1
|
Woo SH, Trinh TN. P2 Receptors in Cardiac Myocyte Pathophysiology and Mechanotransduction. Int J Mol Sci 2020; 22:ijms22010251. [PMID: 33383710 PMCID: PMC7794727 DOI: 10.3390/ijms22010251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
ATP is a major energy source in the mammalian cells, but it is an extracellular chemical messenger acting on P2 purinergic receptors. A line of evidence has shown that ATP is released from many different types of cells including neurons, endothelial cells, and muscle cells. In this review, we described the distribution of P2 receptor subtypes in the cardiac cells and their physiological and pathological roles in the heart. So far, the effects of external application of ATP or its analogues, and those of UTP on cardiac contractility and rhythm have been reported. In addition, specific genetic alterations and pharmacological agonists and antagonists have been adopted to discover specific roles of P2 receptor subtypes including P2X4-, P2X7-, P2Y2- and P2Y6-receptors in cardiac cells under physiological and pathological conditions. Accumulated data suggest that P2X4 receptors may play a beneficial role in cardiac muscle function, and that P2Y2- and P2Y6-receptors can induce cardiac fibrosis. Recent evidence further demonstrates P2Y1 receptor and P2X4 receptor as important mechanical signaling molecules to alter membrane potential and Ca2+ signaling in atrial myocytes and their uneven expression profile between right and left atrium.
Collapse
|
2
|
Zhou Z, Lankhuizen IM, van Beusekom HM, Cheng C, Duncker DJ, Merkus D. Uridine Adenosine Tetraphosphate-Induced Coronary Relaxation Is Blunted in Swine With Pressure Overload: A Role for Vasoconstrictor Prostanoids. Front Pharmacol 2018; 9:255. [PMID: 29632487 PMCID: PMC5879110 DOI: 10.3389/fphar.2018.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
Plasma levels of the vasoactive substance uridine adenosine tetraphosphate (Up4A) are elevated in hypertensive patients and Up4A-induced vascular contraction is exacerbated in various arteries isolated from hypertensive animals, suggesting a potential role of Up4A in development of hypertension. We previously demonstrated that Up4A produced potent and partially endothelium-dependent relaxation in the porcine coronary microvasculature. Since pressure-overload is accompanied by structural abnormalities in the coronary microvasculature as well as by endothelial dysfunction, we hypothesized that pressure-overload blunts the coronary vasodilator response to Up4A, and that the involvement of purinergic receptors and endothelium-derived factors is altered. The effects of Up4A were investigated using wire-myography in isolated coronary small arteries from Sham-operated swine and swine with prolonged (8 weeks) pressure overload of the left ventricle induced by aortic banding (AoB). Expression of purinergic receptors and endothelium-derived factors was assessed in isolated coronary small arteries using real-time PCR. Up4A (10-9 to 10-5 M) failed to produce contraction in isolated coronary small arteries from either Sham or AoB swine, but produced relaxation in preconstricted arteries, which was significantly blunted in AoB compared to Sham. Blockade of purinergic P1, and P2 receptors attenuated Up4A-induced coronary relaxation more, while the effect of P2X1-blockade was similar and the effects of A2A- and P2Y1-blockade were reduced in AoB as compared to Sham. mRNA expression of neither A1, A2, A3, nor P2X1, P2X7, P2Y1, P2Y2, nor P2Y6-receptors was altered in AoB as compared to Sham, while P2Y12 expression was higher in AoB. eNOS inhibition attenuated Up4A-induced coronary relaxation in both Sham and AoB. Additional blockade of cyclooxygenase enhanced Up4A-induced coronary relaxation in AoB but not Sham swine, suggesting the involvement of vasoconstrictor prostanoids. In endothelium-denuded coronary small arteries from normal swine, thromboxane synthase (TxS) inhibition enhanced relaxation to Up4A compared to endothelium-intact arteries, to a similar extent as P2Y12 inhibition, while the combination inhibition of P2Y12 and TxS had no additional effect. In conclusion, Up4A-induced coronary relaxation is blunted in swine with AoB, which appears to be due to the production of a vasoconstrictor prostanoid, likely thromboxane A2.
Collapse
Affiliation(s)
- Zhichao Zhou
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Cardiovascular Research School Erasmus University Rotterdam, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Solna, Sweden
| | - Inge M Lankhuizen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Cardiovascular Research School Erasmus University Rotterdam, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Heleen M van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Cardiovascular Research School Erasmus University Rotterdam, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Cardiovascular Research School Erasmus University Rotterdam, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Cardiovascular Research School Erasmus University Rotterdam, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Cardiovascular Research School Erasmus University Rotterdam, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
3
|
Kim JC, Woo SH. Shear stress induces a longitudinal Ca(2+) wave via autocrine activation of P2Y1 purinergic signalling in rat atrial myocytes. J Physiol 2015; 593:5091-109. [PMID: 26377030 DOI: 10.1113/jp271016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/11/2015] [Indexed: 12/25/2022] Open
Abstract
Atrial myocytes are exposed to shear stress during the cardiac cycle and haemodynamic disturbance. In response, they generate a longitudinally propagating global Ca(2+) wave. Here, we investigated the cellular mechanisms underlying the shear stress-mediated Ca(2+) wave, using two-dimensional confocal Ca(2+) imaging combined with a pressurized microflow system in single rat atrial myocytes. Shear stress of ∼16 dyn cm(-2) for 8 s induced ∼1.2 aperiodic longitudinal Ca(2+) waves (∼79 μm s(-1)) with a delay of 0.2-3 s. Pharmacological blockade of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors (IP3 Rs) abolished shear stress-induced Ca(2+) wave generation. Furthermore, in atrial myocytes from type 2 IP3R (IP3R2) knock-out mice, shear stress failed to induce longitudinal Ca(2+) waves. The phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the shear-induced longitudinal Ca(2+) wave. However, pretreating atrial cells with blockers for stretch-activated channels, Na(+)-Ca(2+) exchanger, transient receptor potential melastatin subfamily 4, or nicotinamide adenine dinucleotide phosphate oxidase did not suppress wave generation under shear stress. The P2 purinoceptor inhibitor suramin, and the potent P2Y1 receptor antagonist MRS 2179, both suppressed the Ca(2+) wave, whereas the P2X receptor antagonist, iso-PPADS, did not alter it. Suppression of gap junction hemichannels permeable to ATP or extracellular application of ATP-metabolizing apyrase inhibited the wave. Removal of external Ca(2+) to enhance hemichannel opening facilitated the wave generation. Our data suggest that longitudinally propagating, regenerative Ca(2+) release through RyRs is triggered by P2Y1-PLC-IP3R2 signalling that is activated by gap junction hemichannel-mediated ATP release in atrial myocytes under shear stress.
Collapse
Affiliation(s)
- Joon-Chul Kim
- Laboratory of Physiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Sun-Hee Woo
- Laboratory of Physiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea
| |
Collapse
|
4
|
Zhou Z, Sun C, Tilley SL, Mustafa SJ. Mechanisms underlying uridine adenosine tetraphosphate-induced vascular contraction in mouse aorta: Role of thromboxane and purinergic receptors. Vascul Pharmacol 2015; 73:78-85. [PMID: 25921923 DOI: 10.1016/j.vph.2015.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 01/12/2023]
Abstract
Uridine adenosine tetraphosphate (Up4A), a novel endothelium-derived vasoactive agent, is proposed to play a role in cardiovascular disorders and induces aortic contraction through activation of cyclooxygenases (COXs). We and others demonstrated that activation of A1 or A3 adenosine receptors (ARs) results in vascular contraction via thromboxane (TX) A2 production. However, the mechanisms of Up4A-induced vascular contraction in mouse aorta are not understood. We hypothesize that Up4A-induced aortic contraction is through COX-derived TXA2 production, which requires activation of A1 and/or A3AR. Concentration responses to Up4A were conducted in isolated aorta. The TXB2 production, a metabolite of TXA2, was also measured. Up4A (10(-9)-10(-5)M) produced a concentration-dependent contraction >70%, which was markedly attenuated by COX and COX1 but not by COX2 inhibition. Notably, Up4A-induced aortic contraction was blunted by both TX synthase inhibitor ozagrel and TXA2 receptor (TP) antagonist SQ29548. Surprisingly, A3AR deletion had no effect on Up4A-induced contraction. Moreover, A1AR deletion or antagonism as well as A1/A3AR deletion potentiated Up4A-induced aortic contraction, suggesting a vasodilator influence of A1AR. In contrast, non-selective purinergic P2 receptor antagonist PPADS significantly blunted Up4A-induced aortic contraction to a similar extent as selective P2X1R antagonist MRS2159, the latter of which was further reduced by addition of ozagrel. Endothelial denudation almost fully attenuated Up4A-induced contraction. Furthermore, Up4A (3μM) increased TXB2 formation, which was inhibited by either MRS2159 or ozagrel. In conclusion, Up4A-induced aortic contraction depends on activation of TX synthase and TP, which partially requires the activation of P2X1R but not A1 or A3AR through an endothelium-dependent mechanism.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
| | - Changyan Sun
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
| | - Stephen L Tilley
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
5
|
Ju YK, Lee BH, Trajanovska S, Hao G, Allen DG, Lei M, Cannell MB. The involvement of TRPC3 channels in sinoatrial arrhythmias. Front Physiol 2015; 6:86. [PMID: 25859221 PMCID: PMC4373262 DOI: 10.3389/fphys.2015.00086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/04/2015] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) is a significant contributor to cardiovascular morbidity and mortality. The currently available treatments are limited and AF continues to be a major clinical challenge. Clinical studies have shown that AF is frequently associated with dysfunction in the sino-atrial node (SAN). The association between AF and SAN dysfunction is probably related to the communication between the SAN and the surrounding atrial cells that form the SAN-atrial pacemaker complex and/or pathological processes that affect both the SAN and atrial simultaneously. Recent evidence suggests that Ca2+ entry through TRPC3 (Transient Receptor Potential Canonical-3) channels may underlie several pathophysiological conditions -including cardiac arrhythmias. However, it is still not known if atrial and sinoatrial node cells are also involved. In this article we will first briefly review TRPC3 and IP3R signaling that relate to store/receptor-operated Ca2+ entry (SOCE/ROCE) mechanisms and cardiac arrhythmias. We will then present some of our recent research progress in this field. Our experiments results suggest that pacing-induced AF in angiotensin II (Ang II) treated mice are significantly reduced in mice lacking the TRPC3 gene (TRPC3−/− mice) compared to wild type controls. We also show that pacemaker cells express TRPC3 and several other molecular components related to SOCE/ROCE signaling, including STIM1 and IP3R. Activation of G-protein coupled receptors (GPCRs) signaling that is able to modulate SOCE/ROCE and Ang II induced Ca2+ homeostasis changes in sinoatrial complex being linked to TRPC3. The results provide new evidence that TRPC3 may play a role in sinoatrial and atrial arrhythmias that are caused by GPCRs activation.
Collapse
Affiliation(s)
- Yue-Kun Ju
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Bon Hyang Lee
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Sofie Trajanovska
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Gouliang Hao
- Department of Pharmacology, University of Oxford Oxford, UK
| | - David G Allen
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Ming Lei
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Mark B Cannell
- Department of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
6
|
Zhou Z, de Wijs-Meijler D, Lankhuizen I, Jankowski J, Jankowski V, Jan Danser AH, Duncker DJ, Merkus D. Blunted coronary vasodilator response to uridine adenosine tetraphosphate in post-infarct remodeled myocardium is due to reduced P1 receptor activation. Pharmacol Res 2013; 77:22-9. [PMID: 23994209 DOI: 10.1016/j.phrs.2013.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that uridine adenosine tetraphosphate (Up4A) exerts a potent vasodilator effect in the healthy porcine coronary vasculature. Since the coronary microvascular effects of Up4A after myocardial infarction (MI) are unknown, the present study investigated the response to Up4A in coronary microvessels from post-MI remodeled porcine myocardium, and the involvement of purinergic receptor subtypes. Coronary small arteries (diameter ∼150 μm) were dissected from the apex of Sham-operated swine and swine in which MI had been produced 5 weeks earlier by transient (2h) occlusion of the left circumflex coronary artery, and mounted on Mulvany wire myographs. Up4A (10(-9)-10(-5)M) produced coronary vasodilation that was reduced in MI as compared to Sham-operated swine. Up4A-induced vasodilation was reduced by P1 blockade with 8-phenyltheophylline in Sham-operated swine and to a lesser extent in MI, while the attenuation by the A2A receptor blocker SCH58261 was similar in Sham-operated and MI swine. Up4A-induced vasodilation remained unaffected by non-selective P2 receptor antagonist PPADS, but was attenuated by selective P2X1 and P2Y1 receptor antagonists MRS2159 and MRS2179, albeit to a similar extent in Sham-operated and MI swine. These responses were paralleled by similar mRNA expression levels of A2A, P2X1 and P2Y1 receptors in MI compared to slaughterhouse control swine. Finally, attenuation of Up4A-induced coronary vasodilation by nitric oxide synthase inhibition was not attenuated in MI as compared to Sham-operated swine. In conclusion, blunted coronary vasodilation in response to Up4A in MI swine is most likely due to reduced activation of P1, rather than P2, receptors and does not involve a loss of NO bioavailability.
Collapse
Affiliation(s)
- Zhichao Zhou
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Inositol 1,4,5-trisphosphate receptors and pacemaker rhythms. J Mol Cell Cardiol 2012; 53:375-81. [PMID: 22713798 DOI: 10.1016/j.yjmcc.2012.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022]
Abstract
Intracellular Ca(2+) plays an important role in the control of the heart rate through the interaction between Ca(2+) release by ryanodine receptors in the sarcoplasmic reticulum (SR) and the extrusion of Ca(2+) by the sodium-calcium exchanger which generates an inward current. A second type of SR Ca(2+) release channel, the inositol 1,4,5-trisphosphate receptor (IP(3)R), can release Ca(2+) from SR stores in many cell types, including cardiac myocytes. However, it is still uncertain whether IP(3)Rs play any functional role in regulating the heart rate. Accumulated evidence shows that IP(3) and IP(3)R are involved in rhythm control in non-cardiac pacemaker tissues and in the embryonic heart. In this review we focus on intracellular Ca(2+) oscillations generated by Ca(2+) release from IP(3)R that initiates membrane depolarization and provides a common mechanism producing spontaneous activity in a range of cells with pacemaker function. Emerging new evidence also suggests that IP(3)/IP(3)Rs play a functional role in normal and diseased hearts and in cardiac rhythm control. Several membrane currents, including a store-operated Ca(2+) current, might be activated by Ca(2+) release from IP(3)Rs. IP(3)/IP(3)R may thus add another dimension to the complex regulation of heart rate.
Collapse
|
8
|
Abstract
Calcium plays important role in biological systems where it is involved in diverse mechanisms such as signaling, muscle contraction and neuromodulation. Action potentials are generated by dynamic interaction of ionic channels located on the plasma-membrane and these drive the rhythmic activity of biological systems such as the smooth muscle and the heart. However, ionic channels are not the only pacemakers; an intimate interaction between intracellular Ca(2+) stores and ionic channels underlie rhythmic activity. In this review we will focus on the role of Ca(2+) stores in regulation of rhythmical behavior.
Collapse
Affiliation(s)
- Mohammad S Imtiaz
- Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
9
|
Ju YK, Liu J, Lee BH, Lai D, Woodcock EA, Lei M, Cannell MB, Allen DG. Distribution and Functional Role of Inositol 1,4,5-
tris
phosphate Receptors in Mouse Sinoatrial Node. Circ Res 2011; 109:848-57. [DOI: 10.1161/circresaha.111.243824] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yue-Kun Ju
- From the School of Medical Sciences and Bosch Institute (Y.K.J., J.L., B.H.L., D.L., D.G.A.), University of Sydney, Sydney, Australia; Baker IDI Heart and Diabetes Institute (E.A.W.), Melbourne, Australia; School of Biomedicine (M.L.), Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Physiology and Pharmacology (M.B.C.), University of Bristol, Bristol, UK
| | - Jie Liu
- From the School of Medical Sciences and Bosch Institute (Y.K.J., J.L., B.H.L., D.L., D.G.A.), University of Sydney, Sydney, Australia; Baker IDI Heart and Diabetes Institute (E.A.W.), Melbourne, Australia; School of Biomedicine (M.L.), Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Physiology and Pharmacology (M.B.C.), University of Bristol, Bristol, UK
| | - Bon Hyang Lee
- From the School of Medical Sciences and Bosch Institute (Y.K.J., J.L., B.H.L., D.L., D.G.A.), University of Sydney, Sydney, Australia; Baker IDI Heart and Diabetes Institute (E.A.W.), Melbourne, Australia; School of Biomedicine (M.L.), Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Physiology and Pharmacology (M.B.C.), University of Bristol, Bristol, UK
| | - Donna Lai
- From the School of Medical Sciences and Bosch Institute (Y.K.J., J.L., B.H.L., D.L., D.G.A.), University of Sydney, Sydney, Australia; Baker IDI Heart and Diabetes Institute (E.A.W.), Melbourne, Australia; School of Biomedicine (M.L.), Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Physiology and Pharmacology (M.B.C.), University of Bristol, Bristol, UK
| | - Elizabeth A. Woodcock
- From the School of Medical Sciences and Bosch Institute (Y.K.J., J.L., B.H.L., D.L., D.G.A.), University of Sydney, Sydney, Australia; Baker IDI Heart and Diabetes Institute (E.A.W.), Melbourne, Australia; School of Biomedicine (M.L.), Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Physiology and Pharmacology (M.B.C.), University of Bristol, Bristol, UK
| | - Ming Lei
- From the School of Medical Sciences and Bosch Institute (Y.K.J., J.L., B.H.L., D.L., D.G.A.), University of Sydney, Sydney, Australia; Baker IDI Heart and Diabetes Institute (E.A.W.), Melbourne, Australia; School of Biomedicine (M.L.), Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Physiology and Pharmacology (M.B.C.), University of Bristol, Bristol, UK
| | - Mark B. Cannell
- From the School of Medical Sciences and Bosch Institute (Y.K.J., J.L., B.H.L., D.L., D.G.A.), University of Sydney, Sydney, Australia; Baker IDI Heart and Diabetes Institute (E.A.W.), Melbourne, Australia; School of Biomedicine (M.L.), Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Physiology and Pharmacology (M.B.C.), University of Bristol, Bristol, UK
| | - David G. Allen
- From the School of Medical Sciences and Bosch Institute (Y.K.J., J.L., B.H.L., D.L., D.G.A.), University of Sydney, Sydney, Australia; Baker IDI Heart and Diabetes Institute (E.A.W.), Melbourne, Australia; School of Biomedicine (M.L.), Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Physiology and Pharmacology (M.B.C.), University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Zhou SY, Mamdani M, Qanud K, Shen JB, Pappano AJ, Kumar TS, Jacobson KA, Hintze T, Recchia FA, Liang BT. Treatment of heart failure by a methanocarba derivative of adenosine monophosphate: implication for a role of cardiac purinergic P2X receptors. J Pharmacol Exp Ther 2010; 333:920-8. [PMID: 20200116 PMCID: PMC2879931 DOI: 10.1124/jpet.109.164376] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/25/2010] [Indexed: 01/24/2023] Open
Abstract
Evidence is accumulating to support a potentially important role for purinergic (P2X) receptors in heart failure (HF). We tested the hypothesis that a hydrolysis-resistant nucleotide analog with agonist activity at myocardial P2X receptors (P2XRs) improves the systolic HF phenotype in mouse and dog models. We developed a hydrolysis-resistant adenosine monophosphate derivative, (1'S,2R,3S,4'R,5'S)-4-(6-amino-2-chloro-9H-purin-9-yl)-1-[phosphoryloxymethyl] bicycle[3.1.0]hexane-2,3-diol) (MRS2339), with agonist activity at native cardiac P2XRs. Chronic MRS2339 infusion in postinfarct and calsequestrin (CSQ) mice with HF resulted in higher rates of pressure change (+dP/dt), left ventricle (LV)-developed pressure, and cardiac output in an in vitro working heart model. Heart function in vivo, as determined by echocardiography-derived fractional shortening, was also improved in MRS2339-infused mice. The beneficial effect of MRS2339 was dose-dependent and was identical to that produced by cardiac myocyte-specific overexpression of the P2X(4) receptor. The HF improvement was associated with the preservation of LV wall thickness in both systole and diastole in postinfarct and CSQ mice. In dogs with pacing-induced HF, MRS2339 infusion reduced left ventricular end-diastolic pressure, improved arterial oxygenation, and increased +dP/dt. MRS2339 treatment also decreased LV chamber size in mice and dogs with HF. In murine and canine models of systolic HF, in vivo administration of a P2X nucleotide agonist improved contractile function and cardiac performance. These actions were associated with preserved LV wall thickness and decreased LV remodeling. The data are consistent with a role of cardiac P2XRs in mediating the beneficial effect of this agonist.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- The Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
12
|
P2 purinergic receptor mRNA in rat and human sinoatrial node and other heart regions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2009; 379:541-9. [DOI: 10.1007/s00210-009-0403-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
13
|
Ju YK, Allen DG. Store-operated Ca2+ entry and TRPC expression; possible roles in cardiac pacemaker tissue. Heart Lung Circ 2007; 16:349-55. [PMID: 17822952 DOI: 10.1016/j.hlc.2007.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 07/09/2007] [Indexed: 11/25/2022]
Abstract
Store-operated Ca(2+) channels (SOCCs) were first identified in non-excitable cells by the observation that depletion of Ca(2+) stores caused increased influx of extracellular Ca(2+). Recent studies have suggested that SOCCs might be related to the transient receptor potential (TRPC) gene family. The mechanism of cardiac pacemaking involves voltage-dependent pacemaker current; in addition there is growing evidence that intracellular sarcoplasmic reticulum (SR) Ca(2+) release plays an important role. In the present short review we assess preliminary evidence for Ca(2+) entry related to SR store depletion and expression of TRPCs in pacemaker tissue. These newer findings suggest that Ca(2+) entry and inward current triggered by store depletion might also contribute to the pacemaker current. Many hormones, drugs and interventions such as ischaemia and stretch, which alter Ca(2+) handling, will also modulate pacemaker firing thought their effect on SOCCs.
Collapse
Affiliation(s)
- Yue-kun Ju
- School of Medical Sciences (F13), University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
14
|
Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL, Graham RM, Cannell MB, Allen DG. Store-Operated Ca
2+
Influx and Expression of TRPC Genes in Mouse Sinoatrial Node. Circ Res 2007; 100:1605-14. [PMID: 17478725 DOI: 10.1161/circresaha.107.152181] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Store-operated Ca
2+
entry was investigated in isolated mouse sinoatrial nodes (SAN) dissected from right atria and loaded with Ca
2+
indicators. Incubation of the SAN in Ca
2+
-free solution caused a substantial decrease in resting intracellular Ca
2+
concentration ([Ca
2+
]
i
) and stopped pacemaker activity. Reintroduction of Ca
2+
in the presence of cyclopiazonic acid (CPA), a sarcoplasmic reticulum Ca
2+
pump inhibitor, led to sustained elevation of [Ca
2+
]
i
, a characteristic of store-operated Ca
2+
channel (SOCC) activity. Two SOCC antagonists, Gd
3+
and SKF-96365, inhibited 72±8% and 65±8% of this Ca
2+
influx, respectively. SKF-96365 also reduced the spontaneous pacemaker rate to 27±4% of control in the presence of CPA. Because members of the transient receptor potential canonical (TRPC) gene family may encode SOCCs, we used RT-PCR to examine mRNA expression of the 7 known mammalian TRPC isoforms. Transcripts for TRPC1, 2, 3, 4, 6, and 7, but not TRPC5, were detected. Immunohistochemistry using anti-TRPC1, 3, 4, and 6 antibodies revealed positive labeling in the SAN region and single pacemaker cells. These results indicate that mouse SAN exhibits store-operated Ca
2+
activity which may be attributable to TRPC expression, and suggest that SOCCs may be involved in regulating pacemaker firing rate.
Collapse
Affiliation(s)
- Yue-Kun Ju
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
16
|
Saitow F, Murakoshi T, Suzuki H, Konishi S. Metabotropic P2Y purinoceptor-mediated presynaptic and postsynaptic enhancement of cerebellar GABAergic transmission. J Neurosci 2005; 25:2108-16. [PMID: 15728851 PMCID: PMC6726053 DOI: 10.1523/jneurosci.4254-04.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 01/18/2005] [Accepted: 01/18/2005] [Indexed: 11/21/2022] Open
Abstract
Cerebellar GABAergic inhibitory transmission is under heterosynaptic control mediated by diverse chemical messengers. Here, we investigated roles of metabotropic P2Y purinoceptors (P2YRs) on GABAergic synapses between cerebellar interneurons and Purkinje cells (PCs). Activation of P2Y purinoceptors by two selective agonists, ADP and 2-methylthio-ADP (2MeSADP), elicited two distinct forms of synaptic plasticity of GABAergic transmission in the cerebellar cortex. First, the two agonists induced long-lasting enhancement of stimulation-evoked GABAergic IPSCs as well as GABA(A) receptor currents in PCs. This effect was completely abolished by intracellular infusion of the Ca2+-chelating agent BAPTA. Measurements of intracellular Ca2+ ([Ca2+]i) dynamics showed that puff application of 2MeSADP produced an increase in [Ca2+]i of PCs and that this increase persisted in an external Ca2+-deficient medium. These results suggest that P2Y activation postsynaptically elicits long-term enhancement of GABA(A) receptor sensitivity of PCs through a Gq-mediated increase in [Ca2+]i. The other action of P2YR agonists on cerebellar GABAergic synapses was that they produced a short-term increase in the frequency and the amplitude of spontaneous GABAA receptor-mediated IPSCs in PCs in a manner sensitive to a P2Y1R antagonist, N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate. This action appeared to be attributable to an excitability increase in presynaptic GABAergic interneurons, because ADP excited all Lugaro cells examined and some of interneurons in the molecular layer. These results suggest that activation of cerebellar P2Y purinoceptors leads to modulation of GABAergic transmission in different spatial and temporal domains, namely short-term and long-term plasticity through presynaptic and postsynaptic mechanisms at interneuron-->PC inhibitory synapses in the rat cerebellar cortex.
Collapse
Affiliation(s)
- Fumihito Saitow
- Department of Pharmacology, Nippon Medical School, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|