1
|
Yang Y, Jiang H. Intercellular water exchanges trigger soliton-like waves in multicellular systems. Biophys J 2022; 121:1610-1618. [PMID: 35395246 PMCID: PMC9117941 DOI: 10.1016/j.bpj.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Oscillations and waves are ubiquitous in living cellular systems. Generations of these spatiotemporal patterns are generally attributed to some mechanochemical feedbacks. Here, we treat cells as open systems, i.e., water and ions can pass through the cell membrane passively or actively, and reveal a new origin of wave generation. We show that osmotic shocks above a shock threshold will trigger self-sustained cell oscillations and result in long-range waves propagating without decrement, a phenomenon that is analogous to the excitable medium. The traveling wave propagates along the intercellular osmotic pressure gradient, and its wave speed scales with the magnitude of intercellular water flows. Furthermore, we also find that the traveling wave exhibits several hallmarks of solitary waves. Together, our findings predict a new mechanism of wave generation in living multicellular systems. The ubiquity of intercellular water exchanges implies that this mechanism may be relevant to a broad class of systems.
Collapse
Affiliation(s)
- Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
|
3
|
Xie K, Yang Y, Jiang H. Controlling Cellular Volume via Mechanical and Physical Properties of Substrate. Biophys J 2019; 114:675-687. [PMID: 29414713 DOI: 10.1016/j.bpj.2017.11.3785] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 01/10/2023] Open
Abstract
The mechanical and physical properties of substrate play a crucial role in regulating many cell functions and behaviors. However, how these properties affect cell volume is still unclear. Here, we show that an increase in substrate stiffness, available spread area, or effective adhesion energy density results in a remarkable cell volume decrease (up to 50%), and the dynamic cell spreading process is also accompanied by dramatic cell volume decrease. Further, studies of ion channel inhibition and osmotic shock suggest that these volume decreases are due to the efflux of water and ions. We also show that disrupting cortex contractility leads to bigger cell volume. Collectively, these results reveal the "mechanism of adhesion-induced compression of cells," i.e., stronger interaction between cell and substrate leads to higher actomyosin contractility, expels water and ions, and thus decreases cell volume.
Collapse
Affiliation(s)
- Kenan Xie
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Pedersen SF, Okada Y, Nilius B. Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Arch 2016; 468:371-83. [DOI: 10.1007/s00424-015-1781-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023]
|
5
|
Hoffmann EK, Sørensen BH, Sauter DPR, Lambert IH. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance. Channels (Austin) 2015; 9:380-96. [PMID: 26569161 DOI: 10.1080/19336950.2015.1089007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g., secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene, encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular functions as well as their role in cancer and drug resistance.
Collapse
Affiliation(s)
- Else K Hoffmann
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Belinda H Sørensen
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Daniel P R Sauter
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Ian H Lambert
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| |
Collapse
|
6
|
Pedersen SF, Klausen TK, Nilius B. The identification of a volume-regulated anion channel: an amazing Odyssey. Acta Physiol (Oxf) 2015; 213:868-81. [PMID: 25565132 DOI: 10.1111/apha.12450] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 01/03/2023]
Abstract
The volume-regulated anion channel (VRAC) plays a pivotal role in cell volume regulation in essentially all cell types studied. Additionally, VRAC appears to contribute importantly to a wide range of other cellular functions and pathological events, including cell motility, cell proliferation, apoptosis and excitotoxic glutamate release in stroke. Although biophysically, pharmacologically and functionally thoroughly described, VRAC has until very recently remained a genetic orphan. The search for the molecular identity of VRAC has been long and has yielded multiple potential candidates, all of which eventually turned out to have properties not fully compatible with those of VRAC. Recently, two groups have independently identified the protein leucine-rich repeats containing 8A (LRRC8A), belonging to family of proteins (LRRC8A-E) distantly related to pannexins, as the likely pore-forming subunit of VRAC. In this brief review, we summarize the history of the discovery of VRAC, outline its basic biophysical and pharmacological properties, link these to several cellular functions in which VRAC appears to play important roles, and sketch the amazing search for the molecular identity of this channel. Finally, we describe properties of the LRRC8 proteins, highlight some features of the LRRC8A knockout mouse and discuss the impact of the discovery of LRRC8 as VRAC on future research.
Collapse
Affiliation(s)
- S. F. Pedersen
- Section for Cell and Developmental Biology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| | - T. K. Klausen
- Section for Cell and Developmental Biology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| | - B. Nilius
- Laboratory of Ion Channel Research; Department of Cellular and Molecular Medicine; KU Leuven, Campus Gasthuisberg; Leuven Belgium
| |
Collapse
|
7
|
Lambert IH, Kristensen DM, Holm JB, Mortensen OH. Physiological role of taurine--from organism to organelle. Acta Physiol (Oxf) 2015; 213:191-212. [PMID: 25142161 DOI: 10.1111/apha.12365] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
Taurine is often referred to as a semi-essential amino acid as newborn mammals have a limited ability to synthesize taurine and have to rely on dietary supply. Taurine is not thought to be incorporated into proteins as no aminoacyl tRNA synthetase has yet been identified and is not oxidized in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine biophysics/membrane dynamics, regulation of transport proteins involved in active taurine uptake and passive taurine release as well as physiological processes, for example, development, lung function, mitochondrial function, antioxidative defence and apoptosis which seem to be affected by a shift in the expression of the taurine transporters and/or the cellular taurine content.
Collapse
Affiliation(s)
- I. H. Lambert
- Section of Cellular and Developmental Biology; Department of Biology; University of Copenhagen; Copenhagen Ø Denmark
| | - D. M. Kristensen
- Section of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
- Cellular and Metabolic Research Section; Department of Biomedical Sciences; Panum Institute; University of Copenhagen; Copenhagen N Denmark
| | - J. B. Holm
- Section of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - O. H. Mortensen
- Cellular and Metabolic Research Section; Department of Biomedical Sciences; Panum Institute; University of Copenhagen; Copenhagen N Denmark
| |
Collapse
|
8
|
Akita T, Okada Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 2014; 275:211-31. [DOI: 10.1016/j.neuroscience.2014.06.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/05/2023]
|
9
|
Hoffmann EK, Holm NB, Lambert IH. Functions of volume-sensitive and calcium-activated chloride channels. IUBMB Life 2014; 66:257-67. [PMID: 24771413 DOI: 10.1002/iub.1266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/23/2023]
Abstract
The review describes molecular and functional properties of the volume regulated anion channel and Ca(2+)-dependent Cl(-) channels belonging to the anoctamin family with emphasis on physiological importance of these channels in regulation of cell volume, cell migration, cell proliferation, and programmed cell death. Finally, we discuss the role of Cl(-) channels in various diseases.
Collapse
Affiliation(s)
- Else Kay Hoffmann
- Department of Biology, University of Copenhagen, 13 Universitetsparken, Copenhagen Ø, Denmark
| | | | | |
Collapse
|
10
|
Hendus-Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na⁺/H⁺ exchangers. CURRENT TOPICS IN MEMBRANES 2014; 73:69-148. [PMID: 24745981 DOI: 10.1016/b978-0-12-800223-0.00002-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian Na⁺/H⁺ exchangers of the SLC9A family are widely expressed and involved in numerous essential physiological processes. Their primary function is to mediate the 1:1 exchange of Na⁺ for H⁺ across the membrane in which they reside, and they play central roles in regulation of body, cellular, and organellar pH. Their function is tightly regulated through mechanisms involving interactions with multiple protein and lipid-binding partners, phosphorylations, and other posttranslational modifications. Biochemical and mutational analyses indicate that the SLC9As have a short intracellular N-terminus, 12 transmembrane (TM) helices necessary and sufficient for ion transport, and a C-terminal cytoplasmic tail region with essential regulatory roles. No high-resolution structures of the SLC9As exist; however, models based on crystal structures of the bacterial NhaAs support the 12 TM organization and suggest that TMIV and XI may form a central part of the ion-translocation pathway, whereas pH sensing may involve TMII, TMIX, and several intracellular loops. Similar to most ion transporters studied, SLC9As likely exist as coupled dimers in the membrane, and this appears to be important for the well-studied cooperativity of H⁺ binding. The aim of this work is to summarize and critically discuss the currently available evidence on the structural dynamics, regulation, and binding partner interactions of SLC9As, focusing in particular on the most widely studied isoform, SLC9A1/NHE1. Further, novel bioinformatic and structural analyses are provided that to some extent challenge the existing paradigm on how ions are transported by mammalian SLC9As.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
12
|
Salin-Cantegrel A, Shekarabi M, Rasheed S, Charron FM, Laganière J, Gaudet R, Dion PA, Lapointe JY, Rouleau GA. Potassium-chloride cotransporter 3 interacts with Vav2 to synchronize the cell volume decrease response with cell protrusion dynamics. PLoS One 2013; 8:e65294. [PMID: 23724134 PMCID: PMC3665532 DOI: 10.1371/journal.pone.0065294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 04/29/2013] [Indexed: 12/01/2022] Open
Abstract
Loss-of-function of the potassium-chloride cotransporter 3 (KCC3) causes hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), a severe neurodegenerative disease associated with defective midline crossing of commissural axons in the brain. Conversely, KCC3 over-expression in breast, ovarian and cervical cancer is associated with enhanced tumor cell malignancy and invasiveness. We identified a highly conserved proline-rich sequence within the C-terminus of the cotransporter which when mutated leads to loss of the KCC3-dependent regulatory volume decrease (RVD) response in Xenopus Laevis oocytes. Using SH3 domain arrays, we found that this poly-proline motif is a binding site for SH3-domain containing proteins in vitro. This approach identified the guanine nucleotide exchange factor (GEF) Vav2 as a candidate partner for KCC3. KCC3/Vav2 physical interaction was confirmed using GST-pull down assays and immuno-based experiments. In cultured cervical cancer cells, KCC3 co-localized with the active form of Vav2 in swelling-induced actin-rich protruding sites and within lamellipodia of spreading and migrating cells. These data provide evidence of a molecular and functional link between the potassium-chloride co-transporters and the Rho GTPase-dependent actin remodeling machinery in RVD, cell spreading and cell protrusion dynamics, thus providing new insights into KCC3's involvement in cancer cell malignancy and in corpus callosum agenesis in HMSN/ACC.
Collapse
Affiliation(s)
- Adèle Salin-Cantegrel
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | - Masoud Shekarabi
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | - Sarah Rasheed
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | | | - Janet Laganière
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | - Rebecca Gaudet
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | - Patrick A. Dion
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| | | | - Guy A. Rouleau
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Cruz-Rangel S, Gamba G, Ramos-Mandujano G, Pasantes-Morales H. Influence of WNK3 on intracellular chloride concentration and volume regulation in HEK293 cells. Pflugers Arch 2012; 464:317-30. [PMID: 22864523 DOI: 10.1007/s00424-012-1137-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 01/17/2023]
Abstract
The involvement of WNK3 (with no lysine [K] kinase) in cell volume regulation evoked by anisotonic conditions was investigated in two modified stable lines of HEK293 cells: WNK3+, overexpressing WNK3 and WNK3-KD expressing a kinase inactive by a punctual mutation (D294A) at the catalytic site. This different WNK3 functional expression modified intracellular Cl(-) concentration with the following profile: WNK3+ > control > WNK3-KD cells. Stimulated with 15% hypotonic solutions, WNK3+ cells showed less efficient RVD (13.1%), lower Cl(-) efflux and decreased (94.5%) KCC activity. WNK3-KD cells showed 30.1% more efficient RVD, larger Cl(-) efflux and 5-fold higher KCC activity, increased since the isotonic condition. Volume-sensitive Cl(-) currents were similar in controls, WNK3+ cells, and WNK3-KD cells. Taurine efflux was not evoked at H15%. These results show a WNK3 influence on RVD in HEK293 cells via increasing KCC activity. Hypertonic medium induced cell shrinkage and RVI. In both WNK3+ and WNK3-KD cells, RVI and NKCC activity were increased, in WNK3+ cells presumably by enhanced NKCC phosphorylation, and in WNK3-KD cells via the [Cl(-)](i) reduction induced by the higher KCC activity in characteristic of these cells. These results support the role of WNK3 in modulation of intracellular Cl(-) concentration, in RVD, and indirectly on RVI, via its effects on KCC and NKCC activity. WNK3 in HEK293 cells is expressed as puncta at the intercellular junctions and diffusely at the cytosol, while the inactive kinase was found concentrated at the Golgi area. Cells with inactive WNK3 exhibited a marked change of cell phenotype.
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Mexico, DF, Mexico
| | | | | | | |
Collapse
|
14
|
Ando-Akatsuka Y, Shimizu T, Numata T, Okada Y. Involvements of the ABC protein ABCF2 and α-actinin-4 in regulation of cell volume and anion channels in human epithelial cells. J Cell Physiol 2012; 227:3498-510. [DOI: 10.1002/jcp.24050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Kowalsky GB, Beam D, Oh MJ, Sachs F, Hua SZ, Levitan I. Cholesterol depletion facilitates recovery from hypotonic cell swelling in CHO cells. Cell Physiol Biochem 2011; 28:1247-54. [PMID: 22179012 DOI: 10.1159/000335856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2011] [Indexed: 12/12/2022] Open
Abstract
The maintenance of cell volume homeostasis is critical for preventing pathological cell swelling that may lead to severe cellular dysfunction or cell death. Our earlier studies have shown that volume-regulated anion channels that play a major role in the regulation of cell volume are facilitated by a decrease in cellular cholesterol suggesting that cholesterol depletion should also facilitate regulatory volume decrease (RVD), the ability of cells to recover from hypotonic swelling. In this study, we test this hypothesis using a novel methodology developed to measure changes in cell volume using a microfluidics chamber. Our data show that cholesterol depletion of Chinese Hamster Ovary (CHO) significantly facilitates the recovery process, as is apparent from a faster onset of the RVD (162±10 s. vs. 114±5 s. in control and cholesterol depleted cells respectively) and a higher degree of volume recovery after 10 min of the hypotonic challenge (41%±6% vs. 65%±6% in control and cholesterol depleted cells respectively). In contrast, enriching cells with cholesterol had no effect on the RVD process. We also show here that similarly to our previous observations in endothelial cells, cholesterol depletion significantly increases the stiffness of CHO cells suggesting that facilitation of RVD may be associated with cell stiffening. Furthermore, we also show that increasing cell stiffness by stabilizing F-actin with jasplakinolide also facilitates RVD development. We propose that cell stiffening enhances cell mechano-sensitivity, which in turn facilitates the RVD process.
Collapse
Affiliation(s)
- Gregory B Kowalsky
- Section of Respiratory, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
16
|
Eduardsen K, Larsen SL, Novak I, Lambert IH, Hoffmann EK, Pedersen SF. Cell volume regulation and signaling in 3T3-L1 pre-adipocytes and adipocytes: on the possible roles of caveolae, insulin receptors, FAK and ERK1/2. Cell Physiol Biochem 2011; 28:1231-46. [PMID: 22179011 DOI: 10.1159/000335855] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2011] [Indexed: 12/13/2022] Open
Abstract
Caveolae have been implicated in sensing of cell volume perturbations, yet evidence is still limited and findings contradictory. Here, we investigated the possible role of caveolae in cell volume regulation and volume sensitive signaling in an adipocyte system with high (3T3-L1 adipocytes); intermediate (3T3-L1 pre-adipocytes); and low (cholesterol-depleted 3T3-L1 pre-adipocytes) caveolae levels. Using large-angle light scattering, we show that compared to pre-adipocytes, differentiated adipocytes exhibit several-fold increased rates of volume restoration following osmotic cell swelling (RVD) and osmotic cell shrinkage (RVI), accompanied by increased swelling-activated taurine efflux. However, caveolin-1 distribution was not detectably altered after osmotic swelling or shrinkage, and caveolae integrity, as studied by cholesterol depletion or expression of dominant negative Cav-1, was not required for either RVD or RVI in pre-adipocytes. The insulin receptor (InsR) localizes to caveolae and its expression dramatically increases upon adipocyte differentiation. In pre-adipocytes, InsR and its effectors focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2) localized to focal adhesions and were activated by a 5 min exposure to insulin (100 nM). Osmotic shrinkage transiently inhibited InsR Y(146)-phosphorylation, followed by an increase at t=15 min; a similar pattern was seen for ERK1/2 and FAK, in a manner unaffected by cholesterol depletion. In contrast, cell swelling had no detectable effect on InsR, yet increased ERK1/2 phosphorylation. In conclusion, differentiated 3T3-L1 adipocytes exhibit greatly accelerated RVD and RVI responses and increased swelling-activated taurine efflux compared to pre-adipocytes. Furthermore, in pre-adipocytes, Cav-1/caveolae integrity is not required for volume regulation. Given the relationship between hyperosmotic stress and insulin signaling, the finding that cell volume regulation is dramatically altered upon adipocyte differentiation may be relevant for the understanding of insulin resistance and metabolic syndrome.
Collapse
|
17
|
Hoffmann EK. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells. Cell Physiol Biochem 2011; 28:1061-78. [PMID: 22178996 DOI: 10.1159/000335843] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 12/26/2022] Open
Abstract
This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death.
Collapse
Affiliation(s)
- Else Kay Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Permissive effect of EGFR-activated pathways on RVI and their anti-apoptotic effect in hypertonicity-exposed mIMCD3 cells. Biosci Rep 2011; 31:489-97. [DOI: 10.1042/bsr20110024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hypertonicity is a stressful stimulus leading to cell shrinkage and apoptotic cell death. Apoptosis can be prevented if cells are able to activate the mechanism of RVI (regulatory volume increase). This study in mIMCD3 cells presents evidence of a permissive role of the EGFR (epidermal growth factor receptor) on RVI, achieved for the most part through the two main EGFR-triggered signalling chains, the MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) and the PI3K (phosphoinositide 3-kinase)/Akt (also known as protein kinase B) pathways. Hyperosmotic solutions (450 mosM) made by addition of NaCl, increased EGFR phosphorylation, which is prevented by GM6001 and AG1478, blockers respectively, of MMPs (matrix metalloproteinases) and EGFR. Inhibition of EGFR, ERK (PD98059) or PI3K/Akt (wortmannin) phosphorylation reduced RVI by 60, 48 and 58% respectively. The NHE (Na+/H+ exchanger) seems to be the essential mediator of this effect since (i) NHE is the main contributor to RVI, (ii) EGFR, ERK and PI3K/Akt blockers added together with the NHE blocker zoniporide reduce RVI by non-additive effects and (iii) All the blockers significantly lowered the NHE rate in cells challenged by an NH4Cl pulse. Besides reducing RVI, the inhibition of MMP, EGFR and PI3K/Akt had a strong pro-apoptotic effect increasing cell death by 2–3.7-fold. This effect was significantly lower when RVI inhibition did not involve the EGFR-PI3K/Akt pathway. These results provide evidence that Akt and its permissive effect on RVI have a predominant influence on cell survival under hypertonic conditions in IMCD3 cells. This role of Akt operates under the influence of EGFR activation, promoted by MMP.
Collapse
|
19
|
Pedersen SF, Kapus A, Hoffmann EK. Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 2011; 22:1587-97. [PMID: 21852585 DOI: 10.1681/asn.2010121284] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular osmolarity and whole body volume homeostasis. There are a variety of molecular signals that respond to perturbations in cell volume and osmosensors or volume sensors responding to these signals. The early signals of volume perturbation include integrins, the cytoskeleton, receptor tyrosine kinases, and transient receptor potential channels. We also present current evidence on the localization and function of central and peripheral systemic osmosensors and conclude with a brief look at the still limited evidence on pathophysiological conditions associated with deranged sensing of cell volume.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
20
|
Abstract
Cell volume homeostasis and its fine-tuning to the specific physiological context at any given moment are processes fundamental to normal cell function. The understanding of cell volume regulation owes much to August Krogh, yet has advanced greatly over the last decades. In this review, we outline the historical context of studies of cell volume regulation, focusing on the lineage started by Krogh, Bodil Schmidt-Nielsen, Hans-Henrik Ussing, and their students. The early work was focused on understanding the functional behaviour, kinetics and thermodynamics of the volume-regulatory ion transport mechanisms. Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased understanding of their structures. Finally, much current research in the field focuses on the most up- and downstream components of these paths: how cells sense changes in cell volume, and how cell volume changes in turn regulate cell function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- E K Hoffmann
- Section of Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Liu YJ, Wang XG, Tang YB, Chen JH, Lv XF, Zhou JG, Guan YY. Simvastatin Ameliorates Rat Cerebrovascular Remodeling During Hypertension via Inhibition of Volume-Regulated Chloride Channel. Hypertension 2010; 56:445-52. [DOI: 10.1161/hypertensionaha.110.150102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yu-Jie Liu
- From the Department of Pharmacology (Y.-J.L., X.-G.W., Y.-B.T., J.-H.C., X.-F.L., J.-G.Z., Y.-Y.G.), Cardiac and Cerebral Vascular Research Center (Y.-J.L., X.-G.W., Y.-B.T., X.-F.L., J.-G.Z., Y.-Y.G.), Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, People’s Republic of China; Department of Anaesthesia (J.-H.C.), Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Xiao-Guang Wang
- From the Department of Pharmacology (Y.-J.L., X.-G.W., Y.-B.T., J.-H.C., X.-F.L., J.-G.Z., Y.-Y.G.), Cardiac and Cerebral Vascular Research Center (Y.-J.L., X.-G.W., Y.-B.T., X.-F.L., J.-G.Z., Y.-Y.G.), Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, People’s Republic of China; Department of Anaesthesia (J.-H.C.), Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yong-Bo Tang
- From the Department of Pharmacology (Y.-J.L., X.-G.W., Y.-B.T., J.-H.C., X.-F.L., J.-G.Z., Y.-Y.G.), Cardiac and Cerebral Vascular Research Center (Y.-J.L., X.-G.W., Y.-B.T., X.-F.L., J.-G.Z., Y.-Y.G.), Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, People’s Republic of China; Department of Anaesthesia (J.-H.C.), Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jing-Hui Chen
- From the Department of Pharmacology (Y.-J.L., X.-G.W., Y.-B.T., J.-H.C., X.-F.L., J.-G.Z., Y.-Y.G.), Cardiac and Cerebral Vascular Research Center (Y.-J.L., X.-G.W., Y.-B.T., X.-F.L., J.-G.Z., Y.-Y.G.), Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, People’s Republic of China; Department of Anaesthesia (J.-H.C.), Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Xiao-Fei Lv
- From the Department of Pharmacology (Y.-J.L., X.-G.W., Y.-B.T., J.-H.C., X.-F.L., J.-G.Z., Y.-Y.G.), Cardiac and Cerebral Vascular Research Center (Y.-J.L., X.-G.W., Y.-B.T., X.-F.L., J.-G.Z., Y.-Y.G.), Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, People’s Republic of China; Department of Anaesthesia (J.-H.C.), Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jia-Guo Zhou
- From the Department of Pharmacology (Y.-J.L., X.-G.W., Y.-B.T., J.-H.C., X.-F.L., J.-G.Z., Y.-Y.G.), Cardiac and Cerebral Vascular Research Center (Y.-J.L., X.-G.W., Y.-B.T., X.-F.L., J.-G.Z., Y.-Y.G.), Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, People’s Republic of China; Department of Anaesthesia (J.-H.C.), Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yong-Yuan Guan
- From the Department of Pharmacology (Y.-J.L., X.-G.W., Y.-B.T., J.-H.C., X.-F.L., J.-G.Z., Y.-Y.G.), Cardiac and Cerebral Vascular Research Center (Y.-J.L., X.-G.W., Y.-B.T., X.-F.L., J.-G.Z., Y.-Y.G.), Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, People’s Republic of China; Department of Anaesthesia (J.-H.C.), Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
22
|
Kirkegaard SS, Lambert IH, Gammeltoft S, Hoffmann EK. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation. Am J Physiol Cell Physiol 2010; 299:C844-53. [PMID: 20631251 DOI: 10.1152/ajpcell.00024.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The swelling-activated K(+) currents (I(K,vol)) in Ehrlich ascites tumor cells (EATC) has been reported to be through the two-pore domain (K(2p)), TWIK-related acid-sensitive K(+) channel 2 (TASK-2). The regulatory volume decrease (RVD), following hypotonic exposure in EATC, is rate limited by I(K,vol) indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel to a lower cell volume. Swelling-activated K(+) efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium, it is demonstrated that mpV(pic) increased the volume-sensitive part of the K(+) efflux 1.3 times. To exclude K(+) efflux via a KCl cotransporter, cellular Cl(-) was substituted with NO(3)(-). Also under these conditions K(+) efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved in the activation of the volume-sensitive K(+) channel, whereas tyrosine phosphatases appears to be involved in inactivation of the channel. Overexpressing TASK-2 in human embryonic kidney (HEK)-293 cells increased the RVD rate and reduced the volume set point. TASK-2 has tyrosine sites, and precipitation of TASK-2 together with Western blotting and antibodies against phosphotyrosines revealed a cell swelling-induced, time-dependent tyrosine phosphorylation of the channel. Even though we found an inhibiting effect of PP2 on RVD, neither Src nor the focal adhesion kinase (FAK) seem to be involved. Inhibitors of the epidermal growth factor receptor tyrosine kinases had no effect on RVD, whereas the Janus kinase (JAK) inhibitor cucurbitacin inhibited the RVD by 40%. It is suggested that the cytokine receptor-coupled JAK/STAT pathway is upstream of the swelling-induced phosphorylation and activation of TASK-2 in EATC.
Collapse
Affiliation(s)
- Signe Skyum Kirkegaard
- Section of Cell and Developmental Biology, Dept. of Biology, The August Krogh Bldg, Univ. of Copenhagen, 13, Universitetsparken, DK-2100, Copenhagen, Denmark
| | | | | | | |
Collapse
|
23
|
Vázquez-Juárez E, Hernández-BenÃtez R, López-DomÃnguez A, Pasantes-Morales H. Thrombin potentiates d-aspartate efflux from cultured astrocytes under conditions of K+homeostasis disruption. J Neurochem 2009; 111:1398-408. [DOI: 10.1111/j.1471-4159.2009.06418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Lambert IH, Klausen TK, Bergdahl A, Hougaard C, Hoffmann EK. ROS activate KCl cotransport in nonadherent Ehrlich ascites cells but K+ and Cl- channels in adherent Ehrlich Lettré and NIH3T3 cells. Am J Physiol Cell Physiol 2009; 297:C198-206. [PMID: 19419998 DOI: 10.1152/ajpcell.00613.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Addition of H(2)O(2) (0.5 mM) to Ehrlich ascites tumor cells under isotonic conditions results in a substantial (22 +/- 1%) reduction in cell volume within 25 min. The cell shrinkage is paralleled by net loss of K(+), which was significant within 8 min, whereas no concomitant increase in the K(+) or Cl(-) conductances could be observed. The H(2)O(2)-induced cell shrinkage was unaffected by the presence of clofilium and clotrimazole, which blocks volume-sensitive and Ca(2+)-activated K(+) channels, respectively, and is unaffected by a raise in extracellular K(+) concentration to a value that eliminates the electrochemical driving force for K(+). On the other hand, the H(2)O(2)-induced cell shrinkage was impaired in the presence of the KCl cotransport inhibitor (dihydro-indenyl)oxyalkanoic acid (DIOA), following substitution of NO(3)(-) for Cl(-), and when the driving force for KCl cotransport was omitted. It is suggested that H(2)O(2) activates electroneutral KCl cotransport in Ehrlich ascites tumor cells and not K(+) and Cl(-) channels. Addition of H(2)O(2) to hypotonically exposed cells accelerates the regulatory volume decrease and the concomitant net loss of K(+), whereas no additional increase in the K(+) and Cl(-) conductance was observed. The effect of H(2)O(2) on cell volume was blocked by the serine-threonine phosphatase inhibitor calyculin A, indicating an important role of serine-threonine phosphorylation in the H(2)O(2)-mediated activation of KCl cotransport in Ehrlich cells. In contrast, addition of H(2)O(2) to adherent cells, e.g., Ehrlich Lettré ascites cells, a subtype of the Ehrlich ascites tumor cells, and NIH3T3 mouse fibroblasts increased the K(+) and Cl(-) conductances after hypotonic cell swelling. Hence, H(2)O(2) induces KCl cotransport or K(+) and Cl(-) channels in nonadherent and adherent cells, respectively.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Dept. of Biology, The August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Angiotensin II type 1 receptor mediates partially hyposmotic-induced increase of I Ks current in guinea pig atrium. Pflugers Arch 2009; 458:837-49. [DOI: 10.1007/s00424-009-0669-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/27/2009] [Indexed: 01/29/2023]
|
26
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1054] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
27
|
Rødgaard T, Schou K, Friis MB, Hoffmann EK. Does the intracellular ionic concentration or the cell water content (cell volume) determine the activity of TonEBP in NIH3T3 cells? Am J Physiol Cell Physiol 2008; 295:C1528-34. [DOI: 10.1152/ajpcell.00081.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription factor, tonicity-responsive enhancer binding protein (TonEBP), is involved in the adaptive response against hypertonicity. TonEBP regulates the expression of genes that catalyze the accumulation of osmolytes, and its transcriptional activity is increased by hypertonicity. The goal of the present investigation was to investigate whether cell shrinkage or high intracellular ionic concentration induced the activation of TonEBP. We designed a model system for isotonically shrinking cells over a prolonged period of time. Cells swelled in hypotonic medium and performed a regulatory volume decrease. Upon return to the original isotonic medium, cells shrank initially, followed by a regulatory volume increase. To maintain cell shrinkage, the RVI process was inhibited as follows: ethyl-isopropyl-amiloride inhibited the Na+/H+ antiport, bumetanide inhibited the Na+-K+-2Cl− cotransporter, and gadolinium inhibited shrinkage-activated Na+ channels. Cells remained shrunken for at least 4 h (isotonically shrunken cells). The activity of TonEBP was investigated with a Luciferase assay after isotonic shrinkage and after shrinkage in a high-NaCl hypertonic medium. We found that TonEBP was strongly activated after 4 and 16 h in cells in high-NaCl hypertonic medium, but not after 4 or 16 h in isotonically shrunken cells. Cells treated with high-NaCl hypertonic medium for 4 h had significantly higher intracellular concentrations of both K+ and Na+ than isotonically shrunken cells. This strongly suggested that an increase in intracellular ionic concentration and not cell shrinkage is involved in TonEBP activation.
Collapse
|
28
|
Abstract
Cell volume perturbation initiates a wide array of intracellular signalling cascades, leading to protective and adaptive events and, in most cases, activation of volume-regulatory osmolyte transport, water loss, and hence restoration of cell volume and cellular function. Cell volume is challenged not only under physiological conditions, e.g. following accumulation of nutrients, during epithelial absorption/secretion processes, following hormonal/autocrine stimulation, and during induction of apoptosis, but also under pathophysiological conditions, e.g. hypoxia, ischaemia and hyponatremia/hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations are sensed are still far from clear, significant progress has been made with respect to the nature of the sensors, transducers and effectors that convert a change in cell volume into a physiological response. In the present review, we summarize recent major developments in the field, and emphasize the relationship between cell volume regulation and organism physiology/pathophysiology.
Collapse
Affiliation(s)
- I H Lambert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
29
|
Friis MB, Vorum KG, Lambert IH. Volume-sensitive NADPH oxidase activity and taurine efflux in NIH3T3 mouse fibroblasts. Am J Physiol Cell Physiol 2008; 294:C1552-65. [PMID: 18417717 DOI: 10.1152/ajpcell.00571.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are produced in NIH3T3 fibroblasts during hypotonic stress, and H(2)O(2) potentiates the concomitant release of the organic osmolyte taurine (Lambert IH. J Membr Biol 192: 19-32, 2003). The increase in ROS production [5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein diacetate fluorescence] is detectable after a reduction in the extracellular osmolarity from 335 mosM (isotonic) to 300 mosM and reaches a maximal value after a reduction to 260 mosM. The swelling-induced ROS production is reduced by the flavoprotein inhibitor diphenylene iodonium chloride (25 microM) but is unaffected by the nitric oxide synthase inhibitor N omega-nitro-l-arginine methyl ester, indicating that the volume-sensitive ROS production is NADPH oxidase dependent. NIH3T3 cells express the NADPH oxidase components: p22 phox, a NOX4 isotype; p47 phox; and p67 phox (real-time PCR). Exposure to the Ca2+-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 nM) potentiates the swelling-induced taurine release as well as the ROS production. Overexpression of Rac1 or p47 phox or p47 phox knockdown [small interfering (si)RNA] had no effect on the swelling-induced ROS production or taurine release. NOX4 knockdown (siRNA) impairs the increase in the ROS production and the concomitant taurine release following osmotic exposure. It is suggested that a NOX4 isotype plus p22 phox account for the swelling-induced increase in the ROS production in NIH3T3 cells and that the oxidase activity is potentiated by PKC and LPA but not by Ca2+.
Collapse
|
30
|
Vázquez-Juárez E, Ramos-Mandujano G, Hernández-Benítez R, Pasantes-Morales H. On the role of G-protein coupled receptors in cell volume regulation. Cell Physiol Biochem 2008; 21:1-14. [PMID: 18209467 DOI: 10.1159/000113742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2008] [Indexed: 01/14/2023] Open
Abstract
Cell volume is determined genetically for each cell lineage, but it is not a static feature of the cell. Intracellular volume is continuously challenged by metabolic reactions, uptake of nutrients, intracellular displacement of molecules and organelles and generation of ionic gradients. Moreover, recent evidence raises the intriguing possibility that changes in cell volume act as signals for basic cell functions such as proliferation, migration, secretion and apoptosis. Cells adapt to volume increase by a complex, dynamic process resulting from the concerted action of volume sensing mechanisms and intricate signaling chains, directed to initiate the multiple adaptations demanded by a change in cell volume, among others adhesion reactions, membrane and cytoskeleton remodeling, and activation of the osmolyte pathways leading to reestablish the water balance between extracellular/intracellular or intracellular/intracellular compartments. In multicellular organisms, a continuous interaction with the external milieu is fundamental for the dynamics of the cell. It is in this sense that the recent surge of interest about the influence on cell volume control by the most extended family of signaling elements, the G proteins, acquires particular importance. As here reviewed, a large variety of G-protein coupled receptors (GPCRs) are involved in this interplay with cell volume regulatory mechanisms, which amplifies and diversifies the volume-elicited signaling chains, providing a variety of routes towards the multiple effectors related to cell volume changes.
Collapse
Affiliation(s)
- Erika Vázquez-Juárez
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | |
Collapse
|
31
|
Shennan DB. Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell Physiol Biochem 2008; 21:15-28. [PMID: 18209468 DOI: 10.1159/000113743] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2007] [Indexed: 11/19/2022] Open
Abstract
Cells have to regulate their volume in order to survive. Moreover, it is now evident that cell volume per se and the membrane transport processes which regulate it, comprise an important signalling unit. For example, macromolecular synthesis, apoptosis, cell growth and hormone secretion are all influenced by the cellular hydration state. Therefore, a thorough understanding of volume-activated transport processes could lead to new strategies being developed to control the function and growth of both normal and cancerous cells. Cell swelling stimulates the release of ions such as K(+) and Cl(-) together with organic osmolytes, especially the beta-amino acid taurine. Despite being the subject of intense research interest, the nature of the volume-activated taurine efflux pathway is still a matter of controversy. On the one hand it has been suggested that osmosensitive taurine efflux utilizes volume-sensitive anion channels whereas on the other it has been proposed that the band 3 anion-exchanger is a swelling-induced taurine efflux pathway. This article reviews the evidence for and against a role of anion channels and exchangers in osmosensitive taurine transport. Furthermore, the distinct possibility that neither pathway is involved in taurine transport is highlighted. The putative relationship between swelling-induced taurine transport and volume-activated anionic amino acid, alpha-neutral amino acid and K(+) transport is also examined.
Collapse
Affiliation(s)
- David B Shennan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK.
| |
Collapse
|
32
|
Rasmussen M, Alexander RT, Darborg BV, Møbjerg N, Hoffmann EK, Kapus A, Pedersen SF. Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins: activation mechanisms and physiological implications. Am J Physiol Cell Physiol 2007; 294:C197-212. [PMID: 17977945 DOI: 10.1152/ajpcell.00268.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperosmotic shrinkage induces multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. Here we investigated the possible roles of ezrin/radixin/moesin (ERM) proteins in these events. Osmotic shrinkage of Ehrlich Lettre ascites cells elicited the formation of long microvillus-like protrusions, rapid translocation of endogenous ERM proteins and green fluorescent protein-tagged ezrin to the cortical region including these protrusions, and Thr(567/564/558) (ezrin/radixin/moesin) phosphorylation of cortical ERM proteins. Reduced cell volume appeared to be the critical parameter in hypertonicity-induced ERM protein activation, whereas alterations in extracellular ionic strength or intracellular pH were not involved. A shrinkage-induced increase in the level of membrane-associated phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] appeared to play an important role in ERM protein activation, which was prevented after PtdIns(4,5)P(2) depletion by expression of the synaptojanin-2 phosphatase domain. While expression of constitutively active RhoA increased basal ERM phosphorylation, the Rho-Rho kinase pathway did not appear to be involved in shrinkage-induced ERM protein phosphorylation, which was also unaffected by the inhibition or absence of Na(+)/H(+) exchanger isoform (NHE1). Ezrin knockdown by small interfering RNA increased shrinkage-induced NHE1 activity, reduced basal and shrinkage-induced Rho activity, and attenuated the shrinkage-induced formation of microvillus-like protrusions. Hyperosmolarity-induced cell death was unaltered by ezrin knockdown or after phosphatidylinositol 3-kinase (PI3K) inhibition. In conclusion, ERM proteins are activated by osmotic shrinkage in a PtdIns(4,5)P(2)-dependent, NHE1-independent manner. This in turn mitigates the shrinkage-induced activation of NHE1, augments Rho activity, and may also contribute to F-actin rearrangement. In contrast, no evidence was found for the involvement of an NHE1-ezrin-PI3K-PKB pathway in counteracting shrinkage-induced cell death.
Collapse
Affiliation(s)
- Maria Rasmussen
- Department of Molecular Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
33
|
H-ras transformation sensitizes volume-activated anion channels and increases migratory activity of NIH3T3 fibroblasts. Pflugers Arch 2007; 455:1055-62. [PMID: 17952454 DOI: 10.1007/s00424-007-0367-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/07/2007] [Accepted: 10/04/2007] [Indexed: 01/04/2023]
Abstract
The expression of the H-ras oncogene increases the migratory activity of many cell types and thereby contributes to the metastatic behavior of tumor cells. Other studies point to an involvement of volume-activated anion channels (VRAC) in (tumor) cell migration. In this paper, we tested whether VRACs are required for the stimulation of cell migration upon expression of the H-ras oncogene. We compared VRAC activation and migration of wild-type and H-ras-transformed NIH3T3 fibroblasts by means of patch-clamp techniques and time-lapse video microscopy. Both cell types achieve the same degree of VRAC activation upon maximal stimulation, induced by reducing extracellular osmolarity from 300 to 190 mOsm/l. However, upon physiologically relevant reductions in extracellular osmolarity (275 mOsm/l), the level of VRAC activation is almost three times higher in H-ras-transformed compared to wild-type fibroblasts. This increase in VRAC sensitivity is accompanied by increased migratory activity of H-ras fibroblasts. Moreover, the high-affinity VRAC blocker NS3728 inhibits migration of H-ras fibroblasts dose-dependently by up to about 60%, whereas migration of wild-type fibroblasts is reduced by only about 35%. Consistent with higher VRAC activity in H-ras than in wild-type fibroblasts, more VRAC blocker is needed to achieve a comparable degree of inhibition of migration. We suggest that H-ras modulates the volume set point of VRAC and thus facilitates transient changes of cell volume required for faster cell migration.
Collapse
|
34
|
Hoffmann EK, Schettino T, Marshall WS. The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:29-43. [PMID: 17289411 DOI: 10.1016/j.cbpa.2006.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/08/2006] [Accepted: 11/23/2006] [Indexed: 11/25/2022]
Abstract
This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type described in the renal cortex thick ascending limb (cTAL)) we have focused on the role of swelling-activated K+- and anion-conductive pathways in response to hypotonicity, and on the role of the apical (luminal) Na+-K+-2Cl- cotransporter (NKCC2) in the response to hypertonicity. The shrinkage-induced activation of NKCC2 involves an interaction between the cytoskeleton and protein phosphorylation events via PKC and myosin light chain kinase (MLCK). Killifish (Fundulus heteroclitus) opercular epithelium is a Cl(-)-secreting epithelium of the type described in exocrine glands, having a CFTR channel on the apical side and the Na+/K+ ATPase, NKCC1 and a K+ channel on the basolateral side. Osmotic control of Cl- secretion across the operculum epithelium includes: (i) hyperosmotic shrinkage activation of NKCC1 via PKC, MLCK, p38, OSR1 and SPAK; (ii) deactivation of NKCC by hypotonic cell swelling and a protein phosphatase, and (iii) a protein tyrosine kinase acting on the focal adhesion kinase (FAK) to set levels of NKCC activity.
Collapse
Affiliation(s)
- E K Hoffmann
- Department of Molecular Biology, The August Krogh Building, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
35
|
Lambert IH, Pedersen SF. Multiple PLA2 isoforms regulate taurine release in NIH3T3 mouse fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 583:99-108. [PMID: 17153593 DOI: 10.1007/978-0-387-33504-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Ian Henry Lambert
- Dept. of Biochemistry, Institute for Molecular Biology and Physiology, The August Krogh Building, 13, Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
36
|
Cheema TA, Pettigrew VA, Fisher SK. Receptor regulation of the volume-sensitive efflux of taurine and iodide from human SH-SY5Y neuroblastoma cells: differential requirements for Ca(2+) and protein kinase C. J Pharmacol Exp Ther 2007; 320:1068-77. [PMID: 17148779 DOI: 10.1124/jpet.106.115741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basal (swelling-induced) and receptor-stimulated effluxes of (125)I(-) and taurine have been monitored to determine whether these two osmolytes are released from human SH-SY5Y cells under hypotonic conditions via common or distinct mechanisms. Under basal conditions, both (125)I(-) (used as a tracer for Cl(-)) and taurine were released from the cells in a volume-dependent manner. The addition of thrombin, mediated via the proteinase-activated receptor-1 (PAR-1) subtype, significantly enhanced the release of both (125)I(-) and taurine (3-6-fold) and also increased the threshold osmolarity for efflux of these osmolytes ("set-point") from 200 to 290 mOsM. Inclusion of a variety of broad-spectrum anion channel blockers and of 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid attenuated the release of both (125)I(-) and taurine under basal and receptor-stimulated conditions. Basal release of (125)I(-) and taurine was independent of Ca(2+) or the activity of protein kinase C (PKC). However, although PAR-1-stimulated taurine efflux was attenuated by either a depletion of intracellular Ca(2+) or inhibition of PKC by chelerythrine, the enhanced release of (125)I(-) was independent of both parameters. Stimulated efflux of (125)I(-) after activation of muscarinic cholinergic receptors was also markedly less dependent on Ca(2+) availability and PKC activity than that observed for taurine release. These results indicate that, although the osmosensitive release of these two osmolytes from SH-SY5Y cells may occur via pharmacologically similar membrane channels, the receptor-mediated release of (125)I(-) and taurine is differentially regulated by PKC activity and Ca(2+) availability.
Collapse
Affiliation(s)
- Tooba A Cheema
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-0220, USA
| | | | | |
Collapse
|
37
|
Pedersen SF, Nilius B. Transient Receptor Potential Channels in Mechanosensing and Cell Volume Regulation. Methods Enzymol 2007; 428:183-207. [PMID: 17875418 DOI: 10.1016/s0076-6879(07)28010-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transient receptor potential (TRP) channels are unique cellular sensors responding to a wide variety of extra- and intracellular signals, including mechanical and osmotic stress. In recent years, TRP channels from multiple subfamilies have been added to the list of mechano- and/or osmosensitive channels, and it is becoming increasingly apparent that Ca(2+) influx via TRP channels plays a crucial role in the response to mechanical and osmotic perturbations in a wide range of cell types. Although the events translating mechanical and osmotic stimuli into regulation of TRP channels are still incompletely understood, the specific mechanisms employed vary between different TRP isoforms, and probably include changes in the tension and/or curvature of the lipid bilayer, changes in the cortical cytoskeleton, and signaling events such as lipid metabolism and protein phosphorylation/dephosphorylation. This chapter describes candidate mechanosensitive channels from mammalian TRP subfamilies, discusses inherent and technical issues potentially confounding evaluation of mechano- and/or osmosensitivity, and presents methods relevant to the study of TRP channel regulation by mechanical and osmotic stimuli and involvement in cell volume regulation.
Collapse
|
38
|
Lim CH, Bot AGM, de Jonge HR, Tilly BC. Osmosignaling and volume regulation in intestinal epithelial cells. Methods Enzymol 2007; 428:325-42. [PMID: 17875427 DOI: 10.1016/s0076-6879(07)28019-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most cells have to perform their physiological functions under a variable osmotic stress, which, because of the relatively high permeability of the plasma membrane for water, may result in frequent alterations in cell size. Intestinal epithelial cells are especially prone to changes in cell volume because of their high capacity of salt and water transport and the high membrane expression of various nutrient transporters. Therefore, to avoid excessive shrinkage or swelling, enterocytes, like most cell types, have developed efficient mechanisms to maintain osmotic balance. This chapter reviews selected model systems that can be used to investigate cell volume regulation in intestinal epithelial cells, with emphasis on the regulatory volume decrease, and the methods available to study the compensatory redistribution of (organic) osmolytes. In addition, a brief summary is presented of the pathways involved in osmosensing and osmosignaling in the intestine.
Collapse
Affiliation(s)
- Christina H Lim
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Missan S, Linsdell P, McDonald TF. Role of kinases and G-proteins in the hyposmotic stimulation of cardiac IKs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1641-52. [PMID: 16836976 DOI: 10.1016/j.bbamem.2006.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/19/2006] [Accepted: 05/30/2006] [Indexed: 12/16/2022]
Abstract
Exposure of cardiac myocytes to hyposmotic solution stimulates slowly-activating delayed-rectifying K(+) current (I(Ks)) via unknown mechanisms. In the present study, I(Ks) was measured in guinea-pig ventricular myocytes that were pretreated with modulators of cell signaling processes, and then exposed to hyposmotic solution. Pretreatment with compounds that (i) inhibit serine/threonine kinase activity (10-100 microM H89; 200 microM H8; 50 microM H7; 1 microM bisindolylmaleimide I; 10 microM LY294002; 50 microM PD98059), (ii) stimulate serine/threonine kinase activity (1-5 microM forskolin; 0.1 microM phorbol-12-myristate-13-acetate; 10 microM acetylcholine; 0.1 microM angiotensin II; 20 microM ATP), (iii) suppress G-protein activation (10 mM GDPbetaS), or (iv) disrupt the cytoskeleton (10 microM cytochalasin D), had little effect on the stimulation of I(Ks) by hyposmotic solution. In marked contrast, pretreatment with tyrosine kinase inhibitor tyrphostin A25 (20 microM) strongly attenuated both the hyposmotic stimulation of I(Ks) in myocytes and the hyposmotic stimulation of current in BHK cells co-expressing Ks channel subunits KCNQ1 and KCNE1. Since attenuation of hyposmotic stimulation was not observed in myocytes and cells pretreated with inactive tyrphostin A1, we conclude that TK has an important role in the response of cardiac Ks channels to hyposmotic solution.
Collapse
Affiliation(s)
- Sergey Missan
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
40
|
Klausen TK, Hougaard C, Hoffmann EK, Pedersen SF. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am J Physiol Cell Physiol 2006; 291:C757-71. [PMID: 16687471 DOI: 10.1152/ajpcell.00029.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2] in this process. In Ehrlich-Lettre ascites (ELA) cells, a current with biophysical and pharmacological properties characteristic of VRAC was activated by hypotonic swelling. A 44% increase in cellular cholesterol content had no detectable effects on F-actin organization or VRAC activity. A 47% reduction in cellular cholesterol content increased cortical and stress fiber-associated F-actin content in swollen cells. Cholesterol depletion increased VRAC activation rate and maximal current after a modest (15%), but not after a severe (36%) reduction in extracellular osmolarity. The cholesterol depletion-induced increase in maximal VRAC current was prevented by F-actin disruption using latrunculin B (LB), while the current activation rate was unaffected by LB, but dependent on Rho kinase. Rho activity was decreased by ∼20% in modestly, and ∼50% in severely swollen cells. In modestly swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P2analogue or a PtdIns(4,5)P2-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P2. It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part by preventing the hypotonicity-induced decrease in Rho activity and eliciting actin polymerization.
Collapse
Affiliation(s)
- Thomas Kjaer Klausen
- Department of Biochemistry, Institute of Molecular Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
41
|
Pedersen SF, Poulsen KA, Lambert IH. Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts. Am J Physiol Cell Physiol 2006; 291:C1286-96. [PMID: 16855215 DOI: 10.1152/ajpcell.00325.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osmotic swelling of NIH3T3 mouse fibroblasts activates a bromoenol lactone (BEL)-sensitive taurine efflux, pointing to the involvement of a Ca(2+)-independent phospholipase A(2) (iPLA(2)) (Lambert IH. J Membr Biol 192: 19-32, 2003). We report that taurine efflux from NIH3T3 cells was not only increased by cell swelling but also decreased by cell shrinkage. Arachidonic acid release to the cell exterior was similarly decreased by shrinkage yet not detectably increased by swelling. NIH3T3 cells were found to express cytosolic calcium-dependent cPLA(2)-IVA, cPLA(2)-IVB, cPLA(2)-IVC, iPLA(2)-VIA, iPLA(2)-VIB, and secretory sPLA(2)-V. Arachidonic acid release from swollen cells was partially inhibited by BEL and by the sPLA(2)-inhibitor manoalide. Cell swelling elicited BEL-sensitive arachidonic acid release from the nucleus, to which iPLA(2)-VIA localized. Exposure to the bee venom peptide melittin, to increase PLA(2) substrate availability, potentiated arachidonic acid release and osmolyte efflux in a volume-sensitive, 5-lipoxygenase-dependent, cyclooxygenase-independent manner. Melittin-induced arachidonic acid release was inhibited by manoalide and slightly but significantly by BEL. A BEL-sensitive, melittin-induced PLA(2) activity was also detected in lysates devoid of sPLA(2), indicating that both sPLA(2) and iPLA(2) contribute to arachidonic acid release in vivo. Swelling-induced taurine efflux was inhibited potently by BEL and partially by manoalide, whereas the reverse was true for melittin-induced taurine efflux. It is suggested that in NIH3T3 cells, swelling-induced taurine efflux is dependent at least in part on arachidonic acid release by iPLA(2) and possibly also by sPLA(2), whereas melittin-induced taurine efflux is dependent on arachidonic acid release by sPLA(2) and, to a lesser extent, iPLA(2).
Collapse
Affiliation(s)
- Stine F Pedersen
- Department of Biochemistry, Institute for Molecular Biology and Physiology, Copenhagen, Denmark.
| | | | | |
Collapse
|
42
|
Di Ciano-Oliveira C, Thirone ACP, Szászi K, Kapus A. Osmotic stress and the cytoskeleton: the R(h)ole of Rho GTPases. Acta Physiol (Oxf) 2006; 187:257-72. [PMID: 16734763 DOI: 10.1111/j.1748-1716.2006.01535.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hyperosmotic stress initiates a variety of compensatory and adaptive responses, which either serve to restore near-normal volume or remodel and reinforce the cell structure to withstand the physical challenge. The latter response is brought about by the reorganization of the cytoskeleton; however, the underlying mechanisms are not well understood. Recent research has provided major breakthroughs in our knowledge about the link between message and structure, i.e. between signalling and cytoskeletal remodelling, predominantly in the context of cell migration. The major components of this progress are the in-depth characterization of Rho family small GTPases, master regulators of the cytoskeleton, and the discovery of the actin-related protein 2/3 complex, a signalling-sensitive structural element of the actin polymerization machinery. The primary aim of this review is to find the place of these novel and crucial players in osmotically induced (volume-dependent) remodelling of the cytoskeleton. We aim to address three questions: (1) What are the major structural changes in the cytoskeleton under hyperosmotic conditions? (2) Are the Rho family small GTPases (Rho, Rac and Cdc42) regulated by osmotic stress, and if so, by what mechanisms? (3) Are Rho GTPases involved, as mediators, in major adaptive responses, including cytoskeleton rearrangement, changes in ion transport and genetic reprogramming? Our answers will show how fragmentary our current knowledge is in these areas. Therefore, this overview has been written with the hardly disguised intention that it might foster further research in this field by highlighting some intriguing questions.
Collapse
Affiliation(s)
- C Di Ciano-Oliveira
- The St Michael's Hospital Research Institute, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
43
|
Byfield FJ, Hoffman BD, Romanenko VG, Fang Y, Crocker JC, Levitan I. Evidence for the role of cell stiffness in modulation of volume-regulated anion channels. Acta Physiol (Oxf) 2006; 187:285-94. [PMID: 16734765 DOI: 10.1111/j.1748-1716.2006.01555.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the link between cell stiffness and volume-regulated anion current (VRAC) in aortic endothelium. METHOD Bovine aortic endothelial cells (BAECs) were exposed to methyl-beta-cyclodextrin (MbetaCD) to deplete cellular cholesterol and the changes in cellular stiffness were measured by micropipette aspiration. VRAC density was measured electrophysiologically in the same cell populations. Furthermore, to probe the effects of cholesterol depletion on the mechanics of 'deep' cytoskeleton, we employ a novel technique to analyse correlated motion of intracellular particles. RESULTS We show that cholesterol depletion results in cellular stiffening and an upregulation of VRAC density. Replenishing cellular sterol pool with epicholesterol, a chiral analogue of cholesterol, abrogates both of these effects. This indicates that cholesterol sensitivity of both cell mechanics and VRAC are due to changes in the physical properties of the membrane rather than due to specific sterol-protein interactions. We also show that cholesterol depletion increases the stiffness of the 'deep cytoskeleton' and that disruption of actin filaments abolishes both cell stiffening and upregulation of VRAC due to cholesterol depletion. Furthermore, comparing BAECs to human aortic endothelial cells (HAECs), we show that BAECs that are inherently stiffer also develop larger VRACs. CONCLUSIONS Taken together, our observations suggest an increase in the cytoskeleton stiffness has a facilitatory effect on VRAC development. We suggest that stiffening of the cytoskeleton increases tension in the membrane-cytoskeleton layer and that in turn facilitates VRAC.
Collapse
Affiliation(s)
- F J Byfield
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Stutzin A, Hoffmann EK. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol (Oxf) 2006; 187:27-42. [PMID: 16734740 DOI: 10.1111/j.1748-1716.2006.01537.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under physiological control. Thus, cell volume is under a tight and dynamic control and abnormal cell volume regulation will ultimately lead to severe cellular dysfunction, including alterations in cell proliferation and cell death. This review describes the different swelling-activated ion channels that participate as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis.
Collapse
Affiliation(s)
- A Stutzin
- Centro de Estudios Moleculares de la Célula and Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
45
|
Lambert IH, Pedersen SF, Poulsen KA. Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta Physiol (Oxf) 2006; 187:75-85. [PMID: 16734744 DOI: 10.1111/j.1748-1716.2006.01557.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phospholipase A2 (PLA2) activity is increased in mammalian cells in response to numerous stimuli such as osmotic challenge, oxidative stress and exposure to allergens. The increased PLA2 activity is seen as an increased release of free, polyunsaturated fatty acids, e.g. arachidonic acid and membrane-bound lysophospholipids. Even though arachidonic acid acts as a second messenger in its own most mammalian cells seem to rely on oxidation of the fatty acid into highly potent second messengers via, e.g. cytochrome P450, the cyclo-oxygenase, or the lipoxygenase systems for downstream signalling. Here, we review data that illustrates that stress-induced PLA2 activity involves various PLA2 subtypes and that the PLA2 in question is determined by the cell type and the physiological stress condition.
Collapse
Affiliation(s)
- I H Lambert
- Institute for Molecular Biology and Physiology, The August Krogh Building, Universitetsparken, Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
46
|
Pasantes-Morales H, Lezama RA, Ramos-Mandujano G. Tyrosine kinases and osmolyte fluxes during hyposmotic swelling. Acta Physiol (Oxf) 2006; 187:93-102. [PMID: 16734746 DOI: 10.1111/j.1748-1716.2006.01553.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence documents the involvement of protein tyrosine kinases (TK) in the signalling network activated by hyposmotic swelling and regulatory volume decrease. Both receptor type and cytosolic TK participate as signalling elements in the variety of cell adaptive responses to volume changes, which include adhesion reactions, reorganization of the cytoskeleton, temporal deformation/remodelling of the membrane and stress-detecting mechanisms. The present review refers to the influence of TK on the activation/operation of the osmolyte efflux pathways, ultimately leading to cell volume recovery, i.e. the osmosensitive Cl- channel (Cl-swell), the K+ channels activated by swelling in the different cell types and the taurine efflux pathway as representative of the organic osmolyte pathway.
Collapse
Affiliation(s)
- H Pasantes-Morales
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico (UNAM), Mexico City, Mexico.
| | | | | |
Collapse
|
47
|
Anfinogenova YJ, Baskakov MB, Kovalev IV, Kilin AA, Dulin NO, Orlov SN. Cell-volume-dependent vascular smooth muscle contraction: role of Na+, K+, 2Cl- cotransport, intracellular Cl- and L-type Ca2+ channels. Pflugers Arch 2005; 449:42-55. [PMID: 15293051 DOI: 10.1007/s00424-004-1316-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study elucidates the role of cell volume in contractions of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat aorta. We observed that hyposmotic swelling as well as hyper- and isosmotic shrinkage led to VSMR contractions. Swelling-induced contractions were accompanied by activation of Ca2+ influx and were abolished by nifedipine and verapamil. In contrast, contractions of shrunken cells were insensitive to the presence of L-type channel inhibitors and occurred in the absence of Ca2+ o. Thirty minutes preincubation with bumetanide, a potent Na+, K+, CI- cotransport (NKCC) inhibitor, decreased Cl(-)i content, nifedipine-sensitive 45Ca uptake and contractions triggered by modest depolarization ([K+]o = 36 mM). Elevation of [K+]o to 66 mM completely abolished the effect of bumetanide on these parameters. Bumetanide almost completely abrogated phenylephrine-induced contraction, partially suppressed contractions triggered by hyperosmotic shrinkage, but potentiated contractions of isosmotically shrunken VSMR. Our results suggest that bumetanide suppresses contraction of modestly depolarized cells via NKCC inhibition and Cl(-)i-mediated membrane hyperpolarization, whereas augmented contraction of isosmotically shrunken VSMR by bumetanide is a consequence of suppression of NKCC-mediated regulatory volume increase. The mechanism of bumetanide inhibition of contraction of phenylephrine-treated and hyperosmotically shrunken VSMR should be examined further.
Collapse
Affiliation(s)
- Yana J Anfinogenova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russia
| | | | | | | | | | | |
Collapse
|
48
|
Voss JW, Pedersen SF, Christensen ST, Lambert IH. Regulation of the expression and subcellular localization of the taurine transporter TauT in mouse NIH3T3 fibroblasts. ACTA ACUST UNITED AC 2005; 271:4646-58. [PMID: 15606752 DOI: 10.1111/j.1432-1033.2004.04420.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular level of the organic osmolyte taurine is a balance between active uptake and passive leak via a volume sensitive pathway. Here, we demonstrate that NIH3T3 mouse fibroblasts express a saturable, high affinity taurine transporter (TauT, Km = 18 microm), and that taurine uptake via TauT is a Na+- and Cl(-)-dependent process with an apparent 2.5 : 1 : 1 Na+/Cl-/taurine stoichiometry. Transport activity is reduced following acute administration of H2O2 or activators of protein kinases A or C. TauT transport activity, expression and nuclear localization are significantly increased upon serum starvation (24 h), exposure to tumour necrosis factor alpha (TNFalpha; 16 h), or hyperosmotic medium (24 h); conditions that are also associated with increased localization of TauT to the cytosolic network of microtubules. Conversely, transport activity, expression and nuclear localization of TauT are reduced in a reversible manner following long-term exposure (24 h) to high extracellular taurine concentration. In contrast to active taurine uptake, swelling-induced taurine release is significantly reduced following preincubation with TNFalpha (16 h) but unaffected by high extracellular taurine concentration (24 h). Thus, in NIH3T3 cells, (a) active taurine uptake reflects TauT expression; (b) TauT activity is modulated by multiple stimuli, both acutely, and at the level of TauT expression; (c) the subcellular localization of TauT is regulated; and (d) volume-sensitive taurine release is not mediated by TauT.
Collapse
Affiliation(s)
- Jesper W Voss
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, Copenhagen, Denmark
| | | | | | | |
Collapse
|
49
|
Friis MB, Friborg CR, Schneider L, Nielsen MB, Lambert IH, Christensen ST, Hoffmann EK. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J Physiol 2005; 567:427-43. [PMID: 15975986 PMCID: PMC1474190 DOI: 10.1113/jphysiol.2005.087130] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell shrinkage is a hallmark of the apoptotic mode of programmed cell death, but it is as yet unclear whether a reduction in cell volume is a primary activation signal of apoptosis. Here we studied the effect of an acute elevation of osmolarity (NaCl or sucrose additions, final osmolarity 687 mosmol l(-1)) on NIH 3T3 fibroblasts to identify components involved in the signal transduction from shrinkage to apoptosis. After 1.5 h the activity of caspase-3 started to increase followed after 3 h by the appearance of many apoptotic-like bodies. The caspase-3 activity increase was greatly enhanced in cells expressing a constitutively active G protein, Rac (RacV12A3 cell), indicating that Rac acts upstream to caspase-3 activation. The stress-activated protein kinase, p38, was significantly activated by phosphorylation within 30 min after induction of osmotic shrinkage, the phosphorylation being accelerated in fibroblasts overexpressing Rac. Conversely, the activation of the extracellular signal-regulated kinase (Erk1/2) was initially significantly decreased. Subsequent to activation of p38, p53 was activated through serine-15 phosphorylation, and active p53 was translocated from the cytosol to the nucleus. Inhibition of p38 in Rac cells reduced the activation of both p53 and caspase-3. After 60 min in hypertonic medium the rate constants for K+ and taurine efflux were increased, particular in Rac cells. We suggest the following sequence of events in the cell shrinkage-induced apoptotic response: cellular shrinkage activates Rac, with activation of p38, followed by phosphorylation and nuclear translocation of p53, resulting in permeability increases and caspase-3 activation.
Collapse
Affiliation(s)
- Martin B Friis
- Department of Biochemistry, Institute of Molecular Biology and Physiology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Britton FC, Wang GL, Huang ZM, Ye L, Horowitz B, Hume JR, Duan D. Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart. J Biol Chem 2005; 280:25871-80. [PMID: 15883157 DOI: 10.1074/jbc.m502826200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel volume-regulated hyperpolarization-activated chloride inward rectifier channel (Cl.ir) was identified in mammalian heart. To investigate whether ClC-2 is the gene encoding Cl.ir channels in heart, ClC-2 cDNAs cloned from rat (rClC-2) and guinea pig (gpClC-2) hearts were functionally characterized. When expressed in NIH/3T3 cells, full-length rClC-2 yielded inwardly rectifying whole-cell currents with very slow activation kinetics (time constants > 1.7 s) upon hyperpolarization under hypotonic condition. The single-channel rClC-2 currents had a unitary slope conductance of 3.9 +/- 0.2 picosiemens. A novel variant with an in-frame deletion at the beginning of exon 15 that leads to a deletion of 45 bp (corresponding to 15 amino acids in alpha-helices O and P, rClC-2(Delta509-523)) was identified in rat heart. The relative transcriptional expression levels of full-length rClC-2 and rClC-2(Delta509-523) in rat heart were 0.018 +/- 0.003 and 0.028 +/- 0.006 arbitrary units, respectively, relative to glyceraldehyde-3-phosphate dehydrogenase (n = 5, p = nonsignificant). A similar partial exon 15 skipping with a deletion of 105 bp (35 amino acids in alpha-helices O-Q, gpClC-2(Delta509-543)) was also identified in guinea pig heart. Expression of both rClC-2(Delta509-523) and gpClC-2(Delta509-543) resulted in functional channels with phenotypic activation kinetics and many properties identical to those of endogenous Cl.ir channels in native rat and guinea pig cardiac myocytes, respectively. Intracellular dialysis of anti-ClC-2 antibody inhibited expressed ClC-2 channels and endogenous Cl.ir currents in native rat and guinea pig cardiac myocytes. These results demonstrate that novel deletion variants of ClC-2 due to partial exon 15 skipping may be expressed normally in heart and contribute to the formation of endogenous Cl.ir channels in native cardiac cells.
Collapse
Affiliation(s)
- Fiona C Britton
- Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, Nevada 89557-0270, USA
| | | | | | | | | | | | | |
Collapse
|