1
|
Marrocchio R, Ó Maoiléidigh D. Links regulate deflection fluctuations in the sensory cells of hearing. Phys Rev E 2025; 111:034403. [PMID: 40247582 DOI: 10.1103/physreve.111.034403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
In our ears, inner-hair-cell hair bundles (IHBs) convert sound-induced forces into electrical signals, which are ultimately transmitted to the brain. An IHB comprises filamentous stereocilia emanating from the inner-hair-cell apex. Stereocilium deflections promote ion-channel opening and closing, causing receptor currents. This process is limited by fluctuations in the deflections, which compete with the sound signal, limiting the threshold of hearing. Stereocilia are viscoelastic structures and are coupled by fluid and viscoelastic links. The stiffness and damping of the system's components constrain stereocilium deflections, but increasing damping increases thermal deflection fluctuations. Competition between the constraining forces and thermal forces determines the deflection fluctuations. To better understand the deflection fluctuations, we build a mathematical model that relates the IHB's mechanical properties to deflection fluctuations. We find that the coherency of neighboring stereocilium deflections is less than 0.75 at frequencies corresponding to the physiological range of sound frequencies. The coherency for pairs of stereocilia decreases exponentially with the distance between them and is approximately zero between stereocilia at the center and edge of the IHB. We determine how the deflection fluctuations depend on the stiffness and damping of the links. In the absence of stiff links between stereocilia, neighboring stereocilia are weakly or negatively correlated in the physiological frequency range. We show how the sign of the coherency between stereocilium pairs is determined by the eigendecomposition of the deflection power spectral density matrix. Increasing the number of stereocilia in the IHB decreases the coherency between stereocilium pairs. The model also predicts that the threshold of hearing corresponds to IHB stereocilium deflections owing to sound of < 1.5 nm and that links of physiological stiffness decrease the threshold of hearing by at least 10dB. Predictions of the mathematical model are experimentally testable using recently developed techniques.
Collapse
Affiliation(s)
- Riccardo Marrocchio
- Stanford University, Department of Otolaryngology & Head and Neck Surgery, Stanford, California, USA
| | - Dáibhid Ó Maoiléidigh
- Stanford University, Department of Otolaryngology & Head and Neck Surgery, Stanford, California, USA
| |
Collapse
|
2
|
Yoon JY, Kim GW. Harnessing adaptive bistable stiffness of hair-cell-bundle structure for broadband vibration applications. Sci Rep 2023; 13:10750. [PMID: 37400522 DOI: 10.1038/s41598-023-37962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
This study presents an initial study on the adaptive bistable stiffness of the hair cell bundle structure in a frog cochlea, and aims to harness its bistable nonlinearity that features a negative stiffness region for broadband vibration applications such as vibration-based energy harvesters. To this end, the mathematical model for describing the bistable stiffness is first formulated based on the modeling concept of piecewise type nonlinearities. The harmonic balance method was then employed to examine the nonlinear responses of bistable oscillator, mimicking hair cells bundle structure under the frequency sweeping condition, and their dynamic behaviors induced by bistable stiffness characteristics are projected on phase diagrams, and Poincare maps concerning the bifurcation. In particular, the bifurcation mapping at the super- and sub-harmonic regimes provides a better perspective to examine the nonlinear motions which occur in the biomimetic system. The use of bistable stiffness characteristics of hair cell bundle structure in frog cochlea thus offers physical insights to harness the adaptive bistable stiffness for metamaterial-like potential engineering structures such as vibration-based energy harvester, and isolator etc.
Collapse
Affiliation(s)
- Jong-Yun Yoon
- Department of Mechatronics Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Gi-Woo Kim
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
3
|
Nam JH, Grant JW, Rowe MH, Peterson EH. Multiscale modeling of mechanotransduction in the utricle. J Neurophysiol 2019; 122:132-150. [PMID: 30995138 DOI: 10.1152/jn.00068.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We review recent progress in using numerical models to relate utricular hair bundle and otoconial membrane (OM) structure to the functional requirements imposed by natural behavior in turtles. The head movements section reviews the evolution of experimental attempts to understand vestibular system function with emphasis on turtles, including data showing that accelerations occurring during natural head movements achieve higher magnitudes and frequencies than previously assumed. The structure section reviews quantitative anatomical data documenting topographical variation in the structures underlying macromechanical and micromechanical responses of the turtle utricle to head movement: hair bundles, OM, and bundle-OM coupling. The macromechanics section reviews macromechanical models that incorporate realistic anatomical and mechanical parameters and reveal that the system is significantly underdamped, contrary to previous assumptions. The micromechanics: hair bundle motion and met currents section reviews work based on micromechanical models, which demonstrates that topographical variation in the structure of hair bundles and OM, and their mode of coupling, result in regional specializations for signaling of low frequency (or static) head position and high frequency head accelerations. We conclude that computational models based on empirical data are especially promising for investigating mechanotransduction in this challenging sensorimotor system.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering, Department of Biomedical Engineering, University of Rochester , Rochester, New York
| | - J W Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - M H Rowe
- Department of Biology, Neuroscience Program, Quantitative Biology Institute, Ohio University , Athens, Ohio
| | - E H Peterson
- Department of Biology, Neuroscience Program, Quantitative Biology Institute, Ohio University , Athens, Ohio
| |
Collapse
|
4
|
Najrana T, Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front Pediatr 2016; 4:140. [PMID: 28083527 PMCID: PMC5183626 DOI: 10.3389/fped.2016.00140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
5
|
Abstract
Cochlear hair cell bundles, made up of 10s to 100s of individual stereocilia, are essential for hearing, and even relatively minor structural changes, due to mutations or injuries, can result in total deafness. Consistent with its specialized role, the staircase geometry (SCG) of hair cell bundles presents one of the most striking, intricate, and precise organizations of actin-based cellular shapes. Composed of rows of actin-filled stereocilia with increasing lengths, the hair cell’s staircase-shaped bundle is formed from a progenitor field of smaller, thinner, and uniformly spaced microvilli with relatively invariant lengths. While recent genetic studies have provided a significant increase in information on the multitude of stereocilia protein components, there is currently no model that integrates the basic physical forces and biochemical processes necessary to explain the emergence of the SCG. We propose such a model derived from the biophysical and biochemical characteristics of actin-based protrusions. We demonstrate that polarization of the cell’s apical surface, due to the lateral polarization of the entire epithelial layer, plays a key role in promoting SCG formation. Furthermore, our model explains many distinct features of the manifestations of SCG in different species and in the presence of various deafness-associated mutations.
Collapse
|
6
|
Sataric MV, Sekulic DL, Sataric BM, Zdravkovic S. Role of nonlinear localized Ca(2+) pulses along microtubules in tuning the mechano-sensitivity of hair cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015. [PMID: 26208473 DOI: 10.1016/j.pbiomolbio.2015.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper aims to provide an overview of the polyelectrolyte model and the current understanding of the creation and propagation of localized pulses of positive ions flowing along cellular microtubules. In that context, Ca(2+) ions may move freely on the surface of microtubule along the protofilament axis, thus leading to signal transport. Special emphasis in this paper is placed on the possible role of this mechanism in the function of microtubule based kinocilium, a component of vestibular hair cells of the inner ear. We discuss how localized pulses of Ca(2+) ions play a crucial role in tuning the activity of dynein motors, which are involved in mechano-sensitivity of the kinocilium. A prevailing notion holds that the concentration of Ca(2+) ions around the microtubules within the kinocilium represents the control parameter for Hopf bifurcation. Therefore, a key feature of this mechanism is that the velocities of these Ca(2+) pulses be sufficiently high to exert control at acoustic frequencies.
Collapse
Affiliation(s)
- Miljko V Sataric
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, Novi Sad, Serbia
| | - Dalibor L Sekulic
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, Novi Sad, Serbia.
| | - Bogdan M Sataric
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, Novi Sad, Serbia
| | - Slobodan Zdravkovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Postanski fah 522, Serbia
| |
Collapse
|
7
|
Genetics of auditory mechano-electrical transduction. Pflugers Arch 2014; 467:49-72. [PMID: 24957570 PMCID: PMC4281357 DOI: 10.1007/s00424-014-1552-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/29/2022]
Abstract
The hair bundles of cochlear hair cells play a central role in the auditory mechano-electrical transduction (MET) process. The identification of MET components and of associated molecular complexes by biochemical approaches is impeded by the very small number of hair cells within the cochlea. In contrast, human and mouse genetics have proven to be particularly powerful. The study of inherited forms of deafness led to the discovery of several essential proteins of the MET machinery, which are currently used as entry points to decipher the associated molecular networks. Notably, MET relies not only on the MET machinery but also on several elements ensuring the proper sound-induced oscillation of the hair bundle or the ionic environment necessary to drive the MET current. Here, we review the most significant advances in the molecular bases of the MET process that emerged from the genetics of hearing.
Collapse
|
8
|
Lin LY, Pang W, Chuang WM, Hung GY, Lin YH, Horng JL. Extracellular Ca2+ and Mg2+ modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca2+ entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol 2013; 305:C1060-8. [DOI: 10.1152/ajpcell.00077.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zebrafish lateral-line hair cells are an in vivo model for studying hair cell development, function, and ototoxicity. However, the molecular identification and properties of the mechanotransducer (MET) channel in hair cells are still controversial. In this study, a noninvasive electrophysiological method, the scanning ion-electrode technique (SIET), was applied for the first time to investigate properties of MET channels in intact zebrafish embryos. With the use of a Ca2+-selective microelectrode to deflect hair bundles and simultaneously record the Ca2+ flux, the inward Ca2+ flux was detected at stereocilia of hair cells in 2- to ∼4-day postfertilization embryos. Ca2+ influx was blocked by MET channel blockers (BAPTA, La3+, Gd3+, and curare). In addition, 10 μM aminoglycoside antibiotics (neomycin and gentamicin) were found to effectively block Ca2+ influx within 10 min. Elevating the external Ca2+ level (0.2–2 mM) neutralized the effects of neomycin and gentamicin. However, elevating the Mg2+ level up to 5 mM neutralized blockade by gentamicin but not by neomycin. This study demonstrated MET channel-mediated Ca2+ entry at hair cells and showed that the SIET to be a sensitive approach for functionally assaying MET channels in zebrafish.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Wei Pang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Wei-Min Chuang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yuan-Hsiang Lin
- Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China; and
| | - Jiun-Lin Horng
- Department of Anatomy, Taipei Medical University, Taipei, Taiwan, Republic of China
| |
Collapse
|
9
|
Hackney CM, Furness DN. The composition and role of cross links in mechanoelectrical transduction in vertebrate sensory hair cells. J Cell Sci 2013; 126:1721-31. [DOI: 10.1242/jcs.106120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The key components of acousticolateralis systems (lateral line, hearing and balance) are sensory hair cells. At their apex, these cells have a bundle of specialized cellular protrusions, which are modified actin-containing microvilli, connected together by extracellular filaments called cross links. Stereociliary deflections open nonselective cation channels allowing ions from the extracellular environment into the cell, a process called mechanoelectrical transduction. This produces a receptor potential that causes the release of the excitatory neurotransmitter glutamate onto the terminals of the sensory nerve fibres, which connect to the cell base, causing nerve signals to be sent to the brain. Identification of the cellular mechanisms underlying mechanoelectrical transduction and of some of the proteins involved has been assisted by research into the genetics of deafness, molecular biology and mechanical measurements of function. It is thought that one type of cross link, the tip link, is composed of cadherin 23 and protocadherin 15, and gates the transduction channel when the bundle is deflected. Another type of link, called lateral (or horizontal) links, maintains optimal bundle cohesion and stiffness for transduction. This Commentary summarizes the information currently available about the structure, function and composition of the links and how they might be relevant to human hearing impairment.
Collapse
|
10
|
Anomalous Brownian motion discloses viscoelasticity in the ear's mechanoelectrical-transduction apparatus. Proc Natl Acad Sci U S A 2012; 109:2896-901. [PMID: 22328158 DOI: 10.1073/pnas.1121389109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ear detects sounds so faint that they produce only atomic-scale displacements in the mechanoelectrical transducer, yet thermal noise causes fluctuations larger by an order of magnitude. Explaining how hearing can operate when the magnitude of the noise greatly exceeds that of the signal requires an understanding both of the transducer's micromechanics and of the associated noise. Using microrheology, we characterize the statistics of this noise; exploiting the fluctuation-dissipation theorem, we determine the associated micromechanics. The statistics reveal unusual Brownian motion in which the mean square displacement increases as a fractional power of time, indicating that the mechanisms governing energy dissipation are related to those of energy storage. This anomalous scaling contradicts the canonical model of mechanoelectrical transduction, but the results can be explained if the micromechanics incorporates viscoelasticity, a salient characteristic of biopolymers. We amend the canonical model and demonstrate several consequences of viscoelasticity for sensory coding.
Collapse
|
11
|
Spoon C, Moravec WJ, Rowe MH, Grant JW, Peterson EH. Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure. J Neurophysiol 2011; 106:2950-63. [PMID: 21918003 DOI: 10.1152/jn.00469.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics.
Collapse
Affiliation(s)
- Corrie Spoon
- Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | |
Collapse
|
12
|
Sliding adhesion confers coherent motion to hair cell stereocilia and parallel gating to transduction channels. J Neurosci 2010; 30:9051-63. [PMID: 20610739 DOI: 10.1523/jneurosci.4864-09.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When the tip of a hair bundle is deflected by a sensory stimulus, the stereocilia pivot as a unit, producing a shearing displacement between adjacent tips. It is not clear how stereocilia can stick together laterally but still shear. We used dissociated hair cells from the bullfrog saccule and high-speed video imaging to characterize this sliding adhesion. Movement of individual stereocilia was proportional to height, indicating that stereocilia pivot at their basal insertion points. All stereocilia moved by approximately the same angular deflection, and the same motion was observed at 1, 20, and 700 Hz stimulus frequency. Motions were consistent with a geometric model that assumes the stiffness of lateral links holding stereocilia together is >1000 times the pivot stiffness of stereocilia and that these links can slide in the plane of the membrane-in essence, that stereocilia shear without separation. The same motion was observed when bundles were moved perpendicular to the tip links, or when tip links, ankle links, and shaft connectors were cut, ruling out these links as the basis for sliding adhesion. Stereocilia rootlets are angled toward the center of the bundle, tending to push stereocilia tips together for small deflections. However, stereocilia remained cohesive for deflections of up to +/-35 degrees, ruling out rootlet prestressing as the basis for sliding adhesion. These observations suggest that horizontal top connectors mediate a sliding adhesion. They also indicate that all transduction channels of a hair cell are mechanically in parallel, an arrangement that may enhance amplification in the inner ear.
Collapse
|
13
|
Abstract
Mammals have an astonishing ability to sense and discriminate sounds of different frequencies and intensities. Fundamental for this process are mechanosensory hair cells in the inner ear that convert sound-induced vibrations into electrical signals. The study of genes that are linked to deafness has provided insights into the cell biological mechanisms that control hair cell development and their function as mechanosensors.
Collapse
Affiliation(s)
- Martin Schwander
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
14
|
Abstract
Mechanotransduction, the transformation of mechanical force into an electrical signal, allows living organisms to hear, register movement and gravity, detect touch, and sense changes in cell volume and shape. Hair cells in the inner ear are specialized mechanoreceptor cells that detect sound and head movement. The mechanotransduction machinery of hair cells is extraordinarily sensitive and responds to minute physical displacements on a submillisecond timescale. The recent discovery of several molecular constituents of the mechanotransduction machinery of hair cells provides a new framework for the interpretation of biophysical data and necessitates revision of prevailing models of mechanotransduction.
Collapse
|
15
|
Lim K, Park S. A mechanical model of the gating spring mechanism of stereocilia. J Biomech 2009; 42:2158-64. [PMID: 19679307 DOI: 10.1016/j.jbiomech.2009.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 05/17/2009] [Accepted: 05/20/2009] [Indexed: 11/24/2022]
Abstract
The stereocilium is the basic sensory unit of nature's mechanotransducers, which include the cochlear and vestibular organs. In noisy environments, stereocilia display high sensitivity to miniscule stimuli, effectively dealing with a situation that is a design challenge in micro systems. The gating spring hypothesis suggests that the mechanical stiffness of stereocilia bundle is softened by tip-link gating in combination with active bundle movement, contributing to the nonlinear amplification of miniscule stimuli. To demonstrate that the amplification is induced mechanically by the gating as hypothesized, we developed a biomimetic model of stereocilia and fabricated the model at the macro scale. The model consists of an inverted pendulum array with bistable buckled springs at its tips, which represent the mechanically gated ion channel. Model simulations showed that at the moment of gating, instantaneous stiffness softening generates an increase in response magnitude, which then sequentially occurs as the number of gating increases. This amplification mechanism appeared to be robust to the change of model parameters. Experimental data from the fabricated macro model also showed a significant increase in the open probability and pendulum deflection at the region having a smaller input magnitude. The results demonstrate that the nonlinear amplification of miniscule stimuli is mechanically produced by stiffness softening from channel gating.
Collapse
Affiliation(s)
- Koeun Lim
- Department of Mechanical Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
16
|
Dynamic length regulation of sensory stereocilia. Semin Cell Dev Biol 2008; 19:502-10. [PMID: 18692583 DOI: 10.1016/j.semcdb.2008.07.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/15/2008] [Indexed: 01/02/2023]
Abstract
Stereocilia, the mechanosensory organelles of hair cells, are a distinctive class of actin-based cellular protrusions with an unparalleled ability to regulate their lengths over time. Studies on actin turnover in stereocilia, as well as the identification of several deafness-related proteins essential for proper stereocilia structure and function, provide new insights into the mechanisms and molecules involved in stereocilia length regulation and long-term maintenance. Comparisons of ongoing investigations on stereocilia with studies on other actin protrusions offer new opportunities to further understand common principles for length regulation, the diversity of its mechanisms, and how the specific needs of each cell are met.
Collapse
|
17
|
The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J Neurosci 2008; 28:6342-53. [PMID: 18562604 DOI: 10.1523/jneurosci.1154-08.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sensory bundle of vertebrate cochlear hair cells consists of actin-containing stereocilia that are thought to bend at their ankle during mechanical stimulation. Stereocilia have dense rootlets that extend through the ankle region to anchor them into the cuticular plate. Because this region may be important in bundle stiffness and durability during prolonged stimulation at high frequencies, we investigated the structure and dimensions of rootlets relative to the stereocilia in apical (low-frequency) and basal (high-frequency) regions of rodent cochleae using light and electron microscopy. Their composition was investigated using postembedding immunogold labeling of tropomyosin, spectrin, beta-actin, gamma-actin, espin, and prestin. The rootlets have a thick central core that widens at the ankle, and are embedded in a filamentous meshwork in the cuticular plate. Within a particular frequency region, rootlet length correlates with stereociliary height but between regions it changes disproportionately; apical stereocilia are, thus, approximately twice the height of basal stereocilia in equivalent rows, but rootlet lengths increase much less. Some rootlets contact the tight junctions that underlie the ends of the bundle. Rootlets contain spectrin, tropomyosin, and beta- and gamma-actin, but espin was not detected; spectrin is also evident near the apical and junctional membranes, whereas prestin is confined to the basolateral membrane below the junctions. These data suggest that rootlets strengthen the ankle region to provide durability and may contact with the lateral wall either to give additional anchoring of the stereocilia or to provide a route for interactions between the bundle and the lateral wall.
Collapse
|
18
|
Abstract
Sound stimuli excite cochlear hair cells by vibration of each hair bundle, which opens mechanotransducer (MT) channels. We have measured hair-bundle mechanics in isolated rat cochleas by stimulation with flexible glass fibers and simultaneous recording of the MT current. Both inner and outer hair-cell bundles exhibited force-displacement relationships with a nonlinearity that reflects a time-dependent reduction in stiffness. The nonlinearity was abolished, and hair-bundle stiffness increased, by maneuvers that diminished calcium influx through the MT channels: lowering extracellular calcium, blocking the MT current with dihydrostreptomycin, or depolarizing to positive potentials. To simulate the effects of Ca(2+), we constructed a finite-element model of the outer hair cell bundle that incorporates the gating-spring hypothesis for MT channel activation. Four calcium ions were assumed to bind to the MT channel, making it harder to open, and, in addition, Ca(2+) was posited to cause either a channel release or a decrease in the gating-spring stiffness. Both mechanisms produced Ca(2+) effects on adaptation and bundle mechanics comparable to those measured experimentally. We suggest that fast adaptation and force generation by the hair bundle may stem from the action of Ca(2+) on the channel complex and do not necessarily require the direct involvement of a myosin motor. The significance of these results for cochlear transduction and amplification are discussed.
Collapse
|
19
|
Sawyer N, Worrall L, Crowe J, Waters S, Shakesheff K, Rose F, Morgan S. In situ monitoring of 3D in vitro cell aggregation using an optical imaging system. Biotechnol Bioeng 2008; 100:159-67. [DOI: 10.1002/bit.21728] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Saunders JC. The role of central nervous system plasticity in tinnitus. JOURNAL OF COMMUNICATION DISORDERS 2007; 40:313-34. [PMID: 17418230 PMCID: PMC2083119 DOI: 10.1016/j.jcomdis.2007.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 05/14/2023]
Abstract
UNLABELLED Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions. The model assumes that plastic changes in the primary and non-primary auditory pathways contribute to tinnitus with the former perhaps sustaining them, and the latter contributing to perceived severity and emotionality. These plastic changes are triggered by peripheral injury, which results in new patterns of brain activity due to anatomic alterations in the connectivity of CNS neurons. These alterations may change the balance between excitatory and inhibitory brain processes, perhaps producing cascades of new neural activity flowing between brainstem and cortex in a self-sustaining manner that produces persistent perceptions of tinnitus. The bases of this model are explored with an attempt to distinguish phenomenological from mechanistic explanations. LEARNING OUTCOMES (1) Readers will learn that the variables associated with the behavioral experience of tinnitus are as complex as the biological variables. (2) Readers will understand what the concept of neuroplastic brain change means, and how it is associated with tinnitus. (3) Readers will learn that there may be no one brain location associated with tinnitus, and it may result from interactions between multiple brain areas. (4) Readers will learn how disinhibition, spontaneous activity, neural synchronization, and tonotopic reorganization may contribute to tinnitus.
Collapse
Affiliation(s)
- James C Saunders
- Department of Otorhinolaryngololgy, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Sellick PM. Long term effects of BAPTA in scala media on cochlear function. Hear Res 2007; 231:13-22. [PMID: 17509783 DOI: 10.1016/j.heares.2007.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/15/2007] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
BAPTA was iontophoresed or allowed to diffuse into the scala media of the first turn of the guinea pig cochlea via pipettes inserted through the round window and basilar membrane. Cochlear action potential (CAP) thresholds for basal turn frequencies were elevated, scala media cochlear microphonic in response to a 207Hz tone were drastically reduced and the distortion products 2f1-f2 and f2-f2 in response to primaries set at 18 and 21.6kHz were eliminated or severely reduced. The animals were recovered and the above measurements repeated between 24 and 240h after the application of BAPTA. In all animals thresholds for basal turn frequencies remained elevated, and the distortion components were severely reduced. The endolymphatic potential (EP), measured through the basilar membrane on recovery, was not significantly different from the values measured before BAPTA was applied. If the effect of BAPTA, in lowering endolymphatic Ca(2+) concentration, is restricted to the destruction of tip links, as has been shown in many other preparations, then these results suggest that this effect has permanent consequences, either because the tip links failed to regenerate or because their destruction precipitated the degeneration of OHCs. These results may have a bearing on the mechanisms behind permanent threshold shift.
Collapse
Affiliation(s)
- Peter M Sellick
- The Auditory Laboratory, Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
22
|
Nam JH, Cotton JR, Grant W. A virtual hair cell, I: addition of gating spring theory into a 3-D bundle mechanical model. Biophys J 2007; 92:1918-28. [PMID: 17208975 PMCID: PMC1861784 DOI: 10.1529/biophysj.106.085076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a virtual hair cell that simulates hair cell mechanoelectrical transduction in the turtle utricle. This study combines a full three-dimensional hair bundle mechanical model with a gating spring theory. Previous mathematical models represent the hair bundle with a single degree of freedom system which, we have argued, cannot fully explain hair bundle mechanics. In our computer model, the tip link tension and fast adaptation modulator kinetics determine the opening and closing of each channel independently. We observed the response of individual transduction channels with our presented model. The simulated results showed three features of hair cells in vitro. First, a transient rebound of the bundle tip appeared when fast adaptation dominated the dynamics. Second, the dynamic stiffness of the bundle was minimized when the response-displacement (I-X) curve was steepest. Third, the hair cell showed "polarity", i.e., activation decreased from a peak to zero as the forcing direction rotated from the excitatory to the inhibitory direction.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Engineering Science and Mechanics, School of Biomedical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
23
|
Ricci AJ, Kachar B. Hair cell mechanotransduction: the dynamic interplay between structure and function. CURRENT TOPICS IN MEMBRANES 2007; 59:339-74. [PMID: 25168142 DOI: 10.1016/s1063-5823(06)59012-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hair cells are capable of detecting mechanical vibrations of molecular dimensions at frequencies in the 10s to 100s of kHz. This remarkable feat is accomplished by the interplay of mechanically gated ion channels located near the top of a complex and dynamic sensory hair bundle. The hair bundle is composed of a series of actin-filled stereocilia that has both active and passive mechanical components as well as a highly active turnover process, whereby the components of the hair bundle are rapidly and continually recycled. Hair bundle mechanical properties have significant impact on the gating of the mechanically activated channels, and delineating between attributes intrinsic to the ion channel and those imposed by the channel's microenvironment is often difficult. This chapter describes what is known and accepted regarding hair-cell mechanotransduction and what remains to be explored, particularly, in relation to the interplay between hair bundle properties and mechanotransducer channel response. The interplay between hair bundle dynamics and mechanotransduction are discussed.
Collapse
Affiliation(s)
- Anthony J Ricci
- Department of Otolaryngology, Stanford University, Stanford, California 94305
| | - Bechara Kachar
- Section of Structural Biology, National Institutes of Deafness and Communicative Disorders, Bethesda, Maryland 20892
| |
Collapse
|
24
|
Kozlov AS, Risler T, Hudspeth AJ. Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels. Nat Neurosci 2006; 10:87-92. [PMID: 17173047 PMCID: PMC2174432 DOI: 10.1038/nn1818] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 11/21/2006] [Indexed: 11/08/2022]
Abstract
The hair cell's mechanoreceptive organelle, the hair bundle, is highly sensitive because its transduction channels open over a very narrow range of displacements. The synchronous gating of transduction channels also underlies the active hair-bundle motility that amplifies and tunes responsiveness. The extent to which the gating of independent transduction channels is coordinated depends on how tightly individual stereocilia are constrained to move as a unit. Using dual-beam interferometry in the bullfrog's sacculus, we found that thermal movements of stereocilia located as far apart as a hair bundle's opposite edges showed high coherence and negligible phase lag. Because the mechanical degrees of freedom of stereocilia are strongly constrained, a force applied anywhere in the hair bundle deflects the structure as a unit. This feature assures the concerted gating of transduction channels that maximizes the sensitivity of mechanoelectrical transduction and enhances the hair bundle's capacity to amplify its inputs.
Collapse
Affiliation(s)
- Andrei S Kozlov
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
25
|
Ricci AJ, Kachar B, Gale J, Van Netten SM. Mechano-electrical transduction: new insights into old ideas. J Membr Biol 2006; 209:71-88. [PMID: 16773495 PMCID: PMC1839004 DOI: 10.1007/s00232-005-0834-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Indexed: 11/26/2022]
Abstract
The gating-spring theory of hair cell mechanotransduction channel activation was first postulated over twenty years ago. The basic tenets of this hypothesis have been reaffirmed in hair cells from both auditory and vestibular systems and across species. In fact, the basic findings have been reproduced in every hair cell type tested. A great deal of information regarding the structural, mechanical, molecular and biophysical properties of the sensory hair bundle and the mechanotransducer channel has accumulated over the past twenty years. The goal of this review is to investigate new data, using the gating spring hypothesis as the framework for discussion. Mechanisms of channel gating are presented in reference to the need for a molecular gating spring or for tethering to the intra- or extracellular compartments. Dynamics of the sensory hair bundle and the presence of motor proteins are discussed in reference to passive contributions of the hair bundle to gating compliance. And finally, the molecular identity of the channel is discussed in reference to known intrinsic properties of the native transducer channel.
Collapse
Affiliation(s)
- A J Ricci
- Neuroscience Center, Louisiana State University, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
26
|
Nam JH, Cotton JR, Peterson EH, Grant W. Mechanical properties and consequences of stereocilia and extracellular links in vestibular hair bundles. Biophys J 2006; 90:2786-95. [PMID: 16428277 PMCID: PMC1414556 DOI: 10.1529/biophysj.105.066027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although knowledge of the fine structure of vestibular hair bundles is increasing, the mechanical properties and functional significance of those structures remain unclear. In 2004, Bashtanov and colleagues reported the contribution of different extracellular links to bundle stiffness. We simulated Bashtanov's experimental protocol using a three-dimensional finite element bundle model with geometry measured from a typical striolar hair cell. Unlike any previous models, we separately consider two types of horizontal links: shaft links and upper lateral links. Our most important results are as follows. First, we identified the material properties required to match Bashtanov's experiment: stereocilia Young's modulus of 0.74 GPa, tip link assembly (gating spring) stiffness of 5,300 pN/microm, and the combined stiffness of shaft links binding two adjacent stereocilia of 750 approximately 2,250 pN/microm. Second, we conclude that upper lateral links are likely to have nonlinear mechanical properties: they have minimal stiffness during small bundle deformations but stiffen as the bundle deflects further. Third, we estimated the stiffness of the gating spring based on our realistic three-dimensional bundle model rather than a conventional model relying on the parallel arrangement assumption. Our predicted stiffness of the gating spring was greater than the previous estimation.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Engineering Science and Mechanics, School of Biomedical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | | | | | | |
Collapse
|
27
|
Chan DK, Hudspeth AJ. Mechanical responses of the organ of corti to acoustic and electrical stimulation in vitro. Biophys J 2005; 89:4382-95. [PMID: 16169985 PMCID: PMC1367002 DOI: 10.1529/biophysj.105.070474] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detection of sound by the cochlea involves a complex mechanical interplay among components of the cochlear partition. An in vitro preparation of the second turn of the jird's cochlea provides an opportunity to measure cochlear responses with subcellular resolution under controlled mechanical, ionic, and electrical conditions that simulate those encountered in vivo. Using photodiode micrometry, laser interferometry, and stroboscopic video microscopy, we have assessed the mechanical responses of the cochlear partition to acoustic and electrical stimuli near the preparation's characteristic frequency. Upon acoustic stimulation, the partition responds principally as a rigid plate pivoting around its insertion along the spiral lamina. The radial motion at the reticular lamina greatly surpasses that of the tectorial membrane, giving rise to shear that deflects the mechanosensitive hair bundles. Electrically evoked mechanical responses are qualitatively dissimilar from their acoustically evoked counterparts and suggest the recruitment of both hair-bundle- and soma-based electromechanical transduction processes. Finally, we observe significant changes in the stiffness of the cochlear partition upon tip-link destruction and tectorial-membrane removal, suggesting that these structures contribute considerably to the system's mechanical impedance and that hair-bundle-based forces can drive active motion of the cochlear partition.
Collapse
Affiliation(s)
- Dylan K Chan
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10021-6399, USA
| | | |
Collapse
|
28
|
Meyer J, Preyer S, Hofmann SI, Gummer AW. Tonic mechanosensitivity of outer hair cells after loss of tip links. Hear Res 2005; 202:97-113. [PMID: 15811703 DOI: 10.1016/j.heares.2004.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 11/30/2004] [Indexed: 11/16/2022]
Abstract
Tip links - the extracellular connectors between the distal ends of adjacent stereocilia - are essential for the fast mechanical gating of hair-cell transducer channels. Transduction in the absence of tip links was investigated for outer hair cells of the adult guinea-pig cochlea by patch-clamp recordings of the whole-cell current during mechanical stimulation of the hair bundle. Loss of tip links induced by application of BAPTA led to permanently opened transducer channels, as evidenced by a constant inward current, loss of response to sinusoidal mechanical deflection of the hair bundle and block by the open-channel blocker dihydrostreptomycin (100 microM). Step deflection of the hair bundle (200-500 nm) in the inhibitory direction exponentially reduced this current to a constant value with time constant, tau(on), of the order of seconds. The current returned exponentially to the pre-stimulus level with time-constant, tau(off), also of the order of seconds. tau(on) was dependent on the inter-stimulus interval, Deltat, such that reducing this interval below about 40 s resulted in an exponentially faster response. tau(off) was independent of Deltat. Application of the calcium ionophore, ionomycin (10 microM), showed that tau(on) became independent of Deltat after saturating elevation of the intracellular Ca(2+) concentration. Flash-photolytic release of intracellular caged calcium (25-microM NP-EGTA/AM) showed that tau(on) is dependent on intracellular Ca(2+) concentration. These experiments imply an intracellular, calcium-dependent gating mechanism for hair-cell transducer channels.
Collapse
Affiliation(s)
- Jens Meyer
- Department of Otolaryngology, Section of Physiological Acoustics and Communication, University of Tübingen, Germany
| | | | | | | |
Collapse
|