechanical) stimuli into electrical signals, and what information each system brings into the brain. Future investigation will focus on the specific ligands that each system detects with a behavioral context and the processing networks that each system involves in the brain. Such studies will lead to a better understanding of how the multiple olfactory systems, acting in concert, offer a complete representation of the chemical world.
Collapse
Affiliation(s)
- Minghong Ma
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
26
|
Distribution, amplification, and summation of cyclic nucleotide sensitivities within single olfactory sensory cilia. J Neurosci 2008; 28:766-75. [PMID: 18199776 DOI: 10.1523/jneurosci.3531-07.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Submicron local cAMP elevation was used to map the distribution of transduction channels in single olfactory cilia. After the fine fluorescent visualization of the cilium with the laser-scanning confocal microscope, the intraciliary cAMP was jumped locally with the laser beam that photolyzes cytoplasmic caged compounds. Simultaneously, cells' responses were obtained with the whole-cell patch clamp. Responses were observed anywhere within the cilia, showing the broad distribution of transduction channels. For odor detection, such distribution would be useful for expanding the available responding area to increase the quantum efficiency. Also, the stimulus onto only 1 microm region induced >100 pA response operated by >700-2300 channels, although only 1 pA is sufficient for olfactory cells to generate action potentials. The large local response indicates a presence of strong amplification achieved with a high-density distribution of the transduction channels for the local ciliary excitation.
Collapse
|
27
|
Gopalakrishnan M, Borowski P, Jülicher F, Zapotocky M. Response and fluctuations of a two-state signaling module with feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:021904. [PMID: 17930062 DOI: 10.1103/physreve.76.021904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 04/16/2007] [Indexed: 05/25/2023]
Abstract
We study the stochastic kinetics of a signaling module consisting of a two-state stochastic point process with negative feedback. In the active state, a product is synthesized which increases the active-to-inactive transition rate of the process. We analyze this simple autoregulatory module using a path-integral technique based on the temporal statistics of state flips of the process. We develop a systematic framework to calculate averages, autocorrelations, and response functions by treating the feedback as a weak perturbation. Explicit analytical results are obtained to first order in the feedback strength. Monte Carlo simulations are performed to test the analytical results in the weak feedback limit and to investigate the strong feedback regime. We conclude by relating some of our results to experimental observations in the olfactory and visual sensory systems.
Collapse
Affiliation(s)
- Manoj Gopalakrishnan
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.
| | | | | | | |
Collapse
|
28
|
Boccaccio A, Lagostena L, Hagen V, Menini A. Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. ACTA ACUST UNITED AC 2006; 128:171-84. [PMID: 16880265 PMCID: PMC2151529 DOI: 10.1085/jgp.200609555] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vertebrate olfactory sensory neurons rapidly adapt to repetitive odorant stimuli. Previous studies have shown that the principal molecular mechanisms for odorant adaptation take place after the odorant-induced production of cAMP, and that one important mechanism is the negative feedback modulation by Ca2+-calmodulin (Ca2+-CaM) of the cyclic nucleotide-gated (CNG) channel. However, the physiological role of the Ca2+-dependent activity of phosphodiesterase (PDE) in adaptation has not been investigated yet. We used the whole-cell voltage-clamp technique to record currents in mouse olfactory sensory neurons elicited by photorelease of 8-Br-cAMP, an analogue of cAMP commonly used as a hydrolysis-resistant compound and known to be a potent agonist of the olfactory CNG channel. We measured currents in response to repetitive photoreleases of cAMP or of 8-Br-cAMP and we observed similar adaptation in response to the second stimulus. Control experiments were conducted in the presence of the PDE inhibitor IBMX, confirming that an increase in PDE activity was not involved in the response decrease. Since the total current activated by 8-Br-cAMP, as well as that physiologically induced by odorants, is composed not only of current carried by Na+ and Ca2+ through CNG channels, but also by a Ca2+-activated Cl− current, we performed control experiments in which the reversal potential of Cl− was set, by ion substitution, at the same value of the holding potential, −50 mV. Adaptation was measured also in these conditions of diminished Ca2+-activated Cl− current. Furthermore, by producing repetitive increases of ciliary's Ca2+ with flash photolysis of caged Ca2+, we showed that Ca2+-activated Cl− channels do not adapt and that there is no Cl− depletion in the cilia. All together, these results indicate that the activity of ciliary PDE is not required for fast adaptation to repetitive stimuli in mouse olfactory sensory neurons.
Collapse
Affiliation(s)
- Anna Boccaccio
- International School for Advanced Studies, S.I.S.S.A., Sector of Neurobiology, 34014 Trieste, Italy.
| | | | | | | |
Collapse
|
29
|
Abstract
Molecular mechanisms underlying olfactory signal amplification were investigated by monitoring cAMP dynamics in the intact sensory cilia. We saw that [cAMP]i increased superlinearly with time during odorant stimuli for >1 s. This time course was remarkably different from that obtained with the rapid quench method previously applied to the in vitro preparation, in which [cAMP]i change has been reported to be transient. The superlinear increase of [cAMP]i was attributable to a gradual increase of cAMP production rate that was consistent with the thermodynamical interaction model between elemental molecules, as has been revealed on the rod photoreceptor cell. It thus seems likely that the fundamental mechanism for molecular interactions between olfactory transduction elements is similar to that of the rod. In olfaction, however, cAMP production was extremely small (approximately 200,000 molecules/s/cell at the maximum), in contrast to the cGMP hydrolysis in the rod (250,000 molecules/photon). The observed numbers indicate that the olfactory receptor cell has lower amplification at the enzymatic cascade. Seemingly, such low amplification is a disadvantage for the signal transduction, but this unique mechanism would be essential to reduce the loss of ATP that is broadly used for the activities of cells. Apparently, transduction by a smaller number of second-messenger formations would be achieved by the fine ciliary structure that has a high surface-volume ratio. In addition, it is speculated that this low amplification at their enzymatic processes may be the reason why the olfactory receptor cell has acquired high amplification at the final stage of transduction channels, using Ca2+ as a third messenger.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | |
Collapse
|
30
|
Dougherty DP, Wright GA, Yew AC. Computational model of the cAMP-mediated sensory response and calcium-dependent adaptation in vertebrate olfactory receptor neurons. Proc Natl Acad Sci U S A 2005; 102:10415-20. [PMID: 16027364 PMCID: PMC1180786 DOI: 10.1073/pnas.0504099102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We develop a mechanistic mathematical model of the G-protein coupled signaling pathway responsible for generating current responses in frog olfactory receptor neurons. The model incorporates descriptions of ligand-receptor interaction, intracellular transduction events involving the second messenger cAMP, effector ion-channel activity, and calcium-mediated feedback steps. We parameterized the model with respect to suction pipette current recordings from single cells stimulated with multiple odor concentrations. The proposed model accurately predicts the receptor-current response of the neuron to brief and prolonged odorant exposure and is able to produce the adaptation observed under repeated or sustained stimulation.
Collapse
Affiliation(s)
- Daniel P Dougherty
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
31
|
Furuta T, Takeuchi H, Isozaki M, Takahashi Y, Kanehara M, Sugimoto M, Watanabe T, Noguchi K, Dore TM, Kurahashi T, Iwamura M, Tsien RY. Bhc-cNMPs as either water-soluble or membrane-permeant photoreleasable cyclic nucleotides for both one- and two-photon excitation. Chembiochem 2005; 5:1119-28. [PMID: 15300837 DOI: 10.1002/cbic.200300814] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic nucleoside monophosphates (cNMPs) play key roles in many cellular regulatory processes, such as growth, differentiation, motility, and gene expression. Caged derivatives that can be activated by irradiation could be powerful tools for studying such diverse functions of intracellular second messengers, since the spatiotemporal dynamics of these molecules can be controlled by irradiation with appropriately focused light. Here we report the synthesis, photochemistry, and biological testing of 6-bromo-7-hydroxycoumarin-4-ylmethyl esters of cNMP (Bhc-cNMP) and their acetyl derivatives (Bhc-cNMP/Ac) as new caged second messengers. Irradiation of Bhc-cNMPs quantitatively produced the parent cNMPs with one-photon uncaging efficiencies (Phiepsilon) of up to one order of magnitude better than those of 2-nitrophenethyl (NPE) cNMPs. In addition, two-photon induced photochemical release of cNMP from Bhc-cNMPs (7 and 8) can be observed with the two-photon uncaging action cross-sections (delta(u)) of up to 2.28 GM (1 GM=10(-50) cm(4) s photon(-1)), which is the largest value among those of the reported Bhc-caged compounds. The wavelength dependence of the delta(u) values of 7 revealed that the peak wavelength was twice that of the one-photon absorption maximum. Bhc-cNMPs showed practically useful water solubility (nearly 500 microM), whereas 7-acetylated derivatives (Bhc-cNMPs/Ac) were expected to have a certain membrane permeability. Their advantages were demonstrated in two types of biological systems: the opening of cAMP-mediated transduction channels in newt olfactory receptor cells and cAMP-mediated motility responses in epidermal melanophores in scales from medaka fish. Both examples showed that Bhc and Bhc/Ac caged compounds have great potential for use in many cell biological applications.
Collapse
Affiliation(s)
- Toshiaki Furuta
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Madrid R, Delgado R, Bacigalupo J. Cyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons. J Neurophysiol 2005; 94:1781-8. [PMID: 15817646 DOI: 10.1152/jn.01253.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odor stimulation may excite or inhibit olfactory receptor neurons (ORNs). It is well established that the excitatory response involves a cyclic AMP (cAMP) transduction mechanism that activates a nonselective cationic cyclic nucleotide-gated (CNG) conductance, accompanied by the activation of a Ca2+-dependent Cl(-) conductance, both causing a depolarizing receptor potential. In contrast, odor inhibition is attributed to a hyperpolarizing receptor potential. It has been proposed that a Ca2+-dependent K+ (K(Ca)) conductance plays a key role in odor inhibition, both in toad and rat isolated olfactory neurons. The mechanism underlying odor inhibition has remained elusive. We assessed its study using various pharmacological agents and caged compounds for cAMP, Ca2+, and inositol 1,4,5-triphosphate (InsP3) on isolated toad ORNs. The odor-triggered K(Ca) current was reduced on exposing the cell either to the CNG channel blocker LY83583 (20 microM) or to the adenylyl cyclase inhibitor SQ22536 (100 microM). Photorelease of caged Ca2+ activated a Cl- current sensitive to niflumic acid (10 microM) and a K+ current blockable by charybdotoxin (20 nM) and iberiotoxin (20 nM). In contrast, photoreleased Ca2+ had no effect on cells missing their cilia, indicating that these conductances are confined to the cilia. Photorelease of cAMP induced a charybdotoxin-sensitive K+ current in intact ORNs. Photorelease of InsP3 did not increase the membrane conductance of olfactory neurons, arguing against a direct role of InsP3 in chemotransduction. We conclude that a cAMP cascade mediates the activation of the ciliary Ca2+-dependent K+ current and that the Ca2+ ions that activate the inhibitory current enter the cilia through CNG channels.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Department of Biology, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile
| | | | | |
Collapse
|
33
|
Tomaru A, Kurahashi T. Mechanisms determining the dynamic range of the bullfrog olfactory receptor cell. J Neurophysiol 2004; 93:1880-8. [PMID: 15548631 DOI: 10.1152/jn.00303.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spike discharges of single olfactory receptor cells (ORCs) were recorded with the whole cell patch-clamp method applied to slice preparation. In parallel, activities of transduction channels were measured under the voltage-clamp condition. When cells were stimulated by odorants, 54 out of 306 cells exhibited inward current responses (10 mM cineole in the puffer pipette). The amplitude of the inward current was dependent on the stimulus period, reflecting the time integration for the stimulus dose, and the relation could be fitted by the Hill equation. Under the current-clamp condition, current injection induced spike discharges. In cells showing repetitive firings, the firing frequency was dependent on the amount of injected current. The relation was fitted by the Michaelis-Menten equation showing saturation. When cells were responsive to the odorant and had abilities to discharge repetitive spikes, the depolarizing responses were accompanied by repetitive spikes. In those cells, the spike frequency was dose-dependent, expressing saturation similar to the result obtained by current injection. Since both transduction channel and spike generative steps expressed saturation in their dose dependences, we explored what step(s) actually determines saturation in ORC signaling processes. By examining dose-response relations of both the current and spikes in the same cells, saturating dose was found to be dependent largely on that of the transduction step. This suggests that the dynamic range is fundamentally determined by the transduction system. In addition, a simple model derived from the nonlinearity of the plasma membrane could explain that a critical level of dynamic range was, at least in part, modified by the membrane nonlinearity.
Collapse
Affiliation(s)
- Akihiro Tomaru
- Department of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | |
Collapse
|
34
|
Delay R, Restrepo D. Odorant responses of dual polarity are mediated by cAMP in mouse olfactory sensory neurons. J Neurophysiol 2004; 92:1312-9. [PMID: 15331642 DOI: 10.1152/jn.00140.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Some olfactory sensory neurons (OSNs) respond to odors with hyperpolarization. Although transduction for excitatory responses is mediated by opening of a cyclic nucleotide-gated (CNG) channel, there is controversy on the mechanism underlying inhibitory responses. We find that mouse OSNs respond to odorants by either depolarizing or hyperpolarizing responses in loose-patch measurements. In the perforated-patch configuration, OSNs not only responded with a current consistent with CNG channel-mediated excitation but also displayed enhancement of outward currents, consistent with inhibitory responses. Increasing cAMP levels pharmacologically elicited excitatory or inhibitory responses in different OSNs. In addition, OSNs from mice defective for the CNGA2 subunit of the CNG channel displayed neither excitatory nor inhibitory responses. Thus CNG channels mediate inhibitory olfactory responses.
Collapse
Affiliation(s)
- Rona Delay
- 104 Marsh Life Science, Biology Dept., University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
35
|
Takeuchi H, Kurahashi T. Identification of second messenger mediating signal transduction in the olfactory receptor cell. J Gen Physiol 2003; 122:557-67. [PMID: 14581582 PMCID: PMC2229575 DOI: 10.1085/jgp.200308911] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 09/22/2003] [Indexed: 12/30/2022] Open
Abstract
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed "InsP3 odorants"). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells ( approximately 2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | |
Collapse
|
36
|
Takeuchi H, Imanaka Y, Hirono J, Kurahashi T. Cross-adaptation between olfactory responses induced by two subgroups of odorant molecules. J Gen Physiol 2003; 122:255-64. [PMID: 12939391 PMCID: PMC2234484 DOI: 10.1085/jgp.200308867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It has long been believed that vertebrate olfactory signal transduction is mediated by independent multiple pathways (using cAMP and InsP3 as second messengers). However, the dual presence of parallel pathways in the olfactory receptor cell is still controversial, mainly because of the lack of information regarding the single-cell response induced by odorants that have been shown to produce InsP3 exclusively (but not cAMP) in the olfactory cilia. In this study, we recorded activities of transduction channels of single olfactory receptor cells to InsP3-producing odorants. When the membrane potential was held at -54 mV, application of InsP3-producing odorants to the ciliary region caused an inward current. The reversal potential was 0 +/- 7 mV (mean +/- SD, n = 10). Actually, InsP3-producing odorants generated responses in a smaller fraction of cells (lilial, 3.4%; lyral, 1.7%) than the cAMP-producing odorant (cineole, 26%). But, fundamental properties of responses were surprisingly homologous; namely, spatial distribution of the sensitivity, waveforms, I-V relation, and reversal potential, dose dependence, time integration of stimulus period, adaptation, and recovery. By applying both types of odorants alternatively to the same cell, furthermore, we observed cells to exhibit symmetrical cross-adaptation. It seems likely that even with odorants with different modalities adaptation occurs completely depending on the amount of current flow. The data will also provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | |
Collapse
|
37
|
Matthews HR, Reisert J. Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr Opin Neurobiol 2003; 13:469-75. [PMID: 12965295 DOI: 10.1016/s0959-4388(03)00097-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exposure of olfactory receptor cells to odour stimulates the influx of Ca(2+) through cyclic nucleotide-gated channels into the small volume within the cilia, the site of olfactory transduction. The consequent rise in intraciliary Ca(2+) concentration has two opposing effects: activation of an unusual excitatory Cl(-) conductance, and negative feedback actions on various stages of the odour transduction mechanism. Recent studies are beginning to unravel how Ca(2+) performs this dual function, and how the spatial and temporal dynamics of Ca(2+) modulate the odour response. The feedback actions of Ca(2+) on different elements of the transduction cascade seem to occur on different timescales, and are therefore responsible for shaping different parts of the receptor current response to odour stimulation.
Collapse
Affiliation(s)
- Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | |
Collapse
|
38
|
Trudeau MC, Zagotta WN. Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J Biol Chem 2003; 278:18705-8. [PMID: 12626507 DOI: 10.1074/jbc.r300001200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels mediate sensory transduction in olfactory sensory neurons and retinal photoreceptor cells. In these systems, internal calcium/calmodulin (Ca2+/CaM) inhibits CNG channels, thereby having a putative role in sensory adaptation. Functional differences in Ca2+/CaM-dependent inhibition depend on the different subunit composition of olfactory and rod CNG channels. Recent evidence shows that three subunit types (CNGA2, CNGA4, and CNGB1b) make up native olfactory CNG channels and account for the fast inhibition of native channels by Ca2+/CaM. In contrast, two subunit types (CNGA1 and CNGB1) appear sufficient to mirror the native properties of rod CNG channels, including the inhibition by Ca2+/CaM. Within CNG channel tetramers, specific subunit interactions also mediate Ca2+/CaM-dependent inhibition. In olfactory CNGA2 channels, Ca2+/CaM binds to an N-terminal region and disrupts an interaction between the N- and C-terminal regions, causing inhibition. Ca2+/CaM also binds the N-terminal region of CNGB1 subunits and disrupts an intersubunit, N- and C-terminal interaction between CNGB1 and CNGA1 subunits in rod channels. However, the precise N- and C-terminal regions that form these interactions in olfactory channels are different from those in rod channels. Here, we will review recent advances in understanding the subunit composition and the mechanisms and roles for Ca2+/CaM-dependent inhibition in olfactory and rod CNG channels.
Collapse
Affiliation(s)
- Matthew C Trudeau
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington Medical School, Seattle, Washington 98195, USA
| | | |
Collapse
|
39
|
Kelliher KR, Ziesmann J, Munger SD, Reed RR, Zufall F. Importance of the CNGA4 channel gene for odor discrimination and adaptation in behaving mice. Proc Natl Acad Sci U S A 2003; 100:4299-304. [PMID: 12649326 PMCID: PMC153087 DOI: 10.1073/pnas.0736071100] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Odor stimulation of olfactory sensory neurons (OSNs) leads to both the activation and subsequent desensitization of a heteromultimeric cyclic-nucleotide-gated (CNG) channel present in these cells. The native olfactory CNG channel consists of three distinct subunits: CNGA2, CNGA4, and CNGB1b. Mice in which the CNGA4 gene has been deleted display defective Ca(2+)calmodulin-dependent inhibition of the CNG channel, resulting in a striking reduction in adaptation of the odor-induced electrophysiological response in the OSNs. These mutants therefore afford an excellent opportunity to assess the importance of Ca(2+)-mediated CNG channel desensitization for odor discrimination and adaptation in behaving animals. By using an operant conditioning paradigm, we show that CNGA4-null mice are profoundly impaired in the detection and discrimination of olfactory stimuli in the presence of an adapting background odor. The extent of this impairment depends on both the concentration and the molecular identity of the adapting stimulus. Thus, Ca(2+)-dependent desensitization of the odor response in the OSNs mediated by the CNGA4 subunit is essential for normal odor sensation and adaptation of freely behaving mice, preventing saturation of the olfactory signal transduction machinery and extending the range of odor detection and discrimination.
Collapse
Affiliation(s)
- Kevin R Kelliher
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|