1
|
Bazilio DS, Moraes DJA, Machado BH. Glutamatergic and purinergic transmitters and astrocyte modulation in the synaptic transmission in the NTS of rats exposed to short-term sustained hypoxia. Am J Physiol Regul Integr Comp Physiol 2024; 327:R423-R441. [PMID: 39102465 DOI: 10.1152/ajpregu.00293.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
There is evidence that astrocytes modulate synaptic transmission in the nucleus tractus solitarius (NTS) interacting with glutamatergic and purinergic mechanisms. Here, using in situ working heart-brainstem preparations, we evaluated the involvement of astrocyte and glutamatergic/purinergic neurotransmission in the processing of autonomic and respiratory pathways in the NTS of control and rats exposed to sustained hypoxia (SH). Baseline autonomic and respiratory activities and the responses to chemoreflex activation (KCN) were evaluated before and after microinjections of fluorocitrate (FCt, an astrocyte metabolic inhibitor), kynurenic acid, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS) (nonselective antagonists of glutamatergic and purinergic receptors) into the rostral aspect of the caudal commissural NTS. FCt had no effects on the baseline parameters evaluated but reduced the bradycardic response to chemoreflex activation in SH rats. FCt combined with kynurenic acid and PPADS in control rats reduced the baseline duration of expiration, which was attenuated after SH. FCt produced a large increase in PN frequency discharge in control rats, which was reduced after SH, indicating a reduction in the astrocyte modulation after SH. The data show that 1) the bradycardic component of the peripheral chemoreflex is reduced in SH rats after astrocytes inhibition, 2) the inhibition of astrocytes in the presence of double antagonists in the NTS affects the modulation of baseline duration of expiration in control but not in SH rats, and 3) the autonomic and respiratory responses to chemoreflex activation are mediated by glutamatergic and purinergic receptors in the rostral aspect of the caudal commissural NTS.NEW & NOTEWORTHY Our findings indicate that the neurotransmission of autonomic and respiratory components of the peripheral chemoreflex in the nucleus tractus solitarius (NTS) is mediated by glutamatergic and purinergic mechanisms and reveal a selective involvement of NTS astrocytes in controlling the chemoreflex parasympathetic response in rats exposed to sustained hypoxia (SH) and the baseline duration of expiration mainly in control rats, indicating a selective role for astrocytes modulation in the NTS of control and SH rats.
Collapse
Affiliation(s)
- Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Argent LP, Bose A, Paton JFR. Intra-carotid body inter-cellular communication. J R Soc N Z 2022; 53:332-361. [PMID: 39439480 PMCID: PMC11459819 DOI: 10.1080/03036758.2022.2079681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The classic peripheral chemoreflex response is a critical homeostatic mechanism. In healthy individuals, appropriate chemoreflex responses are triggered by acute activation of the carotid body - the principal chemosensory organ in mammals. However, the aberrant chronic activation of the carotid body can drive the elevated sympathetic activity underlying cardio-respiratory diseases such as hypertension, diabetes and heart failure. Carotid body resection induces intolerable side effects and so understanding how to modulate carotid body output without removing it, and whilst maintaining the physiological chemoreflex response, represents the next logical next step in the development of effective clinical interventions. By definition, excessive carotid body output must result from altered intra-carotid body inter-cellular communication. Alongside the canonical synaptic transmission from glomus cells to petrosal afferents, many other modes of information exchange in the carotid body have been identified, for example bidirectional signalling between type I and type II cells via ATP-induced ATP release, as well as electrical communication via gap junctions. Thus, herein we review the carotid body as an integrated circuit, discussing a variety of different inter-cellular signalling mechanisms and highlighting those that are potentially relevant to its pathological hyperactivity in disease with the aim of identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Liam P. Argent
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Aabharika Bose
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Paton JFR, Machado BH, Moraes DJA, Zoccal DB, Abdala AP, Smith JC, Antunes VR, Murphy D, Dutschmann M, Dhingra RR, McAllen R, Pickering AE, Wilson RJA, Day TA, Barioni NO, Allen AM, Menuet C, Donnelly J, Felippe I, St-John WM. Advancing respiratory-cardiovascular physiology with the working heart-brainstem preparation over 25 years. J Physiol 2022; 600:2049-2075. [PMID: 35294064 PMCID: PMC9322470 DOI: 10.1113/jp281953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Twenty‐five years ago, a new physiological preparation called the working heart–brainstem preparation (WHBP) was introduced with the claim it would provide a new platform allowing studies not possible before in cardiovascular, neuroendocrine, autonomic and respiratory research. Herein, we review some of the progress made with the WHBP, some advantages and disadvantages along with potential future applications, and provide photographs and technical drawings of all the customised equipment used for the preparation. Using mice or rats, the WHBP is an in situ experimental model that is perfused via an extracorporeal circuit benefitting from unprecedented surgical access, mechanical stability of the brain for whole cell recording and an uncompromised use of pharmacological agents akin to in vitro approaches. The preparation has revealed novel mechanistic insights into, for example, the generation of distinct respiratory rhythms, the neurogenesis of sympathetic activity, coupling between respiration and the heart and circulation, hypothalamic and spinal control mechanisms, and peripheral and central chemoreceptor mechanisms. Insights have been gleaned into diseases such as hypertension, heart failure and sleep apnoea. Findings from the in situ preparation have been ratified in conscious in vivo animals and when tested have translated to humans. We conclude by discussing potential future applications of the WHBP including two‐photon imaging of peripheral and central nervous systems and adoption of pharmacogenetic tools that will improve our understanding of physiological mechanisms and reveal novel mechanisms that may guide new treatment strategies for cardiorespiratory diseases.
![]()
Collapse
Affiliation(s)
- Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Science, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Ana P Abdala
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Mathias Dutschmann
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Rishi R Dhingra
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Robin McAllen
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Nicole O Barioni
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew M Allen
- Department of Anatomy & Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Clément Menuet
- Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Joseph Donnelly
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Igor Felippe
- Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Science, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand
| | - Walter M St-John
- Emeritus Professor, Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth, New Hampshire, USA
| |
Collapse
|
4
|
Rodrigues KL, Souza JR, Bazilio DS, de Oliveira M, Moraes MPS, Moraes DJA, Machado BH. Changes in the autonomic and respiratory patterns in mice submitted to short-term sustained hypoxia. Exp Physiol 2021; 106:759-770. [PMID: 33501717 DOI: 10.1113/ep089323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do mice submitted to sustained hypoxia present autonomic and respiratory changes similarly to rats? What is the main finding and its importance? Arterial pressure in the normal range, reduced baseline heart rate and tachypnoea were observed in behaving sustained hypoxia mice. Recordings in the in situ preparation of mice submitted to sustained hypoxia show an increase in cervical vagus nerve activity and a simultaneous reduction in thoracic sympathetic nerve activity correlated with changes in the respiratory cycle. Therefore, mice are an important model for studies on the modulation of sympathetic activity to the cardiovascular system and the vagus innervation of the upper airways due to changes in the respiratory network induced by sustained hypoxia. ABSTRACT Short-term sustained hypoxia (SH) in rats induces sympathetic overactivity and hypertension due to changes in sympathetic-respiratory coupling. However, there are no consistent data about the effect of SH on mice due to the different protocols of hypoxia and difficulties associated with the handling of these rodents under different experimental conditions. In situ recordings of autonomic and respiratory nerves in SH mice have not been performed yet. Herein, we evaluated the effects of SH ( F i O 2 = 0.1 for 24 h) on baseline mean arterial pressure (MAP), heart rate (HR), respiratory frequency (fR ) and responses to chemoreflex activation in behaving SH mice. A characterization of changes in cervical vagus (cVN), thoracic sympathetic (tSN), phrenic (PN) and abdominal (AbN) nerves in SH mice using the in situ working heart-brainstem preparation was also performed. SH mice presented normal MAP, significant reduction in baseline HR, increase in baseline fR , as well as increase in the magnitude of bradycardic response to chemoreflex activation. In in situ preparations, SH mice presented a reduction in PN discharge frequency, and increases in the time of expiration and incidence of late-expiratory bursts in AbN activity. Nerve recordings also indicated a significant increase in cVN activity and a significant reduction in tSN activity during expiration in SH mice. These findings make SH mice an important experimental model for better understanding how changes in the respiratory network may impact on the modulation of vagal control to the upper airways, as well as in the sympathetic activity to the cardiovascular system.
Collapse
Affiliation(s)
- Karla L Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Juliana R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Mauro de Oliveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Melina P S Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
5
|
Bazilio DS, Rodrigues KL, Moraes DJA, Machado BH. Distinct cardiovascular and respiratory responses to short-term sustained hypoxia in juvenile Sprague Dawley and Wistar Hannover rats. Auton Neurosci 2020; 230:102746. [PMID: 33260056 DOI: 10.1016/j.autneu.2020.102746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/01/2022]
Abstract
Short-term sustained hypoxia (SH) elicits active expiration, augmented late-expiratory (late-E) sympathetic activity, increased arterial pressure and ventilation, and amplified sympathetic and abdominal expiratory responses to chemoreflex activation in rats of the Wistar-Ribeirão Preto (WRP) strain. Herein, we investigated whether SH can differentially affect the cardiovascular and respiratory outcomes of Sprague-Dawley (SD) and Wistar Hannover (WH) rats and compared the results with previous data using WRP rats. For this, we exposed SD and WH rats to SH (FiO2 = 0.1) for 24 h and evaluated arterial pressure, sympathetic activity, and respiratory pattern. SD rats presented increased arterial pressure, respiratory rate and tidal volume, as well as augmented late-E expiratory motor output and increased sympathetic outflow due to post-inspiratory and late-E sympathetic overactivity. WH rats presented reduced changes, suggesting lower responsiveness of this strain to this SH protocol. The magnitudes of changes in sympathetic and abdominal expiratory motor activities to chemoreflex activation in SD rats were reduced by SH. Pressor responses to chemoreflex activation were shown to be blunted in SD and WH rats after SH. The data are showing that SD, WH, and WRP rat strains exhibit marked differences in their cardiovascular, autonomic and respiratory responses to 24-h SH and draw attention to the importance of rat strain for studies exploring the underlying mechanisms involved in the neuronal changes induced by the experimental model of SH.
Collapse
Affiliation(s)
- Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Karla L Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
| |
Collapse
|
6
|
Zera T, Moraes DJA, da Silva MP, Fisher JP, Paton JFR. The Logic of Carotid Body Connectivity to the Brain. Physiology (Bethesda) 2020; 34:264-282. [PMID: 31165684 DOI: 10.1152/physiol.00057.2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The carotid body has emerged as a therapeutic target for cardio-respiratory-metabolic diseases. With the expansive functions of the chemoreflex, we sought mechanisms to explain differential control of individual responses. We purport a remarkable correlation between phenotype of a chemosensory unit (glomus cell-sensory afferent) with a distinct component of the reflex response. This logic could permit differential modulation of distinct chemoreflex responses, a strategy ideal for therapeutic exploitation.
Collapse
Affiliation(s)
- Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw , Warsaw , Poland
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - James P Fisher
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| |
Collapse
|
7
|
Sobrinho CR, Wenker IC, Poss EM, Takakura AC, Moreira TS, Mulkey DK. Purinergic signalling contributes to chemoreception in the retrotrapezoid nucleus but not the nucleus of the solitary tract or medullary raphe. J Physiol 2014; 592:1309-23. [PMID: 24445316 DOI: 10.1113/jphysiol.2013.268490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several brain regions are thought to function as important sites of chemoreception including the nucleus of the solitary tract (NTS), medullary raphe and retrotrapezoid nucleus (RTN). In the RTN, mechanisms of chemoreception involve direct H(+)-mediated activation of chemosensitive neurons and indirect modulation of chemosensitive neurons by purinergic signalling. Evidence suggests that RTN astrocytes are the source of CO2-evoked ATP release. However, it is not clear whether purinergic signalling also influences CO2/H(+) responsiveness of other putative chemoreceptors. The goals of this study are to determine if CO2/H(+)-sensitive neurons in the NTS and medullary raphe respond to ATP, and whether purinergic signalling in these regions influences CO2 responsiveness in vitro and in vivo. In brain slices, cell-attached recordings of membrane potential show that CO2/H(+)-sensitive NTS neurons are activated by focal ATP application; however, purinergic P2-receptor blockade did not affect their CO2/H(+) responsiveness. CO2/H(+)-sensitive raphe neurons were unaffected by ATP or P2-receptor blockade. In vivo, ATP injection into the NTS increased cardiorespiratory activity; however, injection of a P2-receptor blocker into this region had no effect on baseline breathing or CO2/H(+) responsiveness. Injections of ATP or a P2-receptor blocker into the medullary raphe had no effect on cardiorespiratory activity or the chemoreflex. As a positive control we confirmed that ATP injection into the RTN increased breathing and blood pressure by a P2-receptor-dependent mechanism. These results suggest that purinergic signalling is a unique feature of RTN chemoreception.
Collapse
Affiliation(s)
- Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 1524, Prof. Lineu Prestes Avenue, 05508-000, São Paulo, SP, Brazil. ; D. K. Mulkey: Department of Physiology and Neurobiology, University of Connecticut, 75 N Eagleville Rd, Unit 3156, Storrs, CT 06269-3156, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Wenker IC, Sobrinho CR, Takakura AC, Mulkey DK, Moreira TS. P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure. Hypertension 2013; 62:263-73. [PMID: 23753413 DOI: 10.1161/hypertensionaha.113.01487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Catecholaminergic C1 cells of the rostral ventrolateral medulla (RVLM) are key determinants of the sympathoexcitatory response to peripheral chemoreceptor activation. Overactivation of this reflex is thought to contribute to increased sympathetic activity and hypertension; however, molecular mechanisms linking peripheral chemoreceptor drive to hypertension remain poorly understood. We have recently determined that activation of P2Y1 receptors in the RVLM mimicked effects of peripheral chemoreceptor activation. Therefore, we hypothesize that P2Y1 receptors regulate peripheral chemoreceptor drive in this region. Here, we determine whether P2Y1 receptors are expressed by C1 neurons in the RVLM and contribute to peripheral chemoreceptor control of breathing, sympathetic activity, and blood pressure. We found that injection of a specific P2Y1 receptor agonist (MRS2365) into the RVLM of anesthetized adult rats increased phrenic nerve activity (≈55%), sympathetic nerve activity (38 ± 6%), and blood pressure (23 ± 1 mm Hg), whereas application of a specific P2Y1 receptor antagonist (MRS2179) decreased peripheral chemoreceptor-mediated activation of phrenic nerve activity, sympathetic nerve activity, and blood pressure. To establish that P2Y1 receptors are expressed by C1 cells, we determine in the brain slice preparation using cell-attached recording techniques that cells responsive to MRS2365 are immunoreactive for tyrosine hydroxylase (a marker of C1 cells), and we determine in vivo that C1-lesioned animals do not respond to RVLM injection of MRS2365. These data identify P2Y1 receptors as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity, and blood pressure.
Collapse
Affiliation(s)
- Ian C Wenker
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | | | | | | | | |
Collapse
|
9
|
A cardiovascular role for fractalkine and its cognate receptor, CX3CR1, in the rat nucleus of the solitary tract. Neuroscience 2012; 209:119-27. [DOI: 10.1016/j.neuroscience.2012.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 01/07/2023]
|
10
|
Panneton WM, Gan Q, Dahms TE. Cardiorespiratory and neural consequences of rats brought past their aerobic dive limit. J Appl Physiol (1985) 2010; 109:1256-69. [PMID: 20705947 PMCID: PMC2971699 DOI: 10.1152/japplphysiol.00110.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022] Open
Abstract
The mammalian diving response is a dramatic autonomic adjustment to underwater submersion affecting heart rate, arterial blood pressure, and ventilation. The bradycardia is known to be modulated by the parasympathetic nervous system, arterial blood pressure is modulated via the sympathetic system, and still other circuits modulate the respiratory changes. In the present study, we investigate the submergence of rats brought past their aerobic dive limit, defined as the diving duration beyond which blood lactate concentration increases above resting levels. Hemodynamic measurements were made during underwater submergence with biotelemetric transmitters, and blood was drawn from cannulas previously implanted in the rats' carotid arteries. Such prolonged submersion induces radical changes in blood chemistry; mean arterial PCO(2) rose to 62.4 Torr, while mean arterial PO(2) and pH reached nadirs of 21.8 Torr and 7.18, respectively. Despite these radical changes in blood chemistry, the rats neither attempted to gasp nor breathe while underwater. Immunohistochemistry for Fos protein done on their brains revealed numerous Fos-positive profiles. Especially noteworthy were the large number of immunopositive profiles in loci where presumptive chemoreceptors are found. Despite the activation of these presumptive chemoreceptors, the rats did not attempt to breathe. Injections of biotinylated dextran amine were made into ventral parts of the medullary dorsal horn, where central fibers of the anterior ethmoidal nerve terminate. Labeled fibers coursed caudal, ventral, and medial from the injection to neurons on the ventral surface of the medulla, where numerous Fos-labeled profiles were seen in the rats brought past their aerobic dive limit. We propose that this projection inhibits the homeostatic chemoreceptor reflex, despite the gross activation of chemoreceptors.
Collapse
Affiliation(s)
- W Michael Panneton
- Dept. of Pharmacological and Physiological Science, St. Louis Univ. School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104-1004, USA.
| | | | | |
Collapse
|
11
|
Abstract
P2X and P2Y nucleotide receptors are described on sensory neurons and their peripheral and central terminals in dorsal root, nodose, trigeminal, petrosal, retinal and enteric ganglia. Peripheral terminals are activated by ATP released from local cells by mechanical deformation, hypoxia or various local agents in the carotid body, lung, gut, bladder, inner ear, eye, nasal organ, taste buds, skin, muscle and joints mediating reflex responses and nociception. Purinergic receptors on fibres in the dorsal spinal cord and brain stem are involved in reflex control of visceral and cardiovascular activity, as well as relaying nociceptive impulses to pain centres. Purinergic mechanisms are enhanced in inflammatory conditions and may be involved in migraine, pain, diseases of the special senses, bladder and gut, and the possibility that they are also implicated in arthritis, respiratory disorders and some central nervous system disorders is discussed. Finally, the development and evolution of purinergic sensory mechanisms are considered.
Collapse
|
12
|
Granjeiro EM, Pajolla GP, Accorsi-Mendonça D, Machado BH. Interaction of purinergic and nitrergic mechanisms in the caudal nucleus tractus solitarii of rats. Auton Neurosci 2009; 151:117-26. [PMID: 19716350 DOI: 10.1016/j.autneu.2009.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/06/2009] [Accepted: 07/28/2009] [Indexed: 02/05/2023]
Abstract
The interaction of purinergic and nitrergic mechanisms was evaluated in the caudal nucleus tractus solitarii (cNTS) using awake animals and brainstem slices. In awake animals, ATP (1.25 nmol/50 nL) was microinjected into the cNTS before and after the microinjection of a selective neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-l-arginine (NPLA, 3 pmoles/50 nL, n=8) or vehicle (saline, n=4), and cardiovascular and ventilatory parameters were recorded. In brainstem slices from a distinct group of rats, the effects of ATP on the NO concentration in the cNTS using the fluorescent dye DAF-2 DA were evaluated. For this purpose brainstem slices (150 microm) containing the cNTS were pre-incubated with ATP (500 microM; n=8) before and during DAF-2 DA loading. Microinjection of ATP into the cNTS increases the arterial pressure (AP), respiratory frequency (f(R)) and minute ventilation (V(E)), which were significantly reduced by pretreatment with N-PLA, a selective nNOS inhibitor (AP: 39+/-3 vs 16+/-14 mm Hg; f(R): 75+/-14 vs 4+/-3 cpm; V(E): 909+/-159 vs 77+/-39 mL kg(-1) m(-1)). The effects of ATP in the cNTS were not affected by microinjection of saline. ATP significantly increased the NO fluorescence in the cNTS (62+/-7 vs 101+/-10 AU). The data show that in the cNTS: a) the NO production is increased by ATP; b) NO formation by nNOS is involved in the cardiovascular and ventilatory responses to microinjection of ATP. Taken together, these data suggest an interaction of purinergic and nitrergic mechanisms in the cNTS.
Collapse
Affiliation(s)
- Erica M Granjeiro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
13
|
Purinergic signalling in autonomic control. Trends Neurosci 2009; 32:241-8. [PMID: 19359051 DOI: 10.1016/j.tins.2009.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 02/07/2023]
Abstract
Intercellular purinergic signalling, which utilizes ATP as a transmitter, is fundamental for the operation of the autonomic nervous system. ATP is released together with 'classical' transmitters from sympathetic and parasympathetic nerves supplying various peripheral targets, modulates neurotransmission in autonomic ganglia, has an important role in local enteric neural control and coordination of intestinal secretion and motility, and acts as a common mediator for several distinct sensory modalities. Recently, the role of ATP-mediated signalling in the central nervous control of autonomic function has been addressed. Emerging data demonstrate that in the brain ATP is involved in the operation of several key cardiorespiratory reflexes, contributes to central processing of viscerosensory information, mediates central CO(2) chemosensory transduction and triggers adaptive changes in breathing, and modulates the activities of the brainstem vagal preganglionic, presympathetic and respiratory neural networks.
Collapse
|
14
|
Machado BH. Neurotransmission of the Peripheral Chemoreflex in the Nucleus Tractus Solitarii in Unanesthetized Experimental Models. Tzu Chi Med J 2009. [DOI: 10.1016/s1016-3190(09)60002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Accorsi-Mendonça D, Bonagamba LGH, Leão RM, Machado BH. Are L-glutamate and ATP cotransmitters of the peripheral chemoreflex in the rat nucleus tractus solitarius? Exp Physiol 2008; 94:38-45. [PMID: 18931046 DOI: 10.1113/expphysiol.2008.043653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral chemoreflex activation in awake rats or in the working heart-brainstem preparation (WHBP) produces sympathoexcitation, bradycardia and an increase in the frequency of phrenic nerve activity. Our focus is the neurotransmission of the sympathoexcitatory component of the chemoreflex within the nucleus of the tractus solitarius (NTS), and recently we verified that the simultaneous antagonism of ionotropic glutamate and purinergic P(2) receptors in the NTS blocked the pressor response and increased thoracic sympathetic activity in awake rats and WHBP, respectively, in response to peripheral chemoreflex activation. These previous data suggested the involvement of ATP and L-glutamate in the NTS in the processing of the sympathoexcitatory component of the chemoreflex by unknown mechanisms. For a better understanding of these mechanisms, here we used a patch-clamp approach in brainstem slices to evaluate the characteristics of the synaptic transmission of NTS neurons sending projections to the ventral medulla, which include the premotor neurons involved in the generation of the sympathetic outflow. The NTS neurons sending projections to the ventral medulla were identified by previous microinjection of the membrane tracer dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), in the ventral medulla and the spontaneous (sEPSCs) and tractus solitarius (TS)-evoked excitatory postsynaptic current (TS-eEPSCs) were recorded using patch clamp. With this approach, we made the following observations on NTS neurons projecting to the ventral medulla: (i) the sEPSCs and TS-eEPSCs of DiI-labelled NTS neurons were completely abolished by 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), an antagonist of ionotropic non-NMDA glutamatergic receptors, showing that they are mediated by L-glutamate; (ii) application of ATP increased the frequency of appearance of spontaneous glutamatergic currents, reflecting an increased exocytosis of glutamatergic vesicles; and (iii) ATP decreased the peak of TS-evoked glutamatergic currents. We conclude that L-glutamate is the main neurotransmitter of spontaneous and TS-evoked synaptic activities in the NTS neurons projecting to the ventral medulla and that ATP has a dual modulatory role on this excitatory transmission, facilitating the spontaneous glutamatergic transmission and inhibiting the TS-evoked glutamatergic transmission. These data also suggest that ATP is not acting as a cotransmitter with L-glutamate, at least at the level of this subpopulation of NTS neurons studied.
Collapse
Affiliation(s)
- Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Gourine AV, Dale N, Korsak A, Llaudet E, Tian F, Huckstepp R, Spyer KM. Release of ATP and glutamate in the nucleus tractus solitarii mediate pulmonary stretch receptor (Breuer-Hering) reflex pathway. J Physiol 2008; 586:3963-78. [PMID: 18617567 PMCID: PMC2538935 DOI: 10.1113/jphysiol.2008.154567] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/26/2008] [Indexed: 12/25/2022] Open
Abstract
The Breuer-Hering inflation reflex is initiated by activation of the slowly adapting pulmonary stretch receptor afferents (SARs), which monosynaptically activate second-order relay neurones in the dorsal medullary nucleus of the solitary tract (NTS). Here we demonstrate that during lung inflation SARs release both ATP and glutamate from their central terminals to activate these NTS neurones. In anaesthetized and artificially ventilated rats, ATP- and glutamate-selective microelectrode biosensors placed in the NTS detected rhythmic release of both transmitters phase-locked to lung inflation. This release of ATP and glutamate was independent of the centrally generated respiratory rhythm and could be reversibly abolished during the blockade of the afferent transmission in the vagus nerve by topical application of local anaesthetic. Microionophoretic application of ATP increased the activity of all tested NTS second-order relay neurones which receive monosynaptic inputs from the SARs. Unilateral microinjection of ATP into the NTS site where pulmonary stretch receptor afferents terminate produced central apnoea, mimicking the effect of lung inflation. Application of P2 and glutamate receptor antagonists (pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulphonic acid, suramin and kynurenic acid) significantly decreased baseline lung inflation-induced firing of the second-order relay neurones. These data demonstrate that ATP and glutamate are released in the NTS from the central terminals of the lung stretch receptor afferents, activate the second-order relay neurones and hence mediate the key respiratory reflex - the Breuer-Hering inflation reflex.
Collapse
Affiliation(s)
- Alexander V Gourine
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Glutamatergic and purinergic mechanisms on respiratory modulation in the caudal NTS of awake rats. Respir Physiol Neurobiol 2008; 161:246-52. [DOI: 10.1016/j.resp.2008.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/28/2008] [Accepted: 02/25/2008] [Indexed: 11/18/2022]
|
18
|
Braga VA, Soriano RN, Braccialli AL, de Paula PM, Bonagamba LGH, Paton JFR, Machado BH. Involvement of L-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol 2007; 581:1129-45. [PMID: 17395636 PMCID: PMC2170832 DOI: 10.1113/jphysiol.2007.129031] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/22/2007] [Indexed: 12/25/2022] Open
Abstract
Peripheral chemoreflex activation with potassium cyanide (KCN) in awake rats or in the working heart-brainstem preparation (WHBP) produces: (a) a sympathoexcitatory/pressor response; (b) bradycardia; and (c) an increase in the frequency of breathing. Our main aim was to evaluate neurotransmitters involved in mediating the sympathoexcitatory component of the chemoreflex within the nucleus tractus solitarii (NTS). In previous studies in conscious rats, the reflex bradycardia, but not the pressor response, was reduced by antagonism of either ionotropic glutamate or purinergic P2 receptors within the NTS. In the present study we evaluated a possible dual role of both P2 and NMDA receptors in the NTS for processing the sympathoexcitatory component (pressor response) of the chemoreflex in awake rats as well as in the WHBP. Simultaneous blockade of ionotropic glutamate receptors and P2 receptors by sequential microinjections of kynurenic acid (KYN, 2 nmol (50 nl)(-1)) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonate (PPADS, 0.25 nmol (50 nl)(-1)) into the commissural NTS in awake rats produced a significant reduction in both the pressor (+38+/-3 versus +8+/-3 mmHg) and bradycardic responses (-172+/-18 versus -16+/-13 beats min(-1); n=13), but no significant changes in the tachypnoea measured using plethysmography (270+/-30 versus 240+/-21 cycles min(-1), n=7) following chemoreflex activation in awake rats. Control microinjections of saline produced no significant changes in these reflex responses. In WHBP, microinjection of KYN (2 nmol (20 nl)(-1)) and PPADS (1.6 nmol (20 nl)(-1)) into the commissural NTS attenuated significantly both the increase in thoracic sympathetic activity (+52+/-2% versus +17+/-1%) and the bradycardic response (-151+/-17 versus -21+/-3 beats min(-1)) but produced no significant changes in the increase of the frequency of phrenic nerve discharge (+0.24+/-0.02 versus +0.20+/-0.02 Hz). The data indicate that combined microinjections of PPADS and KYN into the commissural NTS in both awake rats and the WHBP are required to produce a significant reduction in the sympathoexcitatory response (pressor response) to peripheral chemoreflex activation. We conclude that glutamatergic and purinergic mechanisms are part of the complex neurotransmission system of the sympathoexcitatory component of the chemoreflex at the level of the commissural NTS.
Collapse
Affiliation(s)
- Valdir A Braga
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
20
|
Braga VA, Soriano RN, Machado BH. Sympathoexcitatory response to peripheral chemoreflex activation is enhanced in juvenile rats exposed to chronic intermittent hypoxia. Exp Physiol 2006; 91:1025-31. [PMID: 16959820 DOI: 10.1113/expphysiol.2006.034868] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we tested the hypothesis that chronic intermittent hypoxia (CIH) produces changes in the autonomic and respiratory responses to acute peripheral chemoreflex activation. To attain this goal, 3-week-old rats were exposed to 10 days of CIH (6% O(2) for 40 s at 9 min intervals; 8 h day(-1)). They were then used to obtain a working heart-brainstem preparation and, using this unanaesthetized experimental preparation, the chemoreflex was activated with potassium cyanide (0.05%, injected via the perfusion system), and the thoracic sympathetic nerve activity (tSNA), heart rate and phrenic nerve discharge (PND) were recorded. Rats subjected to CIH (n = 12), when compared with control animals (n = 12), presented the following significant changes in response to chemoreflex activation: (a) an increase in tSNA (78 +/- 4 versus 48 +/- 3%); (b) a long-lasting increase in the frequency of the PND at 20 (0.52 +/- 0.03 versus 0.36 +/- 0.03 Hz) and 30 s (0.40 +/- 0.02 versus 0.31 +/- 0.02 Hz) after the stimulus; and (c) a greater bradycardic response (-218 +/- 20 versus -163 +/- 16 beats min(-1)). These results indicate that the autonomic and respiratory responses to chemoreflex activation in juvenile rats previously submitted to CIH are greatly increased.
Collapse
Affiliation(s)
- Valdir A Braga
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
21
|
Braga VA, Machado BH. Chemoreflex sympathoexcitation was not altered by the antagonism of glutamate receptors in the commissural nucleus tractus solitarii in the working heart-brainstem preparation of rats. Exp Physiol 2006; 91:551-9. [PMID: 16452122 DOI: 10.1113/expphysiol.2005.033100] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The changes in thoracic sympathetic nerve activity, heart rate and frequency of phrenic nerve discharge in response to chemoreflex activation before and after bilateral microinjections of glutamate receptor antagonists into the comissural nucleus tractus solitarii (cNTS) were evaluated in the working heart-brainstem preparation of rats. Microinjections of kynurenic acid (KYN, 250 mM), (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG, 100 mM), or KYN plus MCPG into the cNTS were performed in three different groups. These microinjections into the cNTS did not affect the increase in the thoracic sympathetic nerve activity elicited by chemoreflex activation (KYN, 54 +/- 3 versus 51 +/- 2%, n = 11; MCPG, 48 +/- 5 versus 54 +/- 5%, n = 7; and KYN plus MCPG, 57 +/- 6 versus 55 +/- 3%, n = 5). The increase in the frequency of the phrenic nerve discharge in response to chemoreflex activation was also not affected by KYN (0.28 +/- 0.02 versus 0.30 +/- 0.04 Hz), MCPG (0.27 +/- 0.03 versus 0.27 +/- 0.04 Hz), or KYN plus MCPG (0.30 +/- 0.04 versus 0.20 +/- 0.03 Hz). The bradycardic response to chemoreflex activation was significantly reduced after microinjection of KYN at 2 (-220 +/- 16 versus -50 +/- 6 beats min(-1)) and 10 min (-220 +/- 16 versus -65 +/- 9 beats min(-1)) and after microinjection of KYN plus MCPG into the NTS it was abolished at 2 (-192 +/- 14 versus -2 +/- 1 beats min(-1)) and 10 min (-192 +/- 14 versus -4 +/- 2 beats min(-1)). These data support the hypothesis that the neurotransmission of the sympathoexcitatory and respiratory components of the chemoreflex in the cNTS involves neurotransmitters other than L-glutamate and also the concept that the parasympathetic component of this reflex is mediated by L-glutamate.
Collapse
Affiliation(s)
- Valdir A Braga
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
22
|
Antunes VR, Braga VA, Machado BH. Autonomic and respiratory responses to microinjection of ATP into the intermediate or caudal nucleus tractus solitarius in the working heart-brainstem preparation of the rat. Clin Exp Pharmacol Physiol 2006; 32:467-72. [PMID: 15854160 DOI: 10.1111/j.1440-1681.2005.04213.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Activation of peripheral chemoreceptors with KCN in the working heart-brainstem preparation from young male Wistar rats (70-90 g) increases phrenic (PNA; +105 +/- 18%) and thoracic (tSNA; +44 +/- 6%) sympathetic nerve activity compared with baseline and reduces heart rate (HR; from 377 +/- 27 to 83 +/- 6 b.p.m.). 2. Microinjections of increasing doses of ATP (1, 5, 25, 100 and 500 mmol/L; n = 7) into the intermediate nucleus tractus solitarius (NTS) produced a dose-dependent reduction in PNA (from -6 +/- 3 to -82 +/- 1%) and in HR (from -12 +/- 4 to -179 +/- 47 b.p.m.). Microinjections of ATP into the intermediate NTS also produced a reduction in tSNA (from -3 +/- 3 to -26 +/- 5%), which was not dose dependent. 3. Microinjections of ATP into the caudal NTS (n = 5) produced a dose-dependent increase in PNA (from 0.2 +/- 3 to 115 +/- 27%) and minor changes in HR and tSNA, which were not dose dependent. 4. The data show that microinjection of ATP into distinct subregions of the NTS produces different respiratory and autonomic responses and suggest that ATP in the caudal NTS is involved in the respiratory but not in the sympathoexcitatory component of the chemoreflex.
Collapse
Affiliation(s)
- Vagner R Antunes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
23
|
Almado CEL, Machado BH. Respiratory and autonomic responses to microinjection of NMDA and AMPA into the commissural subnucleus of the NTS of awake rats. Brain Res 2005; 1063:59-68. [PMID: 16263100 DOI: 10.1016/j.brainres.2005.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/16/2005] [Accepted: 09/25/2005] [Indexed: 10/25/2022]
Abstract
The changes in mean arterial pressure (MAP) and respiratory frequency (RF) in response to microinjection of NMDA or AMPA into the commissural subnucleus of the NTS (comNTS) at the calamus scriptorius level of awake rats were evaluated. Under tribromoethanol anesthesia, the rats received guide-cannulae in direction of the NTS and a catheter was inserted into the femoral artery for measurement of arterial pressure. Changes in RF were evaluated with the rats inside a plethysmographic chamber. Randomly microinjections of 5 doses of NMDA (0.001, 0.01, 0.1, 1.0 and 2 nmol/50 nL; n = 10) or AMPA (1, 5, 10, 25 and 50 pmol/50 nL; n = 8) into the comNTS were performed at 15 min intervals and produced a dose-dependent increase in MAP [NMDA (3 +/- 2, 4 +/- 3, 25 +/- 4, 41 +/- 4 and 51 +/- 4 mm Hg) and AMPA (0 +/- 1, 14 +/- 4, 17 +/- 3, 27 +/- 5 and 34 +/- 3 mm Hg)]. Microinjection of NMDA (1 nmol/50 nL; n = 7) or AMPA (50 pmol/50 nL; n = 4) into the comNTS produced a long lasting apnea. The pressor responses to microinjection of NMDA or AMPA into the comNTS were blocked by prazosin, a alpha(1)-adrenoceptor antagonist, indicating that the increase in arterial pressure in both cases was sympathetically mediated. The data show that microinjection of NMDA and AMPA into the comNTS produced pressor response and apnea, indicating that both ionotropic l-glutamate receptors may play a role in the neurotransmission/neuromodulation of the autonomic and respiratory components of the cardiovascular reflexes at this level.
Collapse
Affiliation(s)
- Carlos Eduardo L Almado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
24
|
Kitchen AM, O'Leary DS, Scislo TJ. Sympathetic and parasympathetic component of bradycardia triggered by stimulation of NTS P2X receptors. Am J Physiol Heart Circ Physiol 2005; 290:H807-12. [PMID: 16199474 DOI: 10.1152/ajpheart.00889.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have previously shown that activation of P2X purinoceptors in the subpostremal nucleus tractus solitarius (NTS) produces a rapid bradycardia and hypotension. This bradycardia could occur via sympathetic withdrawal, parasympathetic activation, or a combination of both mechanisms. Thus we investigated the relative roles of parasympathetic activation and sympathetic withdrawal in mediating this bradycardia in chloralose-urethane anesthetized male Sprague-Dawley rats. Microinjections of the selective P2X purinoceptor agonist alpha,beta-methylene ATP (25 pmol/50 nl and 100 pmol/50 nl) were made into the subpostremal NTS in control animals, after atenolol (2 mg/kg i.v.), a beta1-selective antagonist, and after atropine methyl bromide (2 mg/kg i.v.), a muscarinic receptor antagonist. The bradycardia observed with activation of P2X receptors at the low dose of the agonist is mediated almost entirely by sympathetic withdrawal. After beta1-adrenergic blockade, the bradycardia was reduced to just -5.1 +/- 0.5 versus -28.8 +/- 5.1 beats/min in intact animals. Muscarinic blockade did not produce any significant change in the bradycardic response at the low dose. At the high dose, both beta1-adrenergic blockade and muscarinic blockade attenuated the bradycardia similarly, -37.4 +/- 6.4 and -40.6 +/- 3.7 beats/min, respectively, compared with -88.0 +/- 11 beats/min in control animals. Double blockade of both beta1-adrenergic and muscarinic receptors virtually abolished the response (-2.5 +/- 0.8 beats/min). We conclude that the relative contributions of parasympathetic activation and sympathetic withdrawal are dependent on the extent of P2X receptor activation.
Collapse
Affiliation(s)
- Amy M Kitchen
- Dept. of Physiology, Wayne State Univ. School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | | | | |
Collapse
|
25
|
Scislo TJ, O'Leary DS. Purinergic mechanisms of the nucleus of the solitary tract and neural cardiovascular control. Neurol Res 2005; 27:182-94. [PMID: 15829182 DOI: 10.1179/016164105x21959] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This review addresses the role of central purinergic receptors in the operation of the cardiovascular reflexes. METHODS Potential physiological role of purinergic receptors operating in the nucleus of the solitary tract (NTS) was assessed via comparison of the regional patterns of hemodynamic and sympathetic responses evoked by selective stimulation/inhibition of NTS purinergic receptor subtypes, with the patterns evoked by stimulation and unloading of arterial baroreceptors, and other known patterns of autonomic responses. The effects of sino-aortic denervation plus vagotomy and ionotropic glutamatergic blockade of NTS mechanisms on the patterns of the responses were also considered. RESULTS Selective stimulation of NTS A1 receptors with CPA evoked a pattern of regional autonomic responses consistent with inhibition of baroreflex mechanisms and facilitation/ disinhibition of chemoreflex mechanisms. Selective stimulation of NTS A(2a) receptors with CGS 21680-evoked pattern of the responses different than that evoked by stimulation of baroreflex afferents what remains in contrast to previous reports suggesting that NTS A2a receptors facilitate baroreflex transmission. The pattern of the responses was similar to that observed during hypotensive hemorrhage. Preferential, b -adrenergic iliac vasodilation evoked by stimulation of adenosine A2a receptors and preferential activation of sympathetic output to the adrenal medulla by both adenosine A1 and A2a receptors are consistent with contribution of these receptors to the defense response, stress and exercise. These observations support previous findings that NTS A1 receptors contribute to the hypothalamic defense response. The effects of stimulation and blockade of NTS P2x receptors with alpha, beta-methylene ATP and suramin, respectively, suggested that neuronally-released ATP operating via P2x receptors may be a crucial co-transmitter with glutamate in mediating baroreflex responses. DISCUSSION The above observations strongly suggest that purinergic receptor subtypes operating in NTS circuitry are linked to specific afferent and descending mechanisms primarily integrated in the NTS.
Collapse
Affiliation(s)
- Tadeusz J Scislo
- Department of Physiology Wayne State University School of Medicine Detroit, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | |
Collapse
|
26
|
Antunes VR, Bonagamba LGH, Machado BH. Hemodynamic and respiratory responses to microinjection of ATP into the intermediate and caudal NTS of awake rats. Brain Res 2005; 1032:85-93. [PMID: 15680945 DOI: 10.1016/j.brainres.2004.10.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2004] [Indexed: 02/05/2023]
Abstract
The nucleus tractus solitarii (NTS) is the site of integration of the peripheral chemoreceptor afferents in the brainstem. Previous studies from our laboratory have shown that microinjection of ATP into the intermediate NTS produced increases in arterial pressure and bradycardia. In the present study, we evaluated the hemodynamic and respiratory responses to microinjection of ATP into the intermediate and caudal commissural NTS. In the same group of rats the responses were compared with cardiorespiratory responses to chemoreflex activation (KCN, i.v.). The data show that microinjection of ATP into the intermediate NTS produced pressor and bradycardic responses similar to those observed in response to chemoreflex activation but apnoea instead of tachypnoea. Microinjection of ATP into caudal commissural NTS produced increase in arterial pressure and tachypnoea similar to the chemoreflex but a minor bradycardia. The data show that microinjection of ATP into different sub-regions of the NTS produces a diverse pattern of hemodynamic and respiratory responses and suggest the involvement of this purine in the neurotransmission of the cardiovascular reflex in the NTS.
Collapse
Affiliation(s)
- Vagner R Antunes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
27
|
Ashour F, Deuchars J. Electron microscopic localisation of P2X4 receptor subunit immunoreactivity to pre- and post-synaptic neuronal elements and glial processes in the dorsal vagal complex of the rat. Brain Res 2004; 1026:44-55. [PMID: 15476696 DOI: 10.1016/j.brainres.2004.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 12/23/2022]
Abstract
P2X receptors are ligand gated ion channels activated by extracellular ATP. There are seven P2X subunits, P2X(1-7), and all are expressed in the CNS. The P2X(4) receptor subunit (P2X(4)R) is likely to be important in the CNS as it has been reported to be expressed throughout the brain and spinal cord. However, P2X(4)Rs have been identified as restricted to neurones, only in glia or expressed in both neurones and glia with no discernible relationship to CNS region or epitope target of antibodies used for staining. In addition, although there are particularly high levels of mRNA encoding P2X(4)R in the brainstem, previous immunohistochemical studies have revealed only indistinct staining. We therefore examined the distribution of P2X(4)R in the dorsal vagal complex (DVC) of the brainstem using immunohistochemistry in sections obtained from adult Wistar rats transcardially perfused with aldehyde fixatives. When this revealed staining identifiable only as small puncta at the light microscope level, we examined the area with electron microscopy. This ultrastructural study revealed that P2X(4)R immunoreactivity (IR) was present in neurones at both pre- and post-synaptic sites as well as in glial cell processes and somata. This P2X(4)R-IR was localised adjacent to plasma membranes, as well as internally in membrane bound structures resembling endosomes. Immunoreactivity in endosomes was more prominent following antigen retrieval protocols. Localisation of P2X(4)R-IR in astrocytes, identified by the presence of glial fibrillary acidic protein (GFAP), was confirmed using immunofluorescence. The presence of P2X(4)Rs in the dorsal vagal complex is consistent with expression studies, but some reasons for a lack of correlation with pharmacological studies are discussed. The P2X(4)R is therefore expressed by neurones and glia in the dorsal vagal complex and may play a role in mediating extracellular signalling by ATP in this region.
Collapse
Affiliation(s)
- Fathia Ashour
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ, UK
| | | |
Collapse
|
28
|
Jin YH, Bailey TW, Li BY, Schild JH, Andresen MC. Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci 2004; 24:4709-17. [PMID: 15152030 PMCID: PMC6729471 DOI: 10.1523/jneurosci.0753-04.2004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vanilloid (VR1) and purinergic (P2X) receptors are found in cranial afferent neurons in nodose ganglia and their central terminations within the solitary tract nucleus (NTS), but little is known about their function. We mechanically dissociated dorsomedial NTS neurons to preserve attached native synapses and tested for VR1 and P2X function primarily in spindle-shaped neurons resembling intact second-order neurons. All neurons (n = 95) exhibited spontaneous glutamate (EPSCs) and GABA (IPSCs)-mediated synaptic currents. VR1 agonist capsaicin (CAP; 100 nm) reversibly increased EPSC frequency, effects blocked by capsazepine. ATP (100 microm) increased EPSC frequency, actions blocked by P2X antagonist pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS; 20 microm). In all CAP-resistant neurons, P2X agonist alphabeta-methylene-ATP (alphabeta-m-ATP) increased EPSC frequency. Neither CAP nor alphabeta-m-ATP altered EPSC amplitudes, kinetics, or holding currents. Thus, activation of VR1 and P2X receptors selectively facilitated presynaptic glutamate release on different NTS neurons. PPADS and 2',3'-O-(2,4,6-trinitrophenyl)-ATP blocked alphabeta-m-ATP responses, but P2X1-selective antagonist NF023 (8,8'-[carbonylbis (imino-3,1-phenylene carbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid) did not. The pharmacological profile and transient kinetics of ATP responses are consistent with P2X3 homomeric receptors. TTX and Cd(2+) did not eliminate agonist-evoked EPSC frequency increases, suggesting that voltage-gated sodium and calcium channels are not required. In nodose ganglia, CAP but not alphabeta-m-ATP evoked inward currents in slow conducting neurons and the converse pattern in myelinated, rapidly conducting neurons (n = 14). Together, results are consistent with segregation of glutamatergic terminals into either P2X sensitive or VR1 sensitive that correspondingly identify myelinated and unmyelinated afferent pathways at the NTS.
Collapse
Affiliation(s)
- Young-Ho Jin
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | |
Collapse
|
29
|
de Paula PM, Antunes VR, Bonagamba LGH, Machado BH. Cardiovascular responses to microinjection of ATP into the nucleus tractus solitarii of awake rats. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1164-71. [PMID: 15231493 DOI: 10.1152/ajpregu.00722.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microinjection of increasing doses of ATP (0.31, 0.62, 1.25, and 2.5 nmol/50 nl) into the nucleus tractus solitarii (NTS) produced a dose-dependent pressor response. Prazosin abolished the pressor response and produced no change in the bradycardic response to ATP. Microinjection of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (0.25 nmol/50 nl), a nonselective P2 receptor antagonist into the NTS, reduced the bradycardic response but had no effect on the pressor response to microinjection of ATP (1.25 nmol/50 nl) into the NTS. Microinjection of suramin (2 nmol/50 nl), another nonselective P2 receptor antagonist, had no effect on the pressor and bradycardic responses to microinjection of ATP (1.25 nmol/50 nl) into the NTS. Antagonism of A1 receptors of adenosine with 1,3-dipropyl-8-cyclopentylxanthine also produced no changes in the cardiovascular responses to microinjection of ATP into the NTS. The involvement of excitatory amino acid (EAA) receptors in the pressor and bradycardic responses to microinjection of ATP into the NTS was also evaluated. Microinjection of kynurenic acid, a nonselective EAA receptor antagonist (10 nmol/50 nl), into the NTS reduced the bradycardic response and had no effect on the pressor response to microinjection of ATP into the NTS. The data show that 1) microinjection of ATP into the NTS of awake rats produced pressor and bradycardic responses by independent mechanisms, 2) the activation of parasympathetic component may involve an interaction of P2 and EAA receptors in the NTS, and 3) the sympathoexcitatory response to microinjection of ATP into the NTS was not affected by the blockade of P2, A1, or EAA receptors.
Collapse
Affiliation(s)
- Patrícia M de Paula
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
30
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
31
|
|