1
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification. J Physiol Sci 2024; 74:3. [PMID: 38238667 PMCID: PMC10795261 DOI: 10.1186/s12576-023-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
2
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Sforna L, Cenciarini M, Belia S, Michelucci A, Pessia M, Franciolini F, Catacuzzeno L. Hypoxia Modulates the Swelling-Activated Cl Current in Human Glioblastoma Cells: Role in Volume Regulation and Cell Survival. J Cell Physiol 2016; 232:91-100. [PMID: 27028592 DOI: 10.1002/jcp.25393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/25/2016] [Indexed: 12/18/2022]
Abstract
The malignancy of glioblastoma multiforme (GBM), the most common human brain tumor, correlates with the presence of hypoxic areas, but the underlying mechanisms are unclear. GBM cells express abundant Cl channels whose activity supports cell volume and membrane potential changes, ultimately leading to cell proliferation, migration, and escaping death. In non-tumor tissues Cl channels are modulated by hypoxia, which prompted us to verify whether hypoxia would also modulate Cl channels in GBM cells. Our results show that in GBM cell lines, acute application of a hypoxic solution activates a Cl current displaying the biophysical and pharmacological features of the swelling-activated Cl current (ICl,swell ). We also found that acute hypoxia increased the cell volume by about 20%, and a 30% hypertonic solution partially inhibited the hypoxia-activated Cl current, suggesting that cell swelling and the activation of the Cl current are sequential events. Notably, the hypoxia-induced cell swelling was followed by a regulatory volume decrease (RVD) mediated mainly by ICl,swell . Since, a hypoxia-induced prolonged cell swelling is usually regarded as a death insult, we hypothesized that the hypoxia-activated Cl current could limit cell swelling and prevent necrotic death of GBM cells under hypoxic conditions. In accordance, we found that the ICl,swell inhibitor DCPIB hampered the RVD process, and more importantly it sensibly increased the hypoxia-induced necrotic death in these cells. Taken together, these results suggest that Cl channels are strongly involved in the survival of GBM cells in a hypoxic environment, and may thus represent a new therapeutic target for this malignant tumor. J. Cell. Physiol. 232: 91-100, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.,Department of Experimental Medicine, University of Perugia, Italy
| | - Marta Cenciarini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Antonio Michelucci
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti 'G. d'Annunzio', Italy
| | - Mauro Pessia
- Department of Experimental Medicine, University of Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
4
|
Sirianant L, Ousingsawat J, Tian Y, Schreiber R, Kunzelmann K. TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl- currents. Cell Signal 2014; 26:2826-33. [PMID: 25220380 DOI: 10.1016/j.cellsig.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Eight paralogue members form the family of transmembrane channel-like (TMC) proteins that share considerable sequence homology to anoctamin 1 (Ano1, TMEM16A). Ano1 is a Ca(2+) activated Cl(-) channel that is related to head and neck cancer, often caused by human papilloma virus (HPV) infection. Mutations in TMC 6 and 8 (EVER1, EVER2) cause epidermodysplasia verruciformis. This rare skin disease is characterized by abnormal susceptibility to HPV infection and cancer. We found that in contrast to Ano1 the common paralogues TMC4-TMC8 did not produce Ca(2+) activated Cl(-) currents when expressed in HEK293 cells. On the contrary, TMC8 was found to be localized in the endoplasmic reticulum (ER), where it inhibited receptor mediated Ca(2+) release, activation of Ano1 and volume regulated LRRC8-related Cl(-) currents. Zn(2+) is co-released from the ER together with Ca(2+) and thereby further augments Ca(2+) store release. Because TMC8 is required to lower cytosolic Zn(2+) concentrations by the Zn(2+) transporter ZnT-1, we hypothesize that HPV infections and cancer caused by mutations in TMC8 are related to upregulated Zn(2+)/Ca(2+) signaling and activation of Ano1.
Collapse
Affiliation(s)
- Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Yuemin Tian
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
5
|
Akita T, Okada Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 2014; 275:211-31. [DOI: 10.1016/j.neuroscience.2014.06.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/05/2023]
|
6
|
Yan Y, Ding Y, Ming B, Du W, Kong X, Tian L, Zheng F, Fang M, Tan Z, Gong F. Increase in hypotonic stress-induced endocytic activity in macrophages via ClC-3. Mol Cells 2014; 37:418-25. [PMID: 24850147 PMCID: PMC4044314 DOI: 10.14348/molcells.2014.0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022] Open
Abstract
Extracellular hypotonic stress can affect cellular function. Whether and how hypotonicity affects immune cell function remains to be elucidated. Macrophages are immune cells that play key roles in adaptive and innate in immune reactions. The purpose of this study was to investigate the role and underlying mechanism of hypotonic stress in the function of bone marrow-derived macrophages (BMDMs). Hypotonic stress increased endocytic activity in BMDMs, but there was no significant change in the expression of CD80, CD86, and MHC class II molecules, nor in the secretion of TNF-α or IL-10 by BMDMs. Furthermore, the enhanced endocytic activity of BMDMs triggered by hypotonic stress was significantly inhibited by chloride channel-3 (ClC-3) siRNA. Our findings suggest that hypotonic stress can induce endocytosis in BMDMs and that ClC-3 plays a central role in the endocytic process.
Collapse
Affiliation(s)
- Yutao Yan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Yu Ding
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Bingxia Ming
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Wenjiao Du
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Xiaoling Kong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Li Tian
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Fang Zheng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Min Fang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Zheng Tan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| |
Collapse
|
7
|
Wang XG, Tao J, Ma MM, Tang YB, Zhou JG, Guan YY. Tyrosine 284 phosphorylation is required for ClC-3 chloride channel activation in vascular smooth muscle cells. Cardiovasc Res 2013; 98:469-78. [DOI: 10.1093/cvr/cvt063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
8
|
Volume-sensitive anion channels mediate osmosensitive glutathione release from rat thymocytes. PLoS One 2013; 8:e55646. [PMID: 23383255 PMCID: PMC3559474 DOI: 10.1371/journal.pone.0055646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022] Open
Abstract
Glutathione (GSH) is a negatively charged tripeptide, which is a major determinant of the cellular redox state and defense against oxidative stress. It is assembled inside and degraded outside the cells and is released under various physiological and pathophysiological conditions. The GSH release mechanism is poorly understood at present. In our experiments, freshly isolated rat thymocytes were found to release GSH under normal isotonic conditions at a low rate of 0.82±0.07 attomol/cell/min and that was greatly enhanced under hypoosomotic stimulation to reach a level of 6.1±0.4 attomol/cell/min. The swelling-induced GSH release was proportional to the cell density in the suspension and was temperature-dependent with relatively low activation energy of 5.4±0.6 kcal/mol indicating a predominant diffusion mechanism of GSH translocation. The osmosensitive release of GSH was significantly inhibited by blockers of volume-sensitive outwardly rectifying (VSOR) anion channel, DCPIB and phloretin. In patch-clamp experiments, osmotic swelling activated large anionic conductance with the VSOR channel phenotype. Anion replacement studies suggested that the thymic VSOR anion channel is permeable to GSH(-) with the permeability ratio P(GSH)/P(Cl) of 0.32 for influx and 0.10 for efflux of GSH. The osmosensitive GSH release was trans-stimulated by SLCO/OATP substrates, probenecid, taurocholic acid and estrone sulfate, and inhibited by an SLC22A/OAT blocker, p-aminohippuric acid (PAH). The inhibition by PAH was additive to the effect of DCPIB or phloretin implying that PAH and DCPIB/phloretin affected separate pathways. We suggest that the VSOR anion channel constitutes a major part of the γ-glutamyl cycle in thymocytes and, in cooperation with OATP-like and OAT-like transporters, provides a pathway for the GSH efflux from osmotically swollen cells.
Collapse
|
9
|
Tamma G, Dossena S, Nofziger C, Valenti G, Svelto M, Paulmichl M. EGF stimulates IClswell by a redistribution of proteins involved in cell volume regulation. Cell Physiol Biochem 2011; 28:1191-202. [PMID: 22179007 DOI: 10.1159/000335851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND ICln is a multifunctional protein involved in the generation of chloride currents activated during regulatory volume decrease (RVD) after cell swelling (ICl(swell)). Growth factor receptors play a key role in different cellular processes and epidermal growth factor (EGF) regulates swelling-activated chloride permeability. AIM We set out to investigate if the EGF-induced upregulation of ICl(swell) could be explained by a rearrangement of ICln subcellular distribution and interaction with its molecular partners. METHODS NIH-3T3 fibroblasts were serum-deprived for 24 hours and stimulated with EGF (40 ng/ml) for 30 minutes. ICl(swell) activation, ICln distribution and interaction with its molecular partner HSPC038 were assessed by whole cell patch clamp and fluorescence resonance energy transfer (FRET). RESULTS EGF treatment significantly enhanced the direct molecular interaction between ICln and HSPC038 and also resulted in an increase of ICln and HSPC038 association with the plasma membrane. Importantly, these events are associated with a significant increase of ICl(swell). CONCLUSIONS The present data indicate that EGF might exert its role in the modulation of volume-sensitive chloride currents in part through activation and translocation of ICln and HSPC038 to the plasma membrane.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of General and Environmental Physiology, University of Bari, Bari
| | | | | | | | | | | |
Collapse
|
10
|
Swelling-activated anion channels are essential for volume regulation of mouse thymocytes. Int J Mol Sci 2011; 12:9125-37. [PMID: 22272123 PMCID: PMC3257120 DOI: 10.3390/ijms12129125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/10/2011] [Accepted: 11/24/2011] [Indexed: 11/16/2022] Open
Abstract
Channel-mediated trans-membrane chloride movement is a key process in the active cell volume regulation under osmotic stress in most cells. However, thymocytes were hypothesized to regulate their volume by activating a coupled K-Cl cotransport mechanism. Under the patch-clamp, we found that osmotic swelling activates two types of macroscopic anion conductance with different voltage-dependence and pharmacology. At the single-channel level, we identified two types of events: one corresponded to the maxi-anion channel, and the other one had characteristics of the volume-sensitive outwardly rectifying (VSOR) chloride channel of intermediate conductance. A VSOR inhibitor, phloretin, significantly suppressed both macroscopic VSOR-type conductance and single-channel activity of intermediate amplitude. The maxi-anion channel activity was largely suppressed by Gd(3+) ions but not by phloretin. Surprisingly, [(dihydroindenyl)oxy] alkanoic acid (DIOA), a known antagonist of K-Cl cotransporter, was found to significantly suppress the activity of the VSOR-type single-channel events with no effect on the maxi-anion channels at 10 μM. The regulatory volume decrease (RVD) phase of cellular response to hypotonicity was mildly suppressed by Gd(3+) ions and was completely abolished by phloretin suggesting a major impact of the VSOR chloride channel and modulatory role of the maxi-anion channel. The inhibitory effect of DIOA was also strong, and, most likely, it occurred via blocking the VSOR Cl(-) channels.
Collapse
|
11
|
Are membrane tyrosine kinase receptors involved in osmotransduction? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18727249 DOI: 10.1007/0-387-23752-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
12
|
Jeulin C, Seltzer V, Bailbé D, Andreau K, Marano F. EGF mediates calcium-activated chloride channel activation in the human bronchial epithelial cell line 16HBE14o-: involvement of tyrosine kinase p60c-src. Am J Physiol Lung Cell Mol Physiol 2008; 295:L489-96. [PMID: 18586953 DOI: 10.1152/ajplung.90282.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Particulate atmospheric pollutants interact with the human airway epithelium, which releases cytokines, chemokines, and EGF receptor (EGFR) ligands leading to proinflammatory responses. There is little information concerning the short-term effects of EGFR activation by extracellular ligands on ionic regulation of airway surface lining fluids. We identified in the membrane of human epithelial bronchial cells (16HBE14o(-) line) an endogenous calcium- and voltage-dependent, outwardly rectifying small-conductance chloride channel (CACC), and we examined the effects of EGF on CACC activity. Ion channel currents were recorded with the patch-clamp technique. In cell-attached membrane patches, CACC were activated by exposure of the external surface of the cells to physiological concentrations of EGF without any change in cytosolic Ca(2+) concentration ([Ca(2+)](i)) and inhibited by tyrphostin AG-1478 (an inhibitor of EGFR that also blocks EGF-dependent Src family kinase activation). EGF activation of c-Src protein in 16HBE14o(-) cells was observed, and the signaling pathway elicited by EGFR was blocked by tyrphostin AG-1478. In excised inside-out membrane patches CACC were activated by exposure of the cytoplasmic face of the channels to the human recombinant Src(p60(c-src)) kinase with endogenous or exogenous ATP and inhibited by lambda-protein phosphatase. Secretion of EGFR ligands by epithelial airway cells exposed to pollutants would then elicit a rapid and direct ionic response of CACC mediated by EGFR activation via a Src kinase family-dependent signaling pathway.
Collapse
Affiliation(s)
- Claudette Jeulin
- Laboratoire de Cytophysiologie et Toxicologie Cellulaire, case courrier 7073, 3ème étage, T53-54, Université Paris 7 Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
13
|
Franco R, Panayiotidis MI, de la Paz LDO. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008; 216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Cell Biology and Signal Transduction, Biomedical Research Unit, FES-Iztacala, UNAM, Mexico.
| | | | | |
Collapse
|
14
|
Fisher SK, Cheema TA, Foster DJ, Heacock AM. Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors. J Neurochem 2008; 106:1998-2014. [PMID: 18518929 DOI: 10.1111/j.1471-4159.2008.05510.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The CNS is particularly vulnerable to reductions in plasma osmolarity, such as occur during hyponatremia, the most commonly encountered electrolyte disorder in clinical practice. In response to a lowered plasma osmolarity, neural cells initially swell but then are able to restore their original volume through the release of osmolytes, both inorganic and organic, and the exit of osmotically obligated water. Given the importance of the maintenance of cell volume within the CNS, mechanisms underlying the release of osmolytes assume major significance. In this context, we review recent evidence obtained from our laboratory and others that indicates that the activation of specific G-protein-coupled receptors can markedly enhance the volume-dependent release of osmolytes from neural cells. Of particular significance is the observation that receptor activation significantly lowers the osmotic threshold at which osmolyte release occurs, thereby facilitating the ability of the cells to respond to small, more physiologically relevant, reductions in osmolarity. The mechanisms underlying G-protein-coupled receptor-mediated osmolyte release and the possibility that this efflux can result in both physiologically beneficial and potentially harmful pathophysiological consequences are discussed.
Collapse
Affiliation(s)
- Stephen K Fisher
- Molecular and Behavioral Neuroscience Institute; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.
| | | | | | | |
Collapse
|
15
|
Missan S, Linsdell P, McDonald TF. Involvement of tyrosine kinase in the hyposmotic stimulation of I Ks in guinea-pig ventricular myocytes. Pflugers Arch 2007; 456:489-500. [DOI: 10.1007/s00424-007-0424-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/24/2007] [Accepted: 12/06/2007] [Indexed: 11/30/2022]
|
16
|
Ren Z, Raucci FJ, Browe DM, Baumgarten CM. Regulation of swelling-activated Cl(-) current by angiotensin II signalling and NADPH oxidase in rabbit ventricle. Cardiovasc Res 2007; 77:73-80. [PMID: 18006461 DOI: 10.1093/cvr/cvm031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS We assessed whether hypoosmotic swelling of cardiac myocytes activates volume-sensitive Cl(-) current (I Cl,swell) via the angiotensin II (AngII)-reactive oxygen species (ROS) signalling cascade. The AngII-ROS pathway previously was shown to elicit I(Cl,swell) upon mechanical stretch of beta(1D) integrin. Integrin stretch and osmotic swelling are, however, distinct stimuli. For example, blocking Src kinases stimulates swelling-induced but inhibits stretch-induced I Cl,swell. METHODS AND RESULTS I Cl,swell was measured in rabbit ventricular myocytes by whole-cell voltage clamp. Swelling-induced I Cl,swell was completely blocked by losartan and eprosartan, AngII type I receptor (AT1) antagonists. AT1 stimulation transactivates epidermal growth factor receptor (EGFR) kinase. Blockade of EGFR kinase with AG1478 abolished both I Cl,swell and AngII-induced Cl(-) current, whereas exogenous EGF evoked a Cl(-) current that was suppressed by osmotic shrinkage. Phosphatidylinositol 3-kinase (PI-3K) is downstream of EGFR kinase, and PI-3K inhibitors LY294002 and wortmannin blocked I Cl,swell. Ultimately, AngII signals via NADPH oxidase (NOX) and superoxide anion, O2*. NOX inhibitors, diphenyleneiodonium, apocynin and gp91ds-tat, eliminated I Cl,swell, whereas scramb-tat, an inactive gp91ds-tat analogue, was ineffective. O2* rapidly dismutates to H2O2. Consistent with H2O2 being a downstream effector, catalase inhibited I Cl,swell, and exogenous H2O2 overcame suppression of I Cl,swell by AT1 receptor, EGFR kinase, and PI-3K blockers. H2O2-induced current was not blocked by osmotic shrinkage, however. CONCLUSION Activation of I Cl,swell by osmotic swelling is controlled by the AngII-ROS cascade, the same pathway previously implicated in I Cl,swell activation by integrin stretch. This in part explains why I Cl,swell is persistently activated in several models of cardiac disease.
Collapse
Affiliation(s)
- Zuojun Ren
- Department of Physiology, Pauley Heart Center, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | | | | | | |
Collapse
|
17
|
Inoue H, Ohtaki H, Nakamachi T, Shioda S, Okada Y. Anion channel blockers attenuate delayed neuronal cell death induced by transient forebrain ischemia. J Neurosci Res 2007; 85:1427-35. [PMID: 17394260 DOI: 10.1002/jnr.21279] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chloride efflux is known to be involved in the progression of apoptosis in various cell types. We have recently shown that the volume-sensitive outwardly rectifying (VSOR) anion channel serves as the pathway for apoptotic chloride efflux in some cells. In the present study, we tested the neuroprotective effects of drugs that can block the VSOR anion channel, on delayed neuronal death (DND) induced by transient forebrain ischemia. The functional expression of the VSOR anion channel was first examined in hippocampal neurons in both primary culture and hippocampal slice preparations, by the whole-cell patch-clamp technique. We then tested the channel's sensitivity to an anion channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and a tyrosine kinase blocker, genistein. By histological examinations and cytochrome c release assessments, the protective effects of these drugs on the DND of hippocampal CA1 neurons in mice subjected to transient ischemia were examined. Drugs were administered via the jugular vein prior to ischemic treatment and into the peritoneal cavity after reperfusion. Hippocampal neurons were found to express the volume-sensitive Cl(-) channel, which exhibits outward rectification and is sensitive to DIDS and genistein. Administration of DIDS or genistein reduced cytochrome c release and the number of damaged neurons in the CA1 region after transient forebrain ischemia. This fact suggests that the DND induction mechanism involves the activity of the VSOR anion channel and that this channel may provide a therapeutic target for the treatment of stroke.
Collapse
Affiliation(s)
- Hana Inoue
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | |
Collapse
|
18
|
Pasantes-Morales H, Lezama RA, Ramos-Mandujano G. Tyrosine kinases and osmolyte fluxes during hyposmotic swelling. Acta Physiol (Oxf) 2006; 187:93-102. [PMID: 16734746 DOI: 10.1111/j.1748-1716.2006.01553.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence documents the involvement of protein tyrosine kinases (TK) in the signalling network activated by hyposmotic swelling and regulatory volume decrease. Both receptor type and cytosolic TK participate as signalling elements in the variety of cell adaptive responses to volume changes, which include adhesion reactions, reorganization of the cytoskeleton, temporal deformation/remodelling of the membrane and stress-detecting mechanisms. The present review refers to the influence of TK on the activation/operation of the osmolyte efflux pathways, ultimately leading to cell volume recovery, i.e. the osmosensitive Cl- channel (Cl-swell), the K+ channels activated by swelling in the different cell types and the taurine efflux pathway as representative of the organic osmolyte pathway.
Collapse
Affiliation(s)
- H Pasantes-Morales
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico (UNAM), Mexico City, Mexico.
| | | | | |
Collapse
|
19
|
Browe DM, Baumgarten CM. EGFR kinase regulates volume-sensitive chloride current elicited by integrin stretch via PI-3K and NADPH oxidase in ventricular myocytes. ACTA ACUST UNITED AC 2006; 127:237-51. [PMID: 16505146 PMCID: PMC2151502 DOI: 10.1085/jgp.200509366] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stretch of beta1 integrins activates an outwardly rectifying, tamoxifen-sensitive Cl(-) current (Cl(-) SAC) via AT1 receptors, NADPH oxidase, and reactive oxygen species, and Cl(-) SAC resembles the volume-sensitive Cl(-) current (I(Cl,swell)). Epidermal growth factor receptor (EGFR) kinase undergoes transactivation upon stretch, integrin engagement, and AT1 receptor activation and, in turn, stimulates NADPH oxidase. Therefore, we tested whether Cl(-) SAC is regulated by EGFR kinase signaling and is volume sensitive. Paramagnetic beads coated with mAb for beta1 integrin were attached to myocytes and pulled with an electromagnet. Stretch activated a Cl(-) SAC that was 1.13 +/- 0.10 pA/pF at +40 mV. AG1478 (10 muM), an EGFR kinase blocker, inhibited 93 +/- 13% of Cl(-) SAC, and intracellular pretreatment with 1 muM AG1478 markedly suppressed Cl(-) SAC activation. EGF (3.3 nM) directly activated an outwardly rectifying Cl(-) current (0.81 +/- 0.05 pA/pF at +40 mV) that was fully blocked by 10 muM tamoxifen, an I(Cl,swell) blocker. Phosphatidylinositol 3-kinase (PI-3K) is downstream of EGFR kinase. Wortmannin (500 nM) and LY294002 (100 microM), blockers of PI-3K, inhibited Cl(-) SAC by 67 +/- 6% and 91 +/- 25% respectively, and the EGF-induced Cl(-) current also was fully blocked by LY294002. Furthermore, gp91ds-tat (500 nM), a cell-permeable, chimeric peptide that specifically blocks NADPH oxidase assembly, profoundly inhibited the EGF-induced Cl(-) current. Inactive permeant and active impermeant control peptides had no effect. Myocyte shrinkage with hyperosmotic bathing media inhibited the Cl(-) SAC and EGF-induced Cl(-) current by 88 +/- 9% and 127 +/- 11%, respectively. These results suggest that beta1 integrin stretch activates Cl(-) SAC via EGFR, PI-3K, and NADPH oxidase, and that both the Cl(-) SAC and the EGF-induced Cl(-) currents are likely to be the volume-sensitive Cl(-) current, I(Cl,swell).
Collapse
Affiliation(s)
- David M Browe
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, 23298, USA
| | | |
Collapse
|
20
|
Sabirov RZ, Okada Y. ATP-conducting maxi-anion channel: a new player in stress-sensory transduction. ACTA ACUST UNITED AC 2004; 54:7-14. [PMID: 15040843 DOI: 10.2170/jjphysiol.54.7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The regulated release of ATP is a fundamental process in cell-to-cell signaling. The electrogenic translocation of ATP via an anion channel has been suggested as one possible mechanism of the release. In this review, we survey possible candidate channels for this pathway. The maxi-anion channel characterized by an exceedingly large unitary conductance has been a stray channel with regard to its function. A newly discovered property, its ATP conductivity and its activation in response to stress signals, indicates that this channel has a central role in stress-sensory transduction for cell volume regulation and tubuloglomerular feedback.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan.
| | | |
Collapse
|
21
|
Lemonnier L, Shuba Y, Crepin A, Roudbaraki M, Slomianny C, Mauroy B, Nilius B, Prevarskaya N, Skryma R. Bcl-2-Dependent Modulation of Swelling-Activated Cl− Current and ClC-3 Expression in Human Prostate Cancer Epithelial Cells. Cancer Res 2004; 64:4841-8. [PMID: 15256454 DOI: 10.1158/0008-5472.can-03-3223] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell shrinkage is an integral part of apoptosis. However, intimate mechanisms linking apoptotic events to the alterations in cell volume homeostasis remain poorly elucidated. We investigated how overexpression of Bcl-2 oncoprotein, a key antiapoptotic regulator, in lymph node carcinoma of the prostate (LNCaP) prostate cancer epithelial cells interferes with the volume-regulated anion channel (VRAC), a major determinant of regulatory volume decrease. Bcl-2 overexpression resulted in the doubling of VRAC-carried swelling-activated Cl(-) current (I(Cl,swell)) and weakened I(Cl,swell) inhibition by store-operated Ca(2+) channel (SOC)-transported Ca(2+). This also was accompanied by substantial up-regulation of ClC-3 protein, a putative molecular candidate for the role of VRAC. ClC-3-specific antibody suppressed I(Cl,swell) in the wild-type and Bcl-2-overexpressing LNCaP cells. Epidermal growth factor treatment of wild-type LNCaP cells, promoting their proliferation, resulted in the enhancement of endogenous Bcl-2 expression and associated increases in ClC-3 levels and I(Cl,swell) magnitude. We conclude that Bcl-2-induced up-regulation of I(Cl,swell), caused by enhanced expression of ClC-3 and weaker negative control from SOC-transported Ca(2+), would strengthen the ability of the cells to handle proliferative volume increases and thereby promote their survival and diminish their proapoptotic potential.
Collapse
Affiliation(s)
- Loïc Lemonnier
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Université des Sciences et Technologies de Lille, Bâtiment SN3, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Varela D, Simon F, Riveros A, Jørgensen F, Stutzin A. NAD(P)H Oxidase-derived H2O2 Signals Chloride Channel Activation in Cell Volume Regulation and Cell Proliferation. J Biol Chem 2004; 279:13301-4. [PMID: 14761962 DOI: 10.1074/jbc.c400020200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular swelling triggers the activation of Cl(-) channels (volume-sensitive outwardly rectifying (VSOR) Cl(-) channels) in many cell types. Ensuing regulatory volume decrease has been considered the primary function of these channels. However, Cl(-) channels, which share functional properties with volume-sensitive Cl(-) channels, have been shown to be involved in other physiological processes, including cell proliferation and apoptosis, raising the question of their physiological roles and the signal transduction pathways involved in their activation. Here we report that exogenously applied H(2)O(2) elicited VSOR Cl(-) channel activation. Furthermore, activation of these channels was found to be coupled to NAD(P)H oxidase activity. Also, epidermal growth factor, known to increase H(2)O(2) production, activated Cl(-) channels with properties identical to swelling-sensitive Cl(-) channels. It is concluded that NAD(P)H oxidase-derived H(2)O(2) is the common signal transducing molecule that mediates the activation of these ubiquitously expressed anion channels under a variety of physiological conditions.
Collapse
Affiliation(s)
- Diego Varela
- Instituto de Ciencias Biomédicas and Centro de Estudios Moleculares de la Célula Facultad de Medicina Universidad de Chile, Santiago-6530499, Santiago, Chile
| | | | | | | | | |
Collapse
|
23
|
Du XL, Gao Z, Lau CP, Chiu SW, Tse HF, Baumgarten CM, Li GR. Differential effects of tyrosine kinase inhibitors on volume-sensitive chloride current in human atrial myocytes: evidence for dual regulation by Src and EGFR kinases. ACTA ACUST UNITED AC 2004; 123:427-39. [PMID: 15024039 PMCID: PMC2217456 DOI: 10.1085/jgp.200409013] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To determine whether protein tyrosine kinase (PTK) modulates volume-sensitive chloride current (ICl.vol) in human atrial myocytes and to identify the PTKs involved, we studied the effects of broad-spectrum and selective PTK inhibitors and the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (VO4−3). ICl.vol evoked by hyposmotic bath solution (0.6-times isosmotic, 0.6T) was enhanced by genistein, a broad-spectrum PTK inhibitor, in a concentration-dependent manner (EC50 = 22.4 μM); 100 μM genistein stimulated ICl.vol by 122.4 ± 10.6%. The genistein-stimulated current was inhibited by DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid, 150 μM) and tamoxifen (20 μM), blockers of ICl.vol. Moreover, the current augmented by genistein was volume dependent; it was abolished by hyperosmotic shrinkage in 1.4T, and genistein did not activate Cl− current in 1T. In contrast to the stimulatory effects of genistein, 100 μM tyrphostin A23 (AG 18) and A25 (AG 82) inhibited ICl.vol by 38.2 ± 4.9% and 40.9 ± 3.4%, respectively. The inactive analogs, daidzein and tyrphostin A63 (AG 43), did not alter ICl.vol. In addition, the PTP inhibitor VO4−3 (1 mM) reduced ICl.vol by 53.5 ± 4.5% (IC50 = 249.6 μM). Pretreatment with VO4−3 antagonized genistein-induced augmentation and A23- or A25-induced suppression of ICl.vol. Furthermore, the selective Src-family PTK inhibitor PP2 (5 μM) stimulated ICl.vol, mimicking genistein, whereas the selective EGFR (ErbB-1) kinase inhibitor tyrphostin B56 (AG 556, 25 μM) reduced ICl.vol, mimicking A23 and A25. The effects of both PP2 and B56 also were substantially antagonized by pretreatment with VO4−3. The results suggest that ICl.vol is regulated in part by the balance between PTK and PTP activity. Regulation is complex, however. Src and EGFR kinases, distinct soluble and receptor-mediated PTK families, have opposing effects on ICl.vol, and multiple target proteins are likely to be involved.
Collapse
Affiliation(s)
- Xin-Ling Du
- Institute of Cardiovascular Science and Medicine/Department of Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|