1
|
Kornfield JM, Bright H, Drake MG. Touching a Nerve: Neuroimmune Interactions in Asthma. Immunol Rev 2025; 331:e70025. [PMID: 40186378 PMCID: PMC12121487 DOI: 10.1111/imr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Asthma is an inflammatory airway disease characterized by excessive bronchoconstriction and airway hyperresponsiveness. Airway nerves play a crucial role in regulating these processes. In asthma, interactions between inflammatory cells and nerves result in nerve dysfunction, which worsens airway function. This review discusses new insights regarding the role of airway nerves in healthy lungs and examines how communication between nerves and leukocytes, including eosinophils, mast cells, dendritic cells, and innate lymphoid cells, contributes to nerve dysfunction and the worsening of airway disease. Clinical implications and therapeutic opportunities presented by neuroimmune interactions are also addressed.
Collapse
Affiliation(s)
- James M Kornfield
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Hoyt Bright
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Brooks SG, King J, Smith JA, Yosipovitch G. Cough and itch: Common mechanisms of irritation in the throat and skin. J Allergy Clin Immunol 2025; 155:36-52. [PMID: 39321991 DOI: 10.1016/j.jaci.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Cough and itch are protective mechanisms in the body. Cough occurs as a reflex motor response to foreign body inhalation, while itch is a sensation that similarly evokes a scratch response to remove irritants from the skin. Both cough and itch can last for sustained periods, leading to debilitating chronic disorders that negatively impact quality of life. Understanding the parallels and differences between chronic cough and chronic itch may be paramount to developing novel therapeutic approaches. In this article, we identify connections in the mechanisms contributing to the complex cough and scratch reflexes and summarize potential shared therapeutic targets. An online search was performed using various search engines, including PubMed, Web of Science, Google Scholar, and ClinicalTrials.gov from 1983 to 2024. Articles were assessed for quality, and those relevant to the objective were analyzed and summarized. The literature demonstrated similarities in the triggers, peripheral and central nervous system processing, feedback mechanisms, immunologic mediators, and receptors involved in the cough and itch responses, with the neuronal sensitization processes exhibiting the greatest parallels between cough and itch. Given the substantial impact on quality of life, novel therapies targeting similar neuroimmune pathways may apply to both itch and cough and provide new avenues for enhancing their management.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla
| | - Jenny King
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Wythenshawe Hospital, University of Manchester, Manchester, United Kingdom; North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jaclyn Ann Smith
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Wythenshawe Hospital, University of Manchester, Manchester, United Kingdom; North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla.
| |
Collapse
|
3
|
Lu H, Chen G, Zhao M, Gu H, Zheng W, Li X, Huang M, Geng D, Yu M, Guan X, Zhang L, Song H, Li Y, Wu M, Zhang F, Li D, Wu Q, Shang C, Xie Z, Cao P. Brainstem opioid peptidergic neurons regulate cough reflexes in mice. Innovation (N Y) 2024; 5:100721. [PMID: 39529953 PMCID: PMC11551472 DOI: 10.1016/j.xinn.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Cough is a vital defensive reflex for expelling harmful substances from the airway. The sensory afferents for the cough reflex have been intensively studied. However, the brain mechanisms underlying the cough reflex remain poorly understood. Here, we developed a paradigm to quantitatively measure cough-like reflexes in mice. Using this paradigm, we found that prodynorphin-expressing (Pdyn+) neurons in the nucleus of the solitary tract (NTS) are critical for capsaicin-induced cough-like reflexes. These neurons receive cough-related neural signals from Trpv1+ vagal sensory neurons. The activation of Pdyn+ NTS neurons triggered respiratory responses resembling cough-like reflexes. Among the divergent projections of Pdyn+ NTS neurons, a glutamatergic pathway projecting to the caudal ventral respiratory group (cVRG), the canonical cough center, was necessary and sufficient for capsaicin-induced cough-like reflexes. These results reveal that Pdyn+ NTS neurons, as a key neuronal population at the entry point of the vagus nerve to the brainstem, initiate cough-like reflexes in mice.
Collapse
Affiliation(s)
- Haicheng Lu
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Guoqing Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Miao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huating Gu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wenxuan Zheng
- National Institute of Biological Sciences, Beijing 102206, China
- Peking University–Tsinghua University–NIBS Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiating Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Meizhu Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dandan Geng
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Minhui Yu
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuyan Guan
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Li Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huimeng Song
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yaning Li
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Menghua Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fan Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congping Shang
- School of Basic Medical Sciences, Guangzhou National Laboratory, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Zhiyong Xie
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Chan PYS, Lee LY, Davenport PW. Neural mechanisms of respiratory interoception. Auton Neurosci 2024; 253:103181. [PMID: 38696917 DOI: 10.1016/j.autneu.2024.103181] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Respiratory interoception is one of the internal bodily systems that is comprised of different types of somatic and visceral sensations elicited by different patterns of afferent input and respiratory motor drive mediating multiple respiratory modalities. Respiratory interoception is a complex system, having multiple afferents grouped into afferent clusters and projecting into both discriminative and affective centers that are directly related to the behavioral assessment of breathing. The multi-afferent system provides a spectrum of input that result in the ability to interpret the different types of respiratory interceptive sensations. This can result in a response, commonly reported as breathlessness or dyspnea. Dyspnea can be differentiated into specific modalities. These respiratory sensory modalities lead to a general sensation of an Urge-to-Breathe, driven by a need to compensate for the modulation of ventilation that has occurred due to factors that have affected breathing. The multiafferent system for respiratory interoception can also lead to interpretation of the sensory signals resulting in respiratory related sensory experiences, including the Urge-to-Cough and Urge-to-Swallow. These behaviors are modalities that can be driven through the differentiation and integration of multiple afferent input into the respiratory neural comparator. Respiratory sensations require neural somatic and visceral interoceptive elements that include gated attention and detection leading to respiratory modality discrimination with subsequent cognitive decision and behavioral compensation. Studies of brain areas mediating cortical and subcortical respiratory sensory pathways are summarized and used to develop a model of an integrated respiratory neural network mediating respiratory interoception.
Collapse
Affiliation(s)
- Pei-Ying Sarah Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Lu-Yuan Lee
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Kim JS, Ru F, Meeker S, Undem BJ. Direct activation of airway sensory C-fibers by SARS-CoV-2 S1 spike protein. Physiol Rep 2023; 11:e15900. [PMID: 38123162 PMCID: PMC10733116 DOI: 10.14814/phy2.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Respiratory viral infection can lead to activation of sensory afferent nerves as indicated by the consequential sore throat, sneezing, coughing, and reflex secretions. In addition to causing troubling symptoms, sensory nerve activation likely accelerates viral spreading. The mechanism how viruses activate sensory nerve terminals during infection is unknown. In this study, we investigate whether coronavirus spike protein activates sensory nerves terminating in the airways. We used isolated vagally-innervated mouse trachea-lung preparation for two-photon microscopy and extracellular electrophysiological recordings. Using two-photon Ca2+ imaging, we evaluated a total number of 786 vagal bronchopulmonary nerves in six experiments. Approximately 49% of the sensory fibers were activated by S1 protein (4 μg/mL intratracheally). Extracellular nerve recording showed the S1 protein evoked action potential discharge in sensory C-fibers; of 39 airway C-fibers (one fiber per mouse), 17 were activated. Additionally, Fura-2 Ca2+ imaging was performed on neurons dissociated from vagal sensory ganglia (n = 254 from 22 mice). The result showed that 63% of neurons responded to S1 protein. SARS-CoV-2 S1 protein can lead to direct activation of sensory C-fiber nerve terminals in the bronchopulmonary tract. Direct activation of C-fibers may contribute to coronavirus symptoms, and amplify viral spreading in a population.
Collapse
Affiliation(s)
- Joyce S. Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fei Ru
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sonya Meeker
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bradley J. Undem
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
6
|
Kornfield J, De La Torre U, Mize E, Drake MG. Illuminating Airway Nerve Structure and Function in Chronic Cough. Lung 2023; 201:499-509. [PMID: 37985513 PMCID: PMC10673771 DOI: 10.1007/s00408-023-00659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.
Collapse
Affiliation(s)
- James Kornfield
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Ubaldo De La Torre
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Emily Mize
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
Zhi H, Zhong M, Huang J, Zheng Z, Ji X, Xu Y, Dong J, Yan W, Chen Z, Zhan C, Chen R. Gabapentin alleviated the cough hypersensitivity and neurogenic inflammation in a guinea pig model with repeated intra-esophageal acid perfusion. Eur J Pharmacol 2023; 959:176078. [PMID: 37805133 DOI: 10.1016/j.ejphar.2023.176078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE The anti-tussive effect of gabapentin and its underlying neuromodulatory mechanism were investigated via a modified guinea pig model of gastroesophageal reflux-related cough (GERC). METHODS Intra-esophageal perfusion with hydrochloric acid (HCl) was performed every other day 12 times to establish the GERC model. High-dose gabapentin (48 mg/kg), low-dose gabapentin (8 mg/kg), or saline was orally administered for 2 weeks after modeling. Cough sensitivity, airway inflammation, lung and esophagus histology, levels of substance P (SP), and neurokinin-1 (NK1)-receptors were monitored. RESULTS Repeated intra-esophageal acid perfusion aggravated the cough sensitivity in guinea pigs in a time-dependent manner. The number of cough events was significantly increased after 12 times HCl perfusion, and the hypersensitivity period was maintained for 2 weeks. The SP levels in BALF, trachea, lung, distal esophagus, and vagal ganglia were increased in guinea pigs receiving HCl perfusion. The intensity of cough hypersensitivity in the GERC model was significantly correlated with increased SP expression in the airways. Both high and low doses of gabapentin administration could reduce cough hypersensitivity exposed to HCl perfusion, attenuate airway inflammatory damage, and inhibit neurogenic inflammation by reducing SP expression from the airway and vagal ganglia. CONCLUSIONS Gabapentin can desensitize the cough sensitivity in the GERC model of guinea pig. The anti-tussive effect is associated with the alleviated peripheral neurogenic inflammation as reflected in the decreased level of SP.
Collapse
Affiliation(s)
- Haopeng Zhi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Mingyu Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Junfeng Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Ziwen Zheng
- Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Xiaolong Ji
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Yilin Xu
- Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Junguo Dong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Wenbo Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Zhe Chen
- Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, China.
| | - Chen Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
8
|
Kum E, Patel M, Diab N, Wahab M, Zeraatkar D, Chu DK, O’Byrne PM, Guyatt GH, Satia I. Efficacy and Tolerability of Gefapixant for Treatment of Refractory or Unexplained Chronic Cough: A Systematic Review and Dose-Response Meta-Analysis. JAMA 2023; 330:1359-1369. [PMID: 37694849 PMCID: PMC10495930 DOI: 10.1001/jama.2023.18035] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Importance Gefapixant represents an emerging therapy for patients with refractory or unexplained chronic cough. Objective To evaluate the efficacy and tolerability of gefapixant for the treatment of adults with refractory or unexplained chronic cough. Data Sources MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Web of Science from November 2014 to July 2023. Study Selection Two reviewers independently screened for parallel and crossover randomized clinical trials (RCTs) that compared, in patients with refractory or unexplained chronic cough, either gefapixant with placebo, or 2 or more doses of gefapixant with or without placebo. Data Extraction and Synthesis Two reviewers independently extracted data. A frequentist random-effects dose-response meta-analysis or pairwise meta-analysis was used for each outcome. The GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach was used to rate the certainty in whether patients would perceive the effects as important (greater than the minimal important difference [MID]) or small (less than the MID). Main Outcomes and Measures Cough frequency (measured using the VitaloJAK cough monitor; MID, 20%), cough severity (measured using the 100-mm visual analog scale [VAS]; higher score is worse; MID, 30 mm), cough-specific quality of life (measured using the Leicester Cough Questionnaire [LCQ]; score range, 3 [maximal impairment] to 21 [no impairment]; MID, 1.3 points), treatment-related adverse events, adverse events leading to discontinuation, and taste-related adverse events. Results Nine RCTs including 2980 patients were included in the primary analysis. Compared with placebo, gefapixant (45 mg twice daily) had small effects on awake cough frequency (17.6% reduction [95% CI, 10.6%-24.0%], moderate certainty), cough severity on the 100-mm VAS (mean difference, -6.2 mm [95% CI, -4.1 to -8.4]; high certainty), and cough-specific quality of life on the LCQ (mean difference, 1.0 points [95% CI, 0.7-1.4]; moderate certainty). Compared with placebo, gefapixant (45 mg twice daily) probably caused an important increase in treatment-related adverse events (32 more per 100 patients [95% CI, 13-64 more], moderate certainty) and taste-related adverse events (32 more per 100 patients [95% CI, 22-46 more], high certainty). High-certainty evidence suggests that gefapixant (15 mg twice daily) had small effects on taste-related adverse events (6 more per 100 patients [95% CI, 5-8 more]). Conclusions and Relevance Compared with placebo, gefapixant (45 mg orally twice daily) led to modest improvements in cough frequency, cough severity, and cough-specific quality of life but increased taste-related adverse events.
Collapse
Affiliation(s)
- Elena Kum
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Patel
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nermin Diab
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mustafaa Wahab
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dena Zeraatkar
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Derek K. Chu
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paul M. O’Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Gordon H. Guyatt
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Imran Satia
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Hernández-Plata E, Cruz AA, Becerril C. Na V1.7 channels are expressed in the lower airways of the human respiratory tract. Respir Physiol Neurobiol 2023; 311:104034. [PMID: 36792043 DOI: 10.1016/j.resp.2023.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
NaV channels expression have been reported in upper airways and tracheal smooth muscle cells controlling the generation and propagation of action potentials in the respiratory tract sensory neurons, but information about the presence of these proteins in the bronchioalveolar structures in human lungs was missing. The main objective covered in this work was to determine whether the NaV1.7 channels are expressed in lower airways, and to identify the cellular identities expressing these proteins. We detected high levels of the mRNA coding for NaV1.7 channels in isolated lung fibroblasts obtained from both normal lungs, and fibrotic lungs of patients with respiratory diseases. The protein was detected with two different antibodies in the bronchioalveolar tissue, alveolar endothelium, and capillary endothelium, in normal and pathologic lungs. These evidences are useful in the dissection of molecular mechanisms of pulmonary pathologies, and lead to consider the NaV1.7 channels as potential therapeutic targets for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Everardo Hernández-Plata
- Investigador por México, Consejo Nacional de Ciencia y Tecnología, and Instituto Nacional de Medicina Genómica, Mexico City, Mexico.
| | - Ana Alfaro Cruz
- Departamento de Patología, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
10
|
Brister D, Wahab M, Rashad M, Diab N, Kolb M, Satia I. Emerging drugs in the treatment of chronic cough. Expert Opin Emerg Drugs 2023:1-11. [PMID: 37060576 DOI: 10.1080/14728214.2023.2203912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Chronic cough is a debilitating condition that is among the most common reasons for seeking medical attention yet remains challenging to manage. Identifying an underlying respiratory, nasal or upper gastrointestinal disease triggering cough is the first step in assessment, but once this has been ruled out or adequately treated, many patients remain troubled with chronic cough. AREAS COVERED This narrative review discusses the role of existing treatments and describes the current research landscape for the development of new therapies for chronic cough greater than 8 weeks that is refractory (RCC) or unexplained (UCC). The literature search includes published studies found on pubmed and conference abstracts until 2023. EXPERT OPINION RCC/UCC can occur due to neuronal dysregulation of the vagus nerve or central nervous system. Hence, novel anti-tussives have targeted ion channels involved in the neuronal signaling which triggers cough. Although some therapies targeting receptors such as TRPV1 have failed to show efficacy, P2X3 antagonists have emerged as the most promising therapy for patients impacted by chronic cough. Disease specific therapies such as for idiopathic pulmonary fibrosis are in early development.
Collapse
Affiliation(s)
- Danica Brister
- McMaster University Department of Medicine, Hamilton, Canada
| | - Mustafaa Wahab
- McMaster University Department of Medicine, Hamilton, Canada
| | - Moaaz Rashad
- McMaster University Department of Medicine, Hamilton, Canada
| | - Nermin Diab
- McMaster University Department of Medicine, Hamilton, Canada
| | - Martin Kolb
- McMaster University Department of Medicine, Hamilton, Canada
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| | - Imran Satia
- McMaster University Department of Medicine, Hamilton, Canada
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| |
Collapse
|
11
|
Rai DK, Sharma P, Karmakar S, Thakur S, Ameet H, Yadav R, Gupta VB. Approach to post COVID-19 persistent cough: A narrative review. Lung India 2023; 40:149-154. [PMID: 37006099 PMCID: PMC10174656 DOI: 10.4103/lungindia.lungindia_250_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 03/05/2023] Open
Abstract
A large proportion of patients who completely recovered from acute coronavirus disease 2019 (COVID-19) infection later continued to experience symptoms even after recovery, irrespective of the severity of the disease. Various terms with varying duration were used for those who had persistent symptoms, of which cough was the most common. We systematically searched the published literature concerning post-COVID-19 cough, its prevalence, and the potential ways to reduce it in clinical practice. The aim of this review was to provide an overview of existing literature concerning post-COVID-19 cough. Literature shows that augmented cough reflex sensitivity is responsible for persistent cough after acute viral upper respiratory infection (URI). Overall, the heightened cough reflex associated with SARSCoV2 induces neurotropism, neuroinflammation, and neuroimmunomodulation via the vagal sensory nerves. Therapies for post-COVID-19 cough aim at the suppression of cough reflex. For a patient who does not respond to early symptomatic treatment, Inhaled corticosteroids can be given a trial to suppress airway inflammation. More trials of novel cough therapies in patients with post-COVID-19 cough using various outcome measures need to be studied in future research. Several agents are currently available for symptomatic relief. However, non-response or refractory cough continues to preclude adequate symptom relief.
Collapse
Affiliation(s)
- Deependra K. Rai
- Department of Pulmonary Medicine, AIIMS Patna, Patna, Bihar, India
| | - Priya Sharma
- Department of Pulmonary Medicine, AIIMS Patna, Patna, Bihar, India
| | - Saurabh Karmakar
- Department of Pulmonary Medicine, AIIMS Patna, Patna, Bihar, India
| | - Somesh Thakur
- Department of Pulmonary Medicine, AIIMS Patna, Patna, Bihar, India
| | - H Ameet
- Department of Pulmonary Medicine, AIIMS Patna, Patna, Bihar, India
| | - Rajesh Yadav
- Department of Pulmonary Medicine, AIIMS Patna, Patna, Bihar, India
| | - Vatsal B. Gupta
- Department of Pulmonary Medicine, AIIMS Patna, Patna, Bihar, India
| |
Collapse
|
12
|
Kim JS, Sun H, Meeker S, Undem BJ. Role of Na V 1.9 in inflammatory mediator-induced activation of mouse airway vagal C-fibres. J Physiol 2023; 601:1139-1150. [PMID: 36750759 PMCID: PMC10023385 DOI: 10.1113/jp283751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
The influence of NaV 1.9 on inflammatory mediator-induced activation of airway vagal nodose C-fibres was evaluated by comparing responses in wild-type versus NaV 1.9-/- mice. A single-cell RT-PCR analysis indicated that virtually all nodose C-fibre neurons expressed NaV 1.9 (SCN11A) mRNA. Using extracellular electrophysiological recordings in an isolated vagally innervated mouse trachea-lung preparation, it was noted that mediators acting via G protein-coupled receptors (PAR2), or ionotropic receptors (P2×3) were 70-85% less effective in evoking action potential discharge in the absence of NaV 1.9. However, there was no difference in action potential discharge between wild-type and NaV 1.9-/- when the stimulus was a rapid punctate mechanical stimulus. An analysis of the passive and active properties of isolated nodose neurons revealed no difference between neurons from wild-type and NaV 1.9-/- mice, with the exception of a modest difference in the duration of the afterhyperpolarization. There was also no difference in the amount of current required to evoke action potentials (rheobase) or the action potential voltage threshold. The inward current evoked by the chemical mediator by a P2×3 agonist was the same in wild-type versus NaV 1.9-/- neurons. However, the current was sufficient to evoke action potential only in the wild-type neurons. The data support the speculation that NaV 1.9 could be an attractive therapeutic target for inflammatory airway disease by selectively inhibiting inflammatory mediator-associated vagal C-fibre activation. KEY POINTS: Inflammatory mediators were much less effective in activating the terminals of vagal airway C-fibres in mice lacking NaV 1.9. The active and passive properties of nodose neurons were the same between wild-type neurons and NaV 1.9-/- neurons. Nerves lacking NaV 1.9 responded, normally, with action potential discharge to rapid punctate mechanical stimulation of the terminals or the rapid stimulation of the cell bodies with inward current injections. NaV 1.9 channels could be an attractive target to selectively inhibit vagal nociceptive C-fibre activation evoked by inflammatory mediators without blocking the nerves' responses to the potentially hazardous stimuli associated with aspiration.
Collapse
Affiliation(s)
- Joyce S Kim
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hui Sun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sonya Meeker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Abstract
The rhythmicity of breath is vital for normal physiology. Even so, breathing is enriched with multifunctionality. External signals constantly change breathing, stopping it when under water or deepening it during exertion. Internal cues utilize breath to express emotions such as sighs of frustration and yawns of boredom. Breathing harmonizes with other actions that use our mouth and throat, including speech, chewing, and swallowing. In addition, our perception of breathing intensity can dictate how we feel, such as during the slow breathing of calming meditation and anxiety-inducing hyperventilation. Heartbeat originates from a peripheral pacemaker in the heart, but the automation of breathing arises from neural clusters within the brainstem, enabling interaction with other brain areas and thus multifunctionality. Here, we document how the recent transformation of cellular and molecular tools has contributed to our appreciation of the diversity of neuronal types in the breathing control circuit and how they confer the multifunctionality of breathing.
Collapse
Affiliation(s)
- Kevin Yackle
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
14
|
Hooper JS, Taylor-Clark TE. Irritant-evoked reflex tachyarrhythmia in spontaneously hypertensive rats is reduced by inhalation of TRPM8 agonists l-menthol and WS-12. J Appl Physiol (1985) 2023; 134:307-315. [PMID: 36603045 PMCID: PMC9886351 DOI: 10.1152/japplphysiol.00495.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/06/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Inhalation of noxious irritants activates nociceptive sensory afferent nerves innervating the airways, inducing reflex regulation of autonomic networks and the modulation of respiratory drive and cardiovascular (CV) parameters such as heart rate and blood pressure. In healthy mammals, irritant-evoked pulmonary-cardiac reflexes cause parasympathetic-mediated bradycardia. However, in spontaneously hypertensive (SH) rats, irritant inhalation also increases sympathetic drive to the heart. This remodeled pulmonary-cardiac reflex may contribute to cardiovascular risk caused by inhalation of air pollutants/irritants in susceptible individuals with cardiovascular disease (CVD). Previous studies have shown that the cooling mimic l-menthol, an agonist for the cold-sensitive transient receptor potential melastatin 8 (TRPM8), can alleviate nasal inflammatory symptoms and respiratory reflexes evoked by irritants. Here, we investigated the impact of inhalation of TRPM8 agonists l-menthol and WS-12 on pulmonary-cardiac reflexes evoked by inhalation of the irritant allyl isothiocyanate (AITC) using radiotelemetry. l-Menthol, but not its inactive analog d-menthol, significantly reduced the AITC-evoked reflex tachycardia and premature ventricular contractions (PVCs) in SH rats but had no effect on the AITC-evoked bradycardia in either SH or normotensive Wistar-Kyoto (WKY) rats. WS-12 reduced AITC-evoked tachycardia and PVCs in SH rats, but this more potent TRPM8 agonist also reduced AITC-evoked bradycardia. l-Menthol had no effect on heart rate when given alone, whereas WS-12 evoked a minor bradycardia in WKY rats. We conclude that stimulation of TRPM8-expressing afferents within the airways reduces irritant-evoked pulmonary-cardiac reflexes, especially the aberrant reflex tachyarrhythmia in SH rats. Airway menthol treatment may be an effective therapy for reducing pollution-associated CV exacerbations.NEW & NOTEWORTHY Irritant-evoked pulmonary-cardiac reflexes are remodeled in spontaneously hypertensive (SH) rats-causing de novo sympathetic reflexes that drive tachyarrhythmia. This remodeling may contribute to air pollution-associated risk in susceptible individuals with cardiovascular disease. We found that inhalation of TRPM8 agonists, l-menthol and WS-12, but not the inactive analog d-menthol, selectively reduces the reflex tachyarrhythmia evoked by allyl isothiocyanate (AITC) inhalation in SH rats. Use of menthol may protect susceptible individuals from pollution-associated CV exacerbations.
Collapse
Affiliation(s)
- J Shane Hooper
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
15
|
Changes of the airway reactivity in patients with rhinosinusitis. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Rhinosinusitis is one of the most common conditions in primary and secondary care all over the world. Rhinosinusitis together with asthma and gastroesophageal reflux disease represent the most common causes of chronic cough. The relationship between rhinosinusitis and cough is still not completely understood, however, direct stimulation of nasal mucosa, upper airway cough syndrome, inflammation of the airways, and cough reflex sensitisation play the crucial role in the pathogenesis of chronic cough.
Collapse
|
16
|
Smith JA, Kitt MM, Bell A, Noulin N, Tzontcheva A, Seng MM, Lu S. Treatment with the P2X3-Receptor Antagonist Gefapixant for Acute Cough in Induced Viral Upper Respiratory Tract Infection: A Phase 2a, Randomized, Placebo-Controlled Trial. Pulm Ther 2022; 8:297-310. [PMID: 35969360 PMCID: PMC9458823 DOI: 10.1007/s41030-022-00193-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Available therapies for acute cough, a condition frequently caused by a viral upper respiratory tract infection (URTI), have shown limited evidence of efficacy. Gefapixant, a P2X3-receptor antagonist, has demonstrated efficacy and safety in studies of the treatment of refractory or unexplained chronic cough, but its efficacy for treating acute cough has not been previously studied. METHODS This was a phase 2a, randomized, double-blind, placebo-controlled, parallel-group, pilot study. Healthy volunteers were randomized 1:1 to receive twice-daily gefapixant 45 mg or placebo and inoculated with human rhinovirus 16 to induce URTI and cough. Participants were observed while quarantined for 7 days after the start of treatment. The primary endpoint was awake cough frequency on day 3, which was objectively measured with a cough-recording device. Secondary endpoints included change from baseline to day 3 in subjective cough severity measures (cough severity visual analog scale, Cough Severity Diary) and cough-specific quality of life (Leicester Cough Questionnaire-acute). RESULTS Of the 46 participants who met inclusion criteria [mean (standard deviation, SD) age, 24.6 (6.5) years; females, n = 8], 40 completed the study (gefapixant, n = 21; placebo, n = 19). There was no significant difference in awake cough frequency on day 3 between the gefapixant and placebo groups [least squares means, 2.4 versus 2.7 coughs per hour, respectively; mean difference (95% confidence interval, CI), -0.3 (-2.3, 1.7); P = 0.75]. There were no significant between-group differences for any of the secondary endpoints. Peak cough frequency was low and occurred later in the study than expected (days 4-5). The safety profile was consistent with that of previous studies of gefapixant. CONCLUSION Compared with placebo, gefapixant did not reduce the frequency or severity of acute cough secondary to induced URTI. Induced viral URTI produced mild symptoms, including lower cough frequency than observed in previous studies of patients selected for acute cough associated with naturally occurring URTI. TRIAL REGISTRATION ClinicalTrials.gov, NCT03569033; EudraCT, 2017-000472-28; protocol number, MK-7264-013.
Collapse
Affiliation(s)
- Jaclyn A Smith
- Division of Infection, Immunity & Respiratory Medicine, 2nd Floor Education & Research Centre, University of Manchester, Manchester University NHS Foundation Trust, Southmoor Rd, Wythenshawe, M23 9LT, Manchester, UK.
| | | | - Alan Bell
- hVIVO, a subsidiary of Open Orphan Plc, London, UK
| | | | | | | | - Susan Lu
- Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
17
|
Zhang M, Sykes DL, Sadofsky LR, Morice AH. ATP, an attractive target for the treatment of refractory chronic cough. Purinergic Signal 2022; 18:289-305. [PMID: 35727480 PMCID: PMC9209634 DOI: 10.1007/s11302-022-09877-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic cough is the most common complaint in respiratory clinics. Most of them have identifiable causes and some may respond to common disease-modifying therapies. However, there are many patients whose cough lacks effective aetiologically targeted treatments or remains unexplained after thorough assessments, which have been described as refractory chronic cough. Current treatments for refractory chronic cough are limited and often accompanied by intolerable side effects such as sedation. In recent years, various in-depth researches into the pathogenesis of chronic cough have led to an explosion in the development of drugs for the treatment of refractory chronic cough. There has been considerable progress in the underlying mechanisms of chronic cough targeting ATP, and ongoing or completed clinical studies have confirmed the promising antitussive efficacy of P2X3 antagonists for refractory cough. Herein, we review the foundation on which ATP target was developed as potential antitussive medications and provide an update on current clinical progresses.
Collapse
Affiliation(s)
- Mengru Zhang
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.,Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dominic L Sykes
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Laura R Sadofsky
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Alyn H Morice
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.
| |
Collapse
|
18
|
Ahmed U, Chang YC, Zafeiropoulos S, Nassrallah Z, Miller L, Zanos S. Strategies for precision vagus neuromodulation. Bioelectron Med 2022; 8:9. [PMID: 35637543 PMCID: PMC9150383 DOI: 10.1186/s42234-022-00091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
The vagus nerve is involved in the autonomic regulation of physiological homeostasis, through vast innervation of cervical, thoracic and abdominal visceral organs. Stimulation of the vagus with bioelectronic devices represents a therapeutic opportunity for several disorders implicating the autonomic nervous system and affecting different organs. During clinical translation, vagus stimulation therapies may benefit from a precision medicine approach, in which stimulation accommodates individual variability due to nerve anatomy, nerve-electrode interface or disease state and aims at eliciting therapeutic effects in targeted organs, while minimally affecting non-targeted organs. In this review, we discuss the anatomical and physiological basis for precision neuromodulation of the vagus at the level of nerve fibers, fascicles, branches and innervated organs. We then discuss different strategies for precision vagus neuromodulation, including fascicle- or fiber-selective cervical vagus nerve stimulation, stimulation of vagal branches near the end-organs, and ultrasound stimulation of vagus terminals at the end-organs themselves. Finally, we summarize targets for vagus neuromodulation in neurological, cardiovascular and gastrointestinal disorders and suggest potential precision neuromodulation strategies that could form the basis for effective and safe therapies.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stefanos Zafeiropoulos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Larry Miller
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| |
Collapse
|
19
|
Pathophysiology of Airway Afferent Nerves. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Vagal afferent nerves provide an airway defense mechanism which is ensured by their activation. These nerves can be activated mechanically mainly through mechanosensitive Aβ fibers which are divided into slowly adapting (SARs) and rapidly adapting stretch receptors (RARs). Chemical activation is provided by an interaction of chemical substances with specific receptors. C-fibers are highly sensitive to a direct chemical stimulation accomplished by an activation of ligand-gated ion channels. According to the large influence and mechanisms of vagal afferent nerves, there is a probability that an inappropriate activity of these nerves can cause the symptoms of the respiratory diseases, e.g. cough, dyspnoea, or airway hyperreactivity. The aim of this review is to summarize the physiology of airway afferent nerves and point out the role of vagal sensory nerves dysfunction in the pathogenesis of some respiratory diseases. The understanding of its mechanism could lead to new therapeutic strategies in patients with airway-related pathology.
Collapse
|
20
|
Kim SH, Patil MJ, Hadley SH, Bahia PK, Butler SG, Madaram M, Taylor-Clark TE. Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets. eNeuro 2022; 9:ENEURO.0026-22.2022. [PMID: 35365503 PMCID: PMC9015009 DOI: 10.1523/eneuro.0026-22.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022] Open
Abstract
The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, only nodose afferents project into the alveolar region, but both nodose and jugular afferents innervate conducting airways throughout the lung. Many afferents that project into the alveolar region express TRPV1. Few DRG afferents expressed TRPV1. Approximately 25% of blood vessels were innervated by vagal afferents (many were Tac1+). Approximately 10% of blood vessels had DRG afferents (some were Tac1+), but this was restricted to large vessels. Lastly, innervation of neuroepithelial bodies (NEBs) correlated with the cell number within the bodies. In conclusion, functionally distinct sensory subsets have distinct innervation patterns within the conducting airways, alveoli and blood vessels. Physiologic (e.g., stretch) and pathophysiological (e.g., inflammation, edema) stimuli likely vary throughout these regions. Our data provide a neuroanatomical basis for understanding afferent responses in vivo.
Collapse
Affiliation(s)
- Seol-Hee Kim
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Mayur J Patil
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen H Hadley
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Parmvir K Bahia
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Shane G Butler
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Meghana Madaram
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
21
|
Domnik NJ, Vincent SG, Fisher JT. Mechanosensitivity of Murine Lung Slowly Adapting Receptors: Minimal Impact of Chemosensory, Serotonergic, and Purinergic Signaling. Front Physiol 2022; 13:833665. [PMID: 35250636 PMCID: PMC8889033 DOI: 10.3389/fphys.2022.833665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Murine slowly adapting receptors (SARs) within airway smooth muscle provide volume-related feedback; however, their mechanosensitivity and morphology are incompletely characterized. We explored two aspects of SAR physiology: their inherent static mechanosensitivity and a potential link to pulmonary neuroepithelial bodies (NEBs). SAR mechanosensitivity displays a rate sensitivity linked to speed of inflation; however, to what extent static SAR mechanosensitivity is tuned for the very rapid breathing frequency (B f ) of small mammals (e.g., mouse) is unclear. NEB-associated, morphologically described smooth muscle-associated receptors (SMARs) may be a structural analog for functionally characterized SARs, suggesting functional linkages between SARs and NEBs. We addressed the hypotheses that: (1) rapid murine B f is associated with enhanced in vivo SAR static sensitivity; (2) if SARs and NEBs are functionally linked, stimuli reported to impact NEB function would alter SAR mechanosensitivity. We measured SAR action potential discharge frequency (AP f, action potentials/s) during quasi-static inflation [0-20 cmH2O trans-respiratory pressure (PTR)] in NEB-relevant conditions of hypoxia (FIO2 = 0.1), hypercarbia (FICO2 = 0.1), and pharmacologic intervention (serotonergic 5-HT3 receptor antagonist, Tropisetron, 4.5 mg/kg; P2 purinergic receptor antagonist, Suramin, 50 mg/kg). In all protocols, we obtained: (1) AP f vs. PTR; (2) PTR threshold; and (3) AP f onset at PTR threshold. The murine AP f vs. PTR response comprises high AP f (average maximum AP f: 236.1 ± 11.1 AP/s at 20 cmH2O), a low PTR threshold (mean 2.0 ± 0.1 cmH2O), and a plateau in AP f between 15 and 20 cmH2O. Murine SAR mechanosensitivity (AP f vs. PTR) is up to 60% greater than that reported for larger mammals. Even the maximum difference between intervention and control conditions was minimally impacted by NEB-related alterations: Tropisetron -7.6 ± 1.8% (p = 0.005); Suramin -10.6 ± 1.5% (p = 0.01); hypoxia +9.3 ± 1.9% (p < 0.001); and hypercarbia -6.2 ± 0.9% (p < 0.001). We conclude that the high sensitivity of murine SARs to inflation provides enhanced resolution of operating lung volume, which is aligned with the rapid B f of the mouse. We found minimal evidence supporting a functional link between SARs and NEBs and speculate that the <10% change in SAR mechanosensitivity during altered NEB-related stimuli is not consistent with a meaningful physiologic role.
Collapse
Affiliation(s)
- Nicolle J. Domnik
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sandra G. Vincent
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - John T. Fisher
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
22
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
23
|
Kollarik M, Ru F, Pavelkova N, Mulcahy J, Hunter J, Undem BJ. Role of Na V 1.7 in action potential conduction along human bronchial vagal afferent C-fibres. Br J Pharmacol 2022; 179:242-251. [PMID: 34634134 DOI: 10.1111/bph.15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to determine the role of NaV 1.7 in action potential conduction in C-fibres in the bronchial branches of the human vagus nerve. EXPERIMENTAL APPROACH Bronchial branches of the vagus nerve were dissected from human donor tissue. The C-wave of the electrically evoked compound action potential was quantified in the absence and presence of increasing concentrations of the selective NaV 1.7 blocking drugs, PF-05089771 and ST-2262, as well as the NaV 1.1, 1.2, and 1.3 blocking drug ICA121-431. The efficacy and potency of these inhibitors were compared to the standard NaV 1 blocker, tetrodotoxin. We then compared the relative potencies of the NaV 1 blockers in inhibiting the C-wave of the compound action potential, with their ability to inhibit parasympathetic cholinergic contraction of human isolated bronchi, a response previously shown to be strictly dependent on NaV 1.7 channels. KEY RESULTS The selective NaV 1.7 blockers inhibited the C-wave of the compound action potential with potencies similar to that observed in the NaV 1.7 bronchial contractions assay. Using rt-PCR, we noted that NaV 1.7 mRNA was strongly expressed and transported down the vagus nerve bundles. CONCLUSIONS AND IMPLICATIONS NaV 1.7 blockers can prevent action potential conduction in the majority of vagal C-fibres arising from human bronchi. Blockers of NaV 1.7 channels may therefore have value in inhibiting the responses to excessive airway C-fibre activation in inflammatory airway disease, responses that include coughing as well as reflex bronchoconstriction and secretions.
Collapse
Affiliation(s)
- Marian Kollarik
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Fei Ru
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nikoleta Pavelkova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - John Mulcahy
- SiteOne Therapeutics, South San Francisco, CA, USA
| | - John Hunter
- SiteOne Therapeutics, South San Francisco, CA, USA
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Taylor-Clark TE, Undem BJ. Neural control of the lower airways: Role in cough and airway inflammatory disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:373-391. [PMID: 35965034 PMCID: PMC10688079 DOI: 10.1016/b978-0-323-91534-2.00013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Airway function is under constant neurophysiological control, in order to maximize airflow and gas exchange and to protect the airways from aspiration, damage, and infection. There are multiple sensory nerve subtypes, whose disparate functions provide a wide array of sensory information into the CNS. Activation of these subtypes triggers specific reflexes, including cough and alterations in autonomic efferent control of airway smooth muscle, secretory cells, and vasculature. Importantly, every aspect of these reflex arcs can be impacted and altered by local inflammation caused by chronic lung disease such as asthma, bronchitis, and infections. Excessive and inappropriate activity in sensory and autonomic nerves within the airways is thought to contribute to the morbidity and symptoms associated with lung disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
25
|
Ford AP, Dillon MP, Kitt MM, Gever JR. The discovery and development of gefapixant. Auton Neurosci 2021; 235:102859. [PMID: 34403981 DOI: 10.1016/j.autneu.2021.102859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Gefapixant is the approved generic name for a compound also known as MK-7264, and prior to that AF-219 and RO-4926219. It is the first-in-class clinically developed antagonist for the P2X3 subtype of trimeric ionotropic purinergic receptors, a family of ATP-gated excitatory ion channels, showing nanomolar potency for the human P2X3 homotrimeric channel and essentially no activity at related channels devoid of P2X3 subunits. As the first P2X3 antagonist to have progressed into clinical studies it has now progressed to the point of successful completion of Phase 3 investigations for the treatment of cough, and the NDA application is under review with US FDA for treatment of refractory chronic cough or unexplained chronic cough. The molecule was discovered in the laboratories of Roche Pharmaceuticals in Palo Alto, California, but clinical development then continued with the formation of Afferent Pharmaceuticals for the purpose of identifying the optimal therapeutic indication for this novel mechanism and establishing a clinical plan for development in the optimal patient populations selected. Geoff Burnstock was a close collaborator and advisor to the P2X3 program for close to two decades of discovery and development. Progression of gefapixant through later stage clinical studies has been conducted by the research laboratories of Merck & Co., Inc., Kenilworth, NJ, USA (MRL; following acquisition of Afferent in 2016), who may commercialize the product once authorization has been granted by regulatory authorities.
Collapse
Affiliation(s)
- Anthony P Ford
- CuraSen Therapeutics, 930 Brittan Avenue, Suite 306, San Carlos, CA 94070, USA.
| | - Michael P Dillon
- Ideaya Biosciences, 7000 Shoreline Court, Suite 350, South San Francisco, CA 94080, USA
| | - Michael M Kitt
- Axalbion LTD., C/O Medicines Evaluation Unit, The Langley Building, Southmoor Road, Wythenshawe, M23 9QZ Manchester, UK
| | - Joel R Gever
- CuraSen Therapeutics, 930 Brittan Avenue, Suite 306, San Carlos, CA 94070, USA
| |
Collapse
|
26
|
Zhuang J, Gao X, Wei W, Pelleg A, Xu F. Intralaryngeal application of ATP evokes apneic response mainly via acting on P2X3 (P2X2/3) receptors of the superior laryngeal nerve in postnatal rats. J Appl Physiol (1985) 2021; 131:986-996. [PMID: 34323594 DOI: 10.1152/japplphysiol.00091.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aerosolized adenosine 5'-triphosphate (ATP) induces cough and bronchoconstriction by activating vagal sensory fibers' P2X3 and P2X2/3 receptors (P2X3R and P2X2/3R). The goal of this study is to determine the effect of these receptors on the superior laryngeal nerve (SLN)-mediated cardiorespiratory responses to ATP challenge. We compared the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,β-methylene ATP in rat pups before and after 1) intralaryngeal perfusion of A-317491 (a P2X3R and P2X2/3R antagonist); 2) bilateral section of the SLN; and 3) peri-SLN treatment with capsaicin (to block conduction in superior laryngeal C-fibers, SLCFs) or A-317491. The immunoreactivity (IR) of P2X3R and P2X2R was determined in laryngeal sensory neurons of the nodose/jugular ganglia. Lastly, a whole-cell patch clamp recording was used to determine ATP- or α,β-mATP-induced currents without and with A-317491 treatment. It was found that intralaryngeal perfusion of both ATP and α,β-mATP induced immediate apnea, hypertension, and bradycardia. The apnea was eliminated and the hypertension and bradycardia were blunted by intralaryngeal perfusion of A-317491 and peri-SLN treatment with either A-317491 or capsaicin, while all of the cardiorespiratory responses were abolished by bilateral section of the SLN. P2X3R- and P2X2R-IR were observed in nodose and jugular ganglionic neurons labeled by fluoro-gold (FG). ATP- and α,β-mATP-induced currents recorded in laryngeal C-neurons were reduced by 75% and 95% respectively by application of A-317491. It is concluded that in anesthetized rat pups, the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,β-mATP are largely mediated by activation of SLCFs' P2X3R-P2X2/3R.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| | - Xiuping Gao
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| | - Wan Wei
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| |
Collapse
|
27
|
The Changes in Expression of Na V1.7 and Na V1.8 and the Effects of the Inhalation of Their Blockers in Healthy and Ovalbumin-Sensitized Guinea Pig Airways. MEMBRANES 2021; 11:membranes11070511. [PMID: 34357161 PMCID: PMC8304019 DOI: 10.3390/membranes11070511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 01/06/2023]
Abstract
Background: The presented study evaluated the suppositional changes in the airway expression of Nav1.8 and Nav1.7 and their role in the airway defense mechanisms in healthy animals and in an experimental asthma model. Methods: The effects of the blockers inhalation on the reactivity of guinea pig airways, number of citric-acid-induced coughs and ciliary beating frequency (CBF) were tested in vivo. Chronic inflammation simulating asthma was induced by repetitive exposure to ovalbumin. The expression of Nav1.7 and Nav1.8 was examined by ELISA. Results: The Nav 1.8 blocker showed complex antitussive and bronchodilatory effects and significantly regulated the CBF in healthy and sensitized animals. The Nav1.7 blockers significantly inhibited coughing and participated in CBF control in the ovalbumin-sensitized animals. The increased expression of the respective ion channels in the sensitized animals corresponded to changes in CBF regulation. The therapeutic potency of the Nav1.8 blocker was evidenced in combinations with classic bronchodilators. Conclusion: The allergic-inflammation-upregulated expression of Nav1.7 and Nav1.8 and corresponding effects of blocker inhalation on airway defense mechanisms, along with the Nav1.8 blocker’s compatibility with classic antiasthmatic drugs, bring novel possibilities for the treatment of various respiratory diseases. However, the influence of the Nav1.8 blocker on CBF requires further investigation.
Collapse
|
28
|
Sykes DL, Morice AH. The Cough Reflex: The Janus of Respiratory Medicine. Front Physiol 2021; 12:684080. [PMID: 34267675 PMCID: PMC8277195 DOI: 10.3389/fphys.2021.684080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
In clinical practice, we commonly face adversity when encountering dysfunction of the cough reflex. Similar to ancient Roman deity Janus, it often presents with one of two opposing "faces". Continual aberrant activation of the cough reflex, also known as chronic cough, can cause great detriment to quality of life and many of these patients are left misdiagnosed and undertreated. In contrast, loss of normal functioning of the cough reflex is the cause of a significant proportion of mortality in the elderly, primarily through the development of aspiration pneumonia. In this review we discuss both hyper- and hypo-activation of the cough reflex and how airway reflux and chronic aspiration may be involved in the aetiology and sequalae of both disease states. We detail the physiological and pharmacological mechanisms involved in cough, and how the recent development of P2X3 receptor antagonists may lead to the first pharmaceutical agent licensed for chronic cough. The treatment and prevention of loss of the cough reflex, which has been largely neglected, is also discussed as novel low-cost interventions could help prevent a number of hospital and domiciliary deaths from both acute and chronic aspiration.
Collapse
Affiliation(s)
- Dominic L. Sykes
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Alyn H. Morice
- Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
29
|
Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune Pathophysiology in Asthma. Front Cell Dev Biol 2021; 9:663535. [PMID: 34055794 PMCID: PMC8155297 DOI: 10.3389/fcell.2021.663535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | - Luis M. Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
30
|
Li X, Li X, Zhang W, Liu Q, Gao Y, Chang R, Zhang C. Factors and potential treatments of cough after pulmonary resection: A systematic review. Asian J Surg 2021; 44:1029-1036. [PMID: 33610443 DOI: 10.1016/j.asjsur.2021.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cough is a common complication following pulmonary resection. Persistent and severe cough after pulmonary resection can cause significant impairments in quality of life among postoperative patients. Complications of cough can be life-threatening. To improve patients' probability and quality of life, factors that induce cough after pulmonary resection (CAP) and potential treatments should be explored and summarized. Previous studies have identified various factors related to CAP. However, those factors have not been categorized and analyzed in a sensible manner. Here, we summarized the different factors and classified them into four groups. Potential therapies might be developed to selectively target different factors that affect CAP. However, the exact mechanism underlying CAP remains unknown, making it difficult to treat and manage CAP. In this review, we summarized the latest studies in our understanding of the factors related to CAP and potential treatments targeting those factors. This review can help understand the mechanism of CAP and develop efficient therapies and management.
Collapse
Affiliation(s)
- Xin Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Wuyang Zhang
- Clinical Skills Training Center, XiangyaHospital, Central South University, Changsha, 410008, Hunan, China.
| | - Qi Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021; 16:254-263. [PMID: 32859772 PMCID: PMC7896240 DOI: 10.4103/1673-5374.290883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adaptability of the central nervous system has been revealed in several model systems. Of particular interest to central nervous system-injured individuals is the ability for neural components to be modified for regain of function. In both types of neurotrauma, traumatic brain injury and spinal cord injury, the primary parasympathetic control to the gastrointestinal tract, the vagus nerve, remains anatomically intact. However, individuals with traumatic brain injury or spinal cord injury are highly susceptible to gastrointestinal dysfunctions. Such gastrointestinal dysfunctions attribute to higher morbidity and mortality following traumatic brain injury and spinal cord injury. While the vagal efferent output remains capable of eliciting motor responses following injury, evidence suggests impairment of the vagal afferents. Since sensory input drives motor output, this review will discuss the normal and altered anatomy and physiology of the gastrointestinal vagal afferents to better understand the contributions of vagal afferent plasticity following neurotrauma.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily M Besecker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA
| |
Collapse
|
32
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
33
|
Dicpinigaitis PV, Canning BJ. Is There (Will There Be) a Post-COVID-19 Chronic Cough? Lung 2020; 198:863-865. [PMID: 33188436 PMCID: PMC7665087 DOI: 10.1007/s00408-020-00406-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Peter V Dicpinigaitis
- Albert Einstein College of Medicine and Montefiore Medical Center, 1825 Eastchester Road, Bronx, NY, 10461, USA.
| | | |
Collapse
|
34
|
Abstract
Air pollutants pose a serious worldwide health hazard, causing respiratory and cardiovascular morbidity and mortality. Pollutants perturb the autonomic nervous system, whose function is critical to cardiopulmonary homeostasis. Recent studies suggest that pollutants can stimulate defensive sensory nerves within the cardiopulmonary system, thus providing a possible mechanism for pollutant-induced autonomic dysfunction. A better understanding of the mechanisms involved would likely improve the management and treatment of pollution-related disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
35
|
Development of a Mouse Reporter Strain for the Purinergic P2X 2 Receptor. eNeuro 2020; 7:ENEURO.0203-20.2020. [PMID: 32669344 PMCID: PMC7418537 DOI: 10.1523/eneuro.0203-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP-sensitive P2X2 ionotropic receptor plays a critical role in a number of signal processes including taste and hearing, carotid body detection of hypoxia, the exercise pressor reflex and sensory transduction of mechanical stimuli in the airways and bladder. Elucidation of the role of P2X2 has been hindered by the lack of selective tools. In particular, detection of P2X2 using established pharmacological and biochemical techniques yields dramatically different expression patterns, particularly in the peripheral and central nervous systems. Here, we have developed a knock-in P2X2-cre mouse, which we crossed with a cre-sensitive tdTomato reporter mouse to determine P2X2 expression. P2X2 was found in more than 80% of nodose vagal afferent neurons, but not in jugular vagal afferent neurons. Reporter expression correlated in vagal neurons with sensitivity to α,β methylene ATP (αβmATP). P2X2 was expressed in 75% of petrosal afferents, but only 12% and 4% of dorsal root ganglia (DRG) and trigeminal afferents, respectively. P2X2 expression was limited to very few cell types systemically. Together with the central terminals of P2X2-expressing afferents, reporter expression in the CNS was mainly found in brainstem neurons projecting mossy fibers to the cerebellum, with little expression in the hippocampus or cortex. The structure of peripheral terminals of P2X2-expressing afferents was demonstrated in the tongue (taste buds), carotid body, trachea and esophagus. P2X2 was observed in hair cells and support cells in the cochlear, but not in spiral afferent neurons. This mouse strain provides a novel approach to the identification and manipulation of P2X2-expressing cell types.
Collapse
|
36
|
P2X3-Receptor Antagonists as Potential Antitussives: Summary of Current Clinical Trials in Chronic Cough. Lung 2020; 198:609-616. [PMID: 32661659 DOI: 10.1007/s00408-020-00377-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023]
Abstract
Cough is among the most common complaints for which patients worldwide seek medical attention. In a majority of patients with chronic cough (defined as cough of greater than 8 weeks' duration), successful management results from a thorough evaluation and treatment of underlying causes. In a subgroup of patients, however, cough proves refractory to therapeutic trials aimed at known reversible causes of chronic cough. Such patients are appropriately termed as having refractory chronic cough. At present, safe and effective medications are lacking for this challenging patient population. Currently available therapeutic options are usually ineffective or achieve antitussive effect at the expense of intolerable side effects, typically sedation. Fortunately, the past decade has witnessed great progress in elucidating underlying mechanisms of cough. From that knowledge, aided by the development of validated instruments to measure objective and subjective cough-related end points, numerous antitussive drug development programs have emerged. The most active area of inquiry at present involves antagonists of the purinergic P2X receptors. Indeed, four clinical programs (one in Phase 3 and three in Phase 2) are currently underway investigating antagonists of receptors comprised entirely or partially of the P2X3 subunit as potential antitussive medications. Herein we review the foundation on which P2X receptor antagonists were developed as potential antitussive medications and provide an update on current clinical trials.
Collapse
|
37
|
Krajewski JL. P2X3-Containing Receptors as Targets for the Treatment of Chronic Pain. Neurotherapeutics 2020; 17:826-838. [PMID: 33009633 PMCID: PMC7609758 DOI: 10.1007/s13311-020-00934-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Current therapies for the treatment of chronic pain provide inadequate relief for millions of suffering patients, demonstrating the need for better therapies that will treat pain effectively and improve the quality of patient's lives. Better understanding of the mechanisms that mediate chronic pain is critical for developing drugs with improved clinical outcomes. Adenosine triphosphate (ATP) is a key modulator in nociceptive pathways. Release of ATP from injured tissue or sympathetic efferents has sensitizing effects on sensory neurons in the periphery, and presynaptic vesicular release of ATP from the central terminals can increase glutamate release thereby potentiating downstream central sensitization mechanisms, a condition thought to underlie many chronic pain conditions. The purinergic receptors on sensory nerves primarily responsible for ATP signaling are P2X3 and P2X2/3. Selective knockdown experiments, or inhibition with small molecules, demonstrate P2X3-containing receptors are key targets to modulate nociceptive signals. Preclinical studies have identified that P2X3-containing receptors are critical for sensory transduction for bladder function, and clinical studies have shown promise in treatment for bladder pain and pain associated with osteoarthritis. Further clinical characterization of antagonists to P2X3-containing receptors may lead to improved therapies in the treatment of chronic pain.
Collapse
|
38
|
Bahia PK, Hadley SH, Barannikov I, Sowells I, Kim SH, Taylor-Clark TE. Antimycin A increases bronchopulmonary C-fiber excitability via protein kinase C alpha. Respir Physiol Neurobiol 2020; 278:103446. [PMID: 32360368 DOI: 10.1016/j.resp.2020.103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022]
Abstract
Inflammation can increase the excitability of bronchopulmonary C-fibers leading to excessive sensations and reflexes (e.g. wheeze and cough). We have previously shown modulation of peripheral nerve terminal mitochondria by antimycin A causes hyperexcitability in TRPV1-expressing bronchopulmonary C-fibers through the activation of protein kinase C (PKC). Here, we have investigated the PKC isoform responsible for this signaling. We found PKCβ1, PKCδ and PKCε were expressed by many vagal neurons, with PKCα and PKCβ2 expressed by subsets of vagal neurons. In dissociated vagal neurons, antimycin A caused translocation of PKCα but not the other isoforms, and only in TRPV1-lineage neurons. In bronchopulmonary C-fiber recordings, antimycin A increased the number of action potentials evoked by α,β-methylene ATP. Selective inhibition of PKCα, PKCβ1 and PKCβ2 with 50 nM bisindolylmaleimide I prevented the antimycin-induced bronchopulmonary C-fiber hyperexcitability, whereas selective inhibition of only PKCβ1 and PKCβ2 with 50 nM LY333531 had no effect. We therefore conclude that PKCα is required for antimycin-induced increases in bronchopulmonary C-fiber excitability.
Collapse
Affiliation(s)
- Parmvir K Bahia
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephen H Hadley
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ivan Barannikov
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Isobel Sowells
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Seol-Hee Kim
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
39
|
Driessen AK, McGovern AE, Behrens R, Moe AAK, Farrell MJ, Mazzone SB. A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in bradykinin-evoked cough in guinea-pigs. J Physiol 2020; 598:2257-2275. [PMID: 32237239 DOI: 10.1113/jp279644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Airway projecting sensory neurons arising from the jugular vagal ganglia terminate centrally in the brainstem paratrigeminal nucleus, synapsing upon neurons expressing the neurokinin 1 receptor. This study aimed to assess the involvement of paratrigeminal neurokinin 1 receptor neurons in the regulation of cough, breathing and airway defensive responses. Lesioning neurokinin 1 receptor expressing paratrigeminal neurons significantly reduced cough evoked by inhaled bradykinin but not inhaled ATP or tracheal mechanical stimulation. The reduction in bradykinin-evoked cough was not accompanied by changes in baseline or evoked respiratory variables (e.g. frequency, volume or timing), animal avoidance behaviours or the laryngeal apnoea reflex. These findings warrant further investigations into targeting the jugular ganglia and paratrigeminal nucleus as a therapy for treating cough in disease. ABSTRACT Jugular vagal ganglia sensory neurons innervate the large airways and are thought to mediate cough and associated perceptions of airway irritations to a range of chemical irritants. The central terminals of jugular sensory neurons lie within the brainstem paratrigeminal nucleus, where postsynaptic neurons can be differentiated based on the absence or presence of the neurokinin 1 (NK1) receptor. Therefore, in the present study, we set out to test the hypothesis that NK1 receptor expressing paratrigeminal neurons play a role in cough evoked by inhaled chemical irritants. To test this, we performed selective neurotoxin lesions of NK1 receptor expressing neurons in the paratrigeminal nucleus in guinea-pigs using substance P conjugated to saporin (SSP-SAP). Sham lesion control or SSP-SAP lesion guinea-pigs received nebulised challenges, with the pan-nociceptor stimulant bradykinin or the nodose ganglia specific stimulant adenosine 5'-triphosphate (ATP), in conscious whole-body plethysmography to study cough and associated behaviours. Laryngeal apnoea reflexes and cough evoked by mechanical stimulation of the trachea were additionally investigated in anaesthetised guinea-pigs. SSP-SAP significantly and selectively reduced the number of NK1 receptor expressing neurons in the paratrigeminal nucleus. This was associated with a significant reduction in bradykinin-evoked cough, but not ATP-evoked cough, mechanical cough or laryngeal apnoeic responses. These data provide further evidence for a role of jugular vagal pathways in cough, and additionally suggest an involvement of NK1 receptor expressing neurons in the paratrigeminal nucleus. Therefore, this neural pathway may provide novel therapeutic opportunities to treat conditions of chronic cough.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert Behrens
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
40
|
Mapping of Sensory Nerve Subsets within the Vagal Ganglia and the Brainstem Using Reporter Mice for Pirt, TRPV1, 5-HT3, and Tac1 Expression. eNeuro 2020; 7:ENEURO.0494-19.2020. [PMID: 32060036 PMCID: PMC7294455 DOI: 10.1523/eneuro.0494-19.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
Vagal afferent sensory nerves, originating in jugular and nodose ganglia, are composed of functionally distinct subsets whose activation evokes distinct thoracic and abdominal reflex responses. We used Cre-expressing mouse strains to identify specific vagal afferent populations and map their central projections within the brainstem. We show that Pirt is expressed in virtually all vagal afferents; whereas, 5-HT3 is expressed only in nodose neurons, with little expression in jugular neurons. Transient receptor potential vanilloid 1 (TRPV1), the capsaicin receptor, is expressed in a subset of small nodose and jugular neurons. Tac1, the gene for tachykinins, is expressed predominantly in jugular neurons, some of which also express TRPV1. Vagal fibers project centrally to the nucleus tractus solitarius (nTS), paratrigeminal complex, area postrema, and to a limited extent the dorsal motor nucleus of the vagus. nTS subnuclei preferentially receive projections by specific afferent subsets, with TRPV1+ fibers terminating in medial and dorsal regions predominantly caudal of obex, whereas TRPV1− fibers terminate in ventral and lateral regions throughout the rostral–caudal aspect of the medulla. Many vagal Tac1+ afferents (mostly derived from the jugular ganglion) terminate in the nTS. The paratrigeminal complex was the target of multiple vagal afferent subsets. Importantly, lung-specific TRPV1+ and Tac1+ afferent terminations were restricted to the caudal medial nTS, with no innervation of other medulla regions. In summary, this study identifies the specific medulla regions innervated by vagal afferent subsets. The distinct terminations provide a neuroanatomic substrate for the diverse range of reflexes initiated by vagal afferent activation.
Collapse
|
41
|
Pelleg A, Xu F, Zhuang J, Undem B, Burnstock G. DT-0111: a novel drug-candidate for the treatment of COPD and chronic cough. Ther Adv Respir Dis 2020; 13:1753466619877960. [PMID: 31558105 PMCID: PMC6767719 DOI: 10.1177/1753466619877960] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Extracellular adenosine 5′-triphosphate (ATP) plays important mechanistic
roles in pulmonary disorders in general and chronic obstructive pulmonary
disease (COPD) and cough in particular. The effects of ATP in the lungs are
mediated to a large extent by P2X2/3 receptors (P2X2/3R) localized on vagal
sensory nerve terminals (both C and Aδ fibers). The activation of these
receptors by ATP triggers a pulmonary-pulmonary central reflex, which
results in bronchoconstriction and cough, and is also proinflammatory due to
the release of neuropeptides from these nerve terminals via
the axon reflex. These actions of ATP in the lungs constitute a strong
rationale for the development of a new class of drugs targeting P2X2/3R.
DT-0111 is a novel, small, water-soluble molecule that acts as an antagonist
at P2X2/3R sites. Methods: Experiments using receptor-binding functional assays, rat nodose ganglionic
cells, perfused innervated guinea pig lung preparation ex
vivo, and anesthetized and conscious guinea pigs in
vivo were performed. Results: DT-0111 acted as a selective and effective antagonist at P2X2/3R, that is, it
did not activate or block P2YR; markedly inhibited the activation by ATP of
nodose pulmonary vagal afferents in vitro; and, given as an
aerosol, inhibited aerosolized ATP-induced bronchoconstriction and cough
in vivo. Conclusions: These results indicate that DT-0111 is an attractive drug-candidate for the
treatment of COPD and chronic cough, both of which still constitute major
unmet clinical needs. The reviews of this paper are available via the supplementary
material section.
Collapse
Affiliation(s)
- Amir Pelleg
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, USA.,Danmir Therapeutics, LLC, Haverford, PA, USA
| | - Fadi Xu
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Jianguo Zhuang
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bradley Undem
- Johns Hopkins University Asthma Center, Baltimore, MD, USA
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.,Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, UK
| |
Collapse
|
42
|
Satia I, Nagashima A, Usmani OS. Exploring the role of nerves in asthma; insights from the study of cough. Biochem Pharmacol 2020; 179:113901. [PMID: 32156662 DOI: 10.1016/j.bcp.2020.113901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
Abstract
Cough in asthma predicts disease severity, prognosis, and is a common and troublesome symptom. Cough is the archetypal airway neuronal reflex, yet little is understood about the underlying neuronal mechanisms. It is generally assumed that symptoms arise because of airway hyper-responsiveness and/or airway inflammation, but despite using inhaled corticosteroids and bronchodilators targeting these pathologies, a large proportion of patients have persistent coughing. This review focuses on the prevalence and impact of cough in asthma and explores data from pre-clinical and clinical studies which have explored neuronal mechanisms of cough and asthma. We present evidence to suggest patients with asthma have evidence of neuronal dysfunction, which is further heightened and exaggerated by both bronchoconstriction and airway eosinophilia. Identifying patients with excessive coughing with asthma may represent a neuro-phenotype and hence developing treatment for this symptom is important for reducing the burden of disease on patients' lives and currently represents a major unmet clinical need.
Collapse
Affiliation(s)
- I Satia
- McMaster University, Department of Medicine, Division of Respirology, Canada; Firestone Institute for Respiratory Health, St Joseph's Hospital, Canada; University of Manchester, Division of Infection, Immunity and Respiratory Medicine, and Manchester Academic Health Science Centre, Manchester, United Kingdom.
| | - A Nagashima
- McMaster University, Department of Medicine, Division of Respirology, Canada
| | | |
Collapse
|
43
|
Undem BJ, Sun H. Molecular/Ionic Basis of Vagal Bronchopulmonary C-Fiber Activation by Inflammatory Mediators. Physiology (Bethesda) 2020; 35:57-68. [PMID: 31799905 PMCID: PMC6985783 DOI: 10.1152/physiol.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Stimulation of bronchopulmonary vagal afferent C fibers by inflammatory mediators can lead to coughing, chest tightness, and changes in breathing pattern, as well as reflex bronchoconstriction and secretions. These responses serve a defensive function in healthy lungs but likely contribute to many of the signs and symptoms of inflammatory airway diseases. A better understanding of the mechanisms underlying the activation of bronchopulmonary C-fiber terminals may lead to novel therapeutics that would work in an additive or synergic manner with existing anti-inflammatory strategies.
Collapse
Affiliation(s)
| | - Hui Sun
- Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
44
|
Phenotypic distinctions between the nodose and jugular TRPV1-positive vagal sensory neurons in the cynomolgus monkey. Neuroreport 2019; 30:533-537. [PMID: 30896676 DOI: 10.1097/wnr.0000000000001231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vagal capsaicin-sensitive afferent C-fibers play an important role in the maintenance of visceral homeostasis and contribute to symptoms in visceral diseases. Based on their developmental origin two functionally distinct types of vagal C-fibers are recognized: those with neurons in the vagal nodose ganglia (derived from epibranchial placodes) and in the vagal jugular ganglia (from neural crest). Studies in nonprimate species demonstrated that the vagal nodose and jugular C-fibers differ in activation profile, neurotrophic regulation, and expression of neurotransmitters. We hypothesized that the expression of selected markers related to key phenotypic properties of vagal C-fibers in the cynomolgus monkey is similar to that reported in nonprimate species. We performed single-cell RT-PCR on nodose and jugular putative C-fiber (TRPV1-positive) neurons isolated from the cynomolgus monkey. We found that the expression of purinergic P2X receptors that underlie selective responsiveness of nodose C-fiber terminals to ATP was conserved in that P2X2 and P2X3 subunits were expressed in nodose, but only P2X3 subunit was expressed in jugular TRPV1-positive neurons. Also conserved was the preferential expression of neurotrophic receptor TrkB in the nodose and preprotachykinin-A in the jugular TRPV1-positive neurons. Several key distinctions in gene expression between nodose and jugular TRPV1-positive (C-fiber) neurons that have been noted in mice, rats, and guinea pigs, are conserved in the cynomolgus monkey. Our results support the translatability of distinct vagal C-fiber phenotypes to primates.
Collapse
|
45
|
Sun H, Meeker S, Undem BJ. Role of TRP channels in G q-coupled protease-activated receptor 1-mediated activation of mouse nodose pulmonary C-fibers. Am J Physiol Lung Cell Mol Physiol 2019; 318:L192-L199. [PMID: 31664854 DOI: 10.1152/ajplung.00301.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We evaluated the mechanisms underlying protease-activated receptor 1 (PAR1)-mediated activation of nodose C-fibers in mouse lungs. The PAR1-induced action potential discharge at the terminals was strongly inhibited in phospholipase C-β3 (PLCβ3)-deficient animals. At the level of the cell soma, PAR1 activation led to an increase in cytosolic calcium that was largely inhibited by transient receptor potential (TRP) A1 antagonism. Patch-clamp recordings, however, revealed that neither TRPA1 nor TRPV1 or any other ruthenium red-sensitive ion channels are required for the PAR1-mediated inward current or membrane depolarization in isolated nodose neurons. Consistent with these findings, PAR1-mediated action potential discharge in mouse lung nodose C-fiber terminals was unaltered in Trpa1/Trpv1 double-knockout animals and Trpc3/Trpc6 double-knockout animals. The activation of the C-fibers was also not inhibited by ruthenium red at concentrations that blocked TRPV1- and TRPA1-dependent responses. The biophysical data show that PAR1/Gq-mediated activation of nodose C-fibers may involve multiple ion channels downstream from PLCβ3 activation. TRPA1 is an ion channel that participates in PAR1/Gq-mediated elevation in intracellular calcium. There is little evidence, however, that TRPA1, TRPV1, TRPC3, TRPC6, or other ruthenium red-sensitive TRP channels are required for PAR1/Gq-PLCβ3-mediated membrane depolarization and action potential discharge in bronchopulmonary nodose C-fibers in the mouse.
Collapse
Affiliation(s)
- Hui Sun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonya Meeker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
46
|
Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Mol Neurobiol 2019; 57:949-963. [DOI: 10.1007/s12035-019-01782-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
47
|
Thompson N, Mastitskaya S, Holder D. Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: Neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve. J Neurosci Methods 2019; 325:108325. [PMID: 31260728 PMCID: PMC6698726 DOI: 10.1016/j.jneumeth.2019.108325] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
Abstract
Vagus nerve stimulation (VNS) is a promising therapy for treatment of various conditions that are resistant to standard medication, such as heart failure, epilepsy, and depression. The vagus nerve is a complex nerve providing afferent and efferent innervation of the pharynx, larynx, heart, tracheobronchial tree and lungs, oesophagus, stomach, liver, pancreas, small intestine and proximal colon. It is therefore a prime target for intervention for VNS. Surprisingly, the fascicular organisation of the vagus nerve at the cervical level is still not well understood. This, along with the current stimulation techniques, results in the entire nerve being stimulated, which leads to unwanted off-target effects. Neuronal tracing is a promising method to delineate the organ-specific innervation by the vagus nerve, thereby providing valuable insight into the fascicular anatomy. In this review we discuss the current knowledge of vagus nerve anatomy and neuronal tracers used for mapping of its organ-specific projections in various species. Efferent vagal projections are a chain of two neurones (pre- and postganglionic), while afferent projections consist of only one pseudounipolar neurone with one branch terminating in the target organ/tissue directly and another in the brainstem. It would be feasible to retrogradely trace the afferent fibres from their respective visceral targets and identify them at the cervical level using non-transsynaptic neuronal tracers. Using this to create a map of the functional anatomical organisation of the vagus nerve will enable selective VNS ultimately allowing for the avoidance of the off-target effects and improving overall efficacy.
Collapse
Affiliation(s)
- Nicole Thompson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
48
|
Driessen AK. Vagal Afferent Processing by the Paratrigeminal Nucleus. Front Physiol 2019; 10:1110. [PMID: 31555145 PMCID: PMC6722180 DOI: 10.3389/fphys.2019.01110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The paratrigeminal nucleus is an obscure region in the dorsal lateral medulla, which has been best characterized as a collection of interstitial cells located in the dorsal tip of the spinal trigeminal tract. The paratrigeminal nucleus receives afferent input from the vagus, trigeminal, spinal, and glossopharyngeal nerves, which contribute to its long-known roles in the baroreceptor reflex and nociceptive processing. More recently, studies have shown that this region is also involved in the processing of airway-derived sensory information. Notably, these studies highlight an underappreciated complexity in the neuronal content and circuit connectivity of the paratrigeminal nucleus. However, much remains to be understood about how paratrigeminal processing of vagal afferents is altered in disease. The aim of the present review is to provide an update of the current understanding of vagal afferent processing in the paratrigeminal nucleus and to explore how dysregulation at this site may contribute to vagal sensory neural dysfunction during disease.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Science, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
49
|
Methods of Cough Assessment. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1715-1723. [DOI: 10.1016/j.jaip.2019.01.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
|
50
|
Kollarik M, Sun H, Herbstsomer RA, Ru F, Kocmalova M, Meeker SN, Undem BJ. Different role of TTX-sensitive voltage-gated sodium channel (Na V 1) subtypes in action potential initiation and conduction in vagal airway nociceptors. J Physiol 2019; 596:1419-1432. [PMID: 29435993 DOI: 10.1113/jp275698] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (NaV 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective NaV 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing NaV 1 blocking drugs for topical application to the respiratory tract. ABSTRACT The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (NaV 1s). We evaluated the role of TTX-sensitive and TTX-resistant NaV 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel NaV 1.7 along with TTX-resistant NaV 1.8 and NaV 1.9. Tracheal nodose neurons also expressed NaV 1.7 but, less frequently, NaV 1.8 and NaV 1.9. NaV 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other NaV 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in jugular C-fibres was unaffected by TTX, although it was inhibited by NaV 1.8 blocker (PF-01247324) and abolished by combination of TTX and PF-01247324. However, AP conduction in the majority of jugular C-fibres was abolished by TTX. By contrast, both AP initiation and conduction in nodose nociceptors was abolished by TTX or selective NaV 1.7 blockers. Distinction between the effect of a drug with respect to inhibiting AP in the nerve terminals within the airways vs. at conduction sites along the vagus nerve is relevant to therapeutic strategies involving inhaled NaV 1 blocking drugs.
Collapse
Affiliation(s)
- M Kollarik
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathophysiology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - H Sun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R A Herbstsomer
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Ru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Kocmalova
- Department of Pharmacology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - S N Meeker
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B J Undem
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|