1
|
Borin M, Fogli Iseppe A, Pignatelli A, Belluzzi O. Inward rectifier potassium (Kir) current in dopaminergic periglomerular neurons of the mouse olfactory bulb. Front Cell Neurosci 2014; 8:223. [PMID: 25152712 PMCID: PMC4126183 DOI: 10.3389/fncel.2014.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/21/2014] [Indexed: 11/23/2022] Open
Abstract
Dopaminergic (DA) periglomerular (PG) neurons are critically placed at the entry of the bulbar circuitry, directly in contact with both the terminals of olfactory sensory neurons and the apical dendrites of projection neurons; they are autorhythmic and are the target of numerous terminals releasing a variety of neurotransmitters. Despite the centrality of their position, suggesting a critical role in the sensory processing, their properties -and consequently their function- remain elusive. The current mediated by inward rectifier potassium (Kir) channels in DA-PG cells was recorded by adopting the perforated-patch configuration in thin slices; IKir could be distinguished from the hyperpolarization-activated current (I h ) by showing full activation in <10 ms, no inactivation, suppression by Ba(2+) in a typical voltage-dependent manner (IC50 208 μM) and reversal potential nearly coincident with EK. Ba(2+) (2 mM) induces a large depolarization of DA-PG cells, paralleled by an increase of the input resistance, leading to a block of the spontaneous activity, but the Kir current is not an essential component of the pacemaker machinery. The Kir current is negatively modulated by intracellular cAMP, as shown by a decrease of its amplitude induced by forskolin or 8Br-cAMP. We have also tested the neuromodulatory effects of the activation of several metabotropic receptors known to be present on these cells, showing that the current can be modulated by a multiplicity of pathways, whose activation in some case increases the amplitude of the current, as can be observed with agonists of D2, muscarinic, and GABAA receptors, whereas in other cases has the opposite effect, as it can be observed with agonists of α1 noradrenergic, 5-HT and histamine receptors. These characteristics of the Kir currents provide the basis for an unexpected plasticity of DA-PG cell function, making them potentially capable to reconfigure the bulbar network to allow a better flexibility.
Collapse
Affiliation(s)
| | | | | | - Ottorino Belluzzi
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| |
Collapse
|
2
|
Cooper PE, Reutter H, Woelfle J, Engels H, Grange DK, van Haaften G, van Bon BW, Hoischen A, Nichols CG. Cantú syndrome resulting from activating mutation in the KCNJ8 gene. Hum Mutat 2014; 35:809-13. [PMID: 24700710 DOI: 10.1002/humu.22555] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/21/2014] [Indexed: 12/21/2022]
Abstract
ATP-sensitive potassium (KATP ) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome (CS), a distinct multiorgan disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of CS (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether coexpressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in CS, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from a Kir6-independent SUR2 function.
Collapse
Affiliation(s)
- Paige E Cooper
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Potassium Current Is Not Affected by Long-Term Exposure to Ghrelin or GHRP-6 in Somatotropes GC Cells. JOURNAL OF BIOPHYSICS 2013; 2013:913792. [PMID: 23533398 PMCID: PMC3600309 DOI: 10.1155/2013/913792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/17/2012] [Indexed: 11/17/2022]
Abstract
Ghrelin is a growth hormone (GH) secretagogue (GHS) and GHRP-6 is a synthetic peptide analogue; both act through the GHS receptor. GH secretion depends directly on the intracellular concentration of Ca(2+); this is determined from the intracellular reserves and by the entrance of Ca(2+) through the voltage-dependent calcium channels, which are activated by the membrane depolarization. Membrane potential is mainly determined by K(+) channels. In the present work, we investigated the effect of ghrelin (10 nM) or GHRP-6 (100 nM) for 96 h on functional expression of voltage-dependent K(+) channels in rat somatotropes: GC cell line. Physiological patch-clamp whole-cell recording was used to register the K(+) currents. With Cd(2+) (1 mM) and tetrodotoxin (1 μ m) in the bath solution recording, three types of currents were characterized on the basis of their biophysical and pharmacological properties. GC cells showed a K(+) current with a transitory component (I A) sensitive to 4-aminopyridine, which represents ~40% of the total outgoing current; a sustained component named delayed rectifier (I K), sensitive to tetraethylammonium; and a third type of K(+) current was recorded at potentials more negative than -80 mV, permitting the entrance of K(+) named inward rectifier (KIR). Chronic treatment with ghrelin or GHRP-6 did not modify the functional expression of K(+) channels, without significant changes (P < 0.05) in the amplitudes of the three currents observed; in addition, there were no modifications in their biophysical properties and kinetic activation or inactivation.
Collapse
|
4
|
Stojilkovic SS, Kretschmannova K, Tomić M, Stratakis CA. Dependence of the excitability of pituitary cells on cyclic nucleotides. J Neuroendocrinol 2012; 24:1183-200. [PMID: 22564128 PMCID: PMC3421050 DOI: 10.1111/j.1365-2826.2012.02335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. We review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process.
Collapse
Affiliation(s)
- S S Stojilkovic
- Sections on Cellular Signalling and Endocrinology and Genetics, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
5
|
Molecular mechanisms of pituitary endocrine cell calcium handling. Cell Calcium 2011; 51:212-21. [PMID: 22138111 DOI: 10.1016/j.ceca.2011.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/30/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
Abstract
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.
Collapse
|
6
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
7
|
Veldhuis JD, Bowers CY. Integrating GHS into the Ghrelin System. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010:879503. [PMID: 20798846 PMCID: PMC2925380 DOI: 10.1155/2010/879503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/30/2009] [Indexed: 12/21/2022]
Abstract
Oligopeptide derivatives of metenkephalin were found to stimulate growth-hormone (GH) release directly by pituitary somatotrope cells in vitro in 1977. Members of this class of peptides and nonpeptidyl mimetics are referred to as GH secretagogues (GHSs). A specific guanosine triphosphatate-binding protein-associated heptahelical transmembrane receptor for GHS was cloned in 1996. An endogenous ligand for the GHS receptor, acylghrelin, was identified in 1999. Expression of ghrelin and homonymous receptor occurs in the brain, pituitary gland, stomach, endothelium/vascular smooth muscle, pancreas, placenta, intestine, heart, bone, and other tissues. Principal actions of this peptidergic system include stimulation of GH release via combined hypothalamopituitary mechanisms, orexigenesis (appetitive enhancement), insulinostasis (inhibition of insulin secretion), cardiovascular effects (decreased mean arterial pressure and vasodilation), stimulation of gastric motility and acid secretion, adipogenesis with repression of fat oxidation, and antiapoptosis (antagonism of endothelial, neuronal, and cardiomyocyte death). The array of known and proposed interactions of ghrelin with key metabolic signals makes ghrelin and its receptor prime targets for drug development.
Collapse
Affiliation(s)
- Johannes D. Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Cyril Y. Bowers
- Division of Endocrinology, Department of Internal Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Iqbal J, Latchoumanin O, Sari IP, Lang RJ, Coleman HA, Parkington HC, Clarke IJ. Estradiol-17beta inhibits gonadotropin-releasing hormone-induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone release. Endocrinology 2009; 150:4213-20. [PMID: 19477939 DOI: 10.1210/en.2009-0092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In pituitary gonadotropes, estrogens have biphasic actions to cause an initial negative feedback followed by a positive feedback on LH secretion, but the mechanisms involved are not clearly understood. To investigate the feedback effects of estrogen, we used mixed ovine pituitary cell cultures (48-72 h), which were treated with 10(-9) M estradiol-17beta (E(2)) or vehicle followed by a pulse of 10(-9) M GnRH. Medium was collected for LH assay and cells extracted to determine activation of MAPK (phosphorylated ERK-1/2). E(2) treatment for 5 min reduced GnRH-induced LH release and caused phosphorylation of ERK-1/2. E(2) alone also caused phosphorylation of ERK-1/2, similar to the response evoked by GnRH alone. GnRH increased cytoplasmic intracellular free calcium concentration ([Ca(2+)](i)) and this was abolished by 2 min pretreatment with E(2) or E-bovine serum albumen conjugate. Blockade of Ca(2+) channels with nifedipine had no effect on the initial peak of GnRH-induced increase in [Ca(2+)](i) but reduced its duration by 27 +/- 6%. Depletion of intracellular Ca(2+) stores with thapsigargin prevented GnRH-induced increase in [Ca(2+)](i). Thapsigargin (10(-7) M) or nifedipine (10(-5) M) pretreatment (15 min) of cells lowered GnRH-induced LH secretion by 30 +/- 6 and 50% +/- 4%, respectively. We conclude that inhibition of the GnRH-induced increase in [Ca(2+)](i) in gonadotropes by E(2) is a likely mechanism for the negative feedback effect of E(2) on LH secretion involving a rapid nongenomic effect of E(2). Activation of the MAPK pathway by E(2) may be the mechanism for the time-delayed positive feedback effect on LH secretion at the level of the gonadotrope.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
9
|
Steyn FJ, Boehme F, Vargas E, Wang K, Parkington HC, Rao JR, Chen C. Adiponectin regulate growth hormone secretion via adiponectin receptor mediated Ca(2+) signalling in rat somatotrophs in vitro. J Neuroendocrinol 2009; 21:698-704. [PMID: 19500219 DOI: 10.1111/j.1365-2826.2009.01887.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity is associated with reduced levels of growth hormone (GH) and the disruption of pulsatile GH secretion. This results in relative GH deficiency. It is likely that a regulatory relationship between GH secretion and adipose tissue exists as the secretion of GH recovers to normal levels after a reduction in body weight. This report characterise the expression and interaction of adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) and adiponectin, respectively, in regulating the activity of GH secreting cells. Polymerase chain reaction analysis of the GH3 cell line, rat anterior pituitary gland and isolated somatotroph cells from transgenic GFP expressing mice confirmed the expression of both AdipoR1 and AdipoR2 in GH secretory cells. Because GH cells expressed both receptors, it is likely that the measured increase in GH secretion, observed in primary cultured rat pituitary cells after 30 min of incubation with full-length murine adiponectin, was mediated by a direct receptor regulated process. Adiponectin induced an increase in intracellular Ca(2+) through both the influx of extracellular Ca(2+) and the release of intracellular Ca(2+) stores resulting in the secretion of GH. Furthermore, results confirm that this increase in GH secretion depended mainly on an increase in Ca(2+) influx through L-type Ca(2+) channels. It is concluded that adiponectin directly regulates GH secretion from somatotrophs by binding to either adiponectin receptor, and that this is mediated via a similar process observed after the stimulation of GH secretion by GH-releasing hormone.
Collapse
Affiliation(s)
- F J Steyn
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Mladenov MI, Hristov KL, Dimitrova DZ, Schubert R, Lubomirov LT, Gjorgoski IK, Duridanova DB, Gagov HS. Ghrelin signalling in guinea-pig femoral artery smooth muscle cells. Acta Physiol (Oxf) 2008; 194:195-206. [PMID: 18577183 DOI: 10.1111/j.1748-1716.2008.01880.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM Our aim was to study the new signalling pathway of ghrelin in the guinea-pig femoral artery using the outward I(K) as a sensor. METHODS Whole-cell patch-clamp experiments were performed on single smooth muscle cells, freshly isolated from the guinea-pig femoral artery. The contractile force of isometric preparations of the same artery was measured using a wire-myograph. RESULTS In a Ca2+- and nicardipine-containing external solution, 1 mmol L(-1) tetraethylammonium reduced the net I(K) by 49 +/- 7%. This effect was similar and not additive to the effect of the specific BK(Ca) channel inhibitor iberiotoxin. Ghrelin (10(-7) mol L(-1)) quickly and significantly reduced the amplitudes of tetraethylammonium- and iberiotoxin-sensitive currents through BK(Ca) channels. The application of 5 x 10(-6) mol L(-1) desacyl ghrelin did not affect the amplitude of the control I(K) but it successfully prevented the ghrelin-induced I(K) decrease. The effect of ghrelin on I(K) was insensitive to selective inhibitors of cAMP-dependent protein kinase, soluble guanylyl cyclase, cGMP-dependent protein kinase or a calmodulin antagonist, but was effectively antagonized by blockers of BK(Ca) channels, phosphatidylinositol-phospholipase C, phosphatidylcholine-phospholipase C, protein kinase C, SERCA, IP(3)-induced Ca2+ release and by pertussis toxin. The ghrelin-induced increase in the force of contractions was blocked when iberiotoxin (10(-7) mol L(-1)) was present in the bath solution. CONCLUSIONS Ghrelin reduces I(K(Ca)) in femoral artery myocytes by a mechanism that requires activation of Galpha(i/o)-proteins, phosphatidylinositol phospholipase C, phosphatidylcholine phospholipase C, protein kinase C and IP(3)-induced Ca2+ release.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Endothelin-1/pharmacology
- Femoral Artery/drug effects
- Femoral Artery/metabolism
- Femoral Artery/physiology
- Ghrelin/pharmacology
- Guinea Pigs
- Intermediate-Conductance Calcium-Activated Potassium Channels/drug effects
- Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Patch-Clamp Techniques
- Peptides/pharmacology
- Phosphoinositide Phospholipase C/physiology
- Protein Kinase C/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Type C Phospholipases/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- M I Mladenov
- Department of Ion Channels, Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tsaneva-Atanasova K, Sherman A, van Goor F, Stojilkovic SS. Mechanism of Spontaneous and Receptor-Controlled Electrical Activity in Pituitary Somatotrophs: Experiments and Theory. J Neurophysiol 2007; 98:131-44. [PMID: 17493919 DOI: 10.1152/jn.00872.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cultured pituitary somatotrophs release growth hormone in response to spontaneous Ca2+ entry through voltage-gated calcium channels (VGCCs) that is governed by plateau-bursting electrical activity and is regulated by several neurohormones, including GH-releasing hormone (GHRH) and somatostatin. Here we combine experiments and theory to clarify the mechanisms underlying spontaneous and receptor-controlled electrical activity. Experiments support a role of a Na+-conducting and tetrodotoxin-insensitive channel in controlling spontaneous and GHRH-stimulated pacemaking, the latter in a cAMP-dependent manner; an opposing role of spontaneously active inwardly rectifying K+ ( Kir) channels and G-protein-regulated Kir channels in somatostatin-mediated inhibition of pacemaking; as well as a role of VGCCs in spiking and large conductance (BK-type) Ca2+-activated K+ channels in plateau bursting. The mathematical model is compatible with a wide variety of experimental data involving pharmacology and extracellular ion substitution and supports the importance of constitutively active tetrodotoxin-insensitive Na+ and Kir channels in maintaining spontaneous pacemaking in pituitary somatotrophs. The model also suggests that these channels are involved in the up- and downregulation of electrical activity by GHRH and somatostatin. In the model, the plateau bursting is controlled by two functional populations of BK channels, characterized by distance from the VGCCs. The rapid activation of the proximal BK channels is critical for the establishment of the plateau, whereas slow recruitment of the distal BK channels terminates the plateau.
Collapse
|
12
|
Dominguez B, Felix R, Monjaraz E. Ghrelin and GHRP-6 enhance electrical and secretory activity in GC somatotropes. Biochem Biophys Res Commun 2007; 358:59-65. [PMID: 17481583 DOI: 10.1016/j.bbrc.2007.04.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
It is well established that pituitary somatotropes fire spontaneous action potentials (SAP) which generate Ca(2+) signals of sufficient amplitude to trigger growth hormone (GH) release. It is also known that ghrelin and synthetic GH-releasing peptides (GHRPs) stimulate GH secretion, though the mechanisms involved remain unclear. In the current report, we show that the chronic (96h) treatment with ghrelin and GHRP-6 increases the firing frequency of SAP in the somatotrope GC cell line. This action is associated with a significant increase in whole-cell inward current density. In addition, long-term application of Na(+) or L-type Ca(2+) current antagonists decreases GHRP-6-induced release of GH, indicating that the ionic currents that give rise to SAP play important roles for hormone secretion in the GC cells. Together, our results suggest that ghrelin and GHPR-6 may increase whole-cell inward current density thereby enhancing SAP firing frequency and facilitating GH secretion from GC somatotropes.
Collapse
Affiliation(s)
- Belisario Dominguez
- Laboratory of Neuroendocrinology, Institute of Physiology, University of Puebla, Puebla, Mexico
| | | | | |
Collapse
|
13
|
Yang SK, Parkington HC, Blake AD, Keating DJ, Chen C. Somatostatin increases voltage-gated K+ currents in GH3 cells through activation of multiple somatostatin receptors. Endocrinology 2005; 146:4975-84. [PMID: 16081634 DOI: 10.1210/en.2005-0696] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The secretion of GH by somatotropes is inhibited by somatostatin (SRIF) through five specific membrane receptors (SSTRs). SRIF increases both transient outward (IA) and delayed rectifying (IK) K+ currents. We aim to clarify the subtype(s) of SSTRs involved in K+ current enhancement in GH3 somatotrope cells using specific SSTR subtype agonists. Expression of all five SSTRs was confirmed in GH3 cells by RT-PCR. Nystatin-perforated patch clamp was used to record voltage-gated K+ currents. We first established the presence of IA and IK type K+ currents in GH3 cells using different holding potentials (-40 or -70 mV) and specific blockers (4-aminopirimidine and tetraethylammonium chloride). SRIF (200 nM) increased the amplitude of both IA and IK in a fully reversible manner. Various concentrations of each specific SRTR agonist were tested on K+ currents to find the maximal effective concentration. Activation of SSTR2 and SSTR4 by their respective agonists, L-779,976 and L-803,087 (10 nM), increased K+ current amplitude without preference to IA or IK, and abolished any further increase by SRIF. Activation of SSTR1 and SSTR5 by their respective agonists, L-797,591 or L-817,818 (10 nM), increased K+ current amplitude, but SRIF evoked a further increase. The SSTR3 agonist L-797,778 (10 nM) did not affect the K+ currents or the response to SRIF. These results indicate that SSTR1, -2, -4, and -5 may all be involved in the enhancement of K+ currents by SRIF but that only the activation of SSTR2 or -4 results in the full activation of K+ current caused by SRIF.
Collapse
Affiliation(s)
- Seung-Kwon Yang
- Prince Henry's Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | | | |
Collapse
|
14
|
Han XF, Zhu YL, Hernandez M, Keating DJ, Chen C. Ghrelin reduces voltage-gated potassium currents in GH3 cells via cyclic GMP pathways. Endocrine 2005; 28:217-24. [PMID: 16388096 DOI: 10.1385/endo:28:2:217] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/05/2005] [Accepted: 06/10/2005] [Indexed: 11/11/2022]
Abstract
Ghrelin is an endogenous growth hormone secretagogue (GHS) causing release of GH from pituitary somatotropes through the GHS receptor. Secretion of GH is linked directly to intracellular free Ca(2+) concentration ([Ca(2+)]i), which is determined by Ca(2+) influx and release from intracellular Ca(2+) storage sites. Ca(2+) influx is via voltage-gated Ca(2+) channels, which are activated by cell depolarization. Membrane potential is mainly determined by transmembrane K(+) channels. The present study investigates the in vitroeffect of ghrelin on membrane voltage-gated K(+) channels in the GH3 rat somatotrope cell line. Nystatin-perforated patch clamp recording was used to record K(+) currents under voltage-clamp conditions. In the presence of Co(2+) (1 mM, Ca(2+) channel blocker) and tetrodotoxin (1 microM, Na(+) channel blocker) in the bath solution, two types of voltage-gated K(+) currents were characterized on the basis of their biophysical kinetics and pharmacological properties. We observed that transient K(+) current (IA) represented a significant proportion of total K(+) currents in some cells, whereas delayed rectifier K(+) current (IK) existed in all cells. The application of ghrelin (10 nM) reversibly and significantly decreased the amplitude of both IA and IK currents to 48% and 64% of control, respectively. Application of apamin (1 microM, SK channel blocker) or charybdotoxin (1 microM, BK channel blocker) did not alter the K(+) current or the response to ghrelin. The ghrelin-induced reduction in K(+) currents was not affected by PKC and PKA inhibitors. KT5823, a specific PKG inhibitor, totally abolished the K+ current response to ghrelin. These results suggest that ghrelin-induced reduction of voltage-gated K(+) currents in GH3 cells is mediated through a PKG-dependent pathway. A decrease in voltage-gated K(+) currents may increase the frequency, duration, and amplitude of action potentials and contribute to GH secretion from somatotropes.
Collapse
Affiliation(s)
- Xue Feng Han
- Department of Physiology, Fourth Military Medical University, Shannxi, China
| | | | | | | | | |
Collapse
|
15
|
Yunker WK, Smith S, Graves C, Davis PJ, Unniappan S, Rivier JE, Peter RE, Chang JP. Endogenous hypothalamic somatostatins differentially regulate growth hormone secretion from goldfish pituitary somatotropes in vitro. Endocrinology 2003; 144:4031-41. [PMID: 12933677 DOI: 10.1210/en.2003-0439] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using Southern blot analysis of RT-PCR products, mRNA for three different somatostatin (SS) precursors (PSS-I, -II, and -III), which encode for SS(14), goldfish brain (gb)SS(28), and [Pro(2)]SS(14), respectively, were detected in goldfish hypothalamus. PSS-I and -II mRNA, but not PSS-III mRNA, were also detected in cultured pituitary cells. We subsequently examined the effects of the mature peptides, SS(14), gbSS(28), and [Pro(2)]SS(14), on somatotrope signaling and GH secretion. The gbSS(28) was more potent than either SS(14) or [Pro(2)]SS(14) in reducing basal GH release but was the least effective in reducing basal cellular cAMP. The ability of SS(14), [Pro(2)]SS(14), and gbSS(28) to attenuate GH responses to GnRH were comparable. However, gbSS(28) was less effective than SS(14) and [Pro(2)]SS(14) in diminishing dopamine- and pituitary adenylate cyclase-activating polypeptide-stimulated GH release, as well as GH release resulting from the activation of their underlying signaling cascades. In contrast, the actions of a different 28-amino-acid SS, mammalian SS(28), were more similar to those of SS(14) and [Pro(2)]SS(14). We conclude that, in goldfish, SSs differentially couple to the intracellular cascades regulating GH secretion from pituitary somatotropes. This raises the possibility that such differences may allow for the selective regulation of various aspects of somatotrope function by different SS peptides.
Collapse
Affiliation(s)
- Warren K Yunker
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | | | | | | | | | |
Collapse
|