1
|
Coombs ID, Cull-Candy SG. Single-channel mechanisms underlying the function, diversity and plasticity of AMPA receptors. Neuropharmacology 2021; 198:108781. [PMID: 34480912 DOI: 10.1016/j.neuropharm.2021.108781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
The functional properties of AMPA receptors shape many of the essential features of excitatory synaptic signalling in the brain, including high-fidelity point-to-point transmission and long-term plasticity. Understanding the behaviour and regulation of single AMPAR channels is fundamental in unravelling how central synapses carry, process and store information. There is now an abundance of data on the importance of alternative splicing, RNA editing, and phosphorylation of AMPAR subunits in determining central synaptic diversity. Furthermore, auxiliary subunits have emerged as pivotal players that regulate AMPAR channel properties and add further diversity. Single-channel studies have helped reveal a fascinating picture of the unique behaviour of AMPAR channels - their concentration-dependent single-channel conductance, the basis of their multiple-conductance states, and the influence of auxiliary proteins in controlling many of their gating and conductance properties. Here we summarize basic hallmarks of AMPAR single-channels, in relation to function, diversity and plasticity. We also present data that reveal an unexpected feature of AMPAR sublevel behaviour. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Ian D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation. Cell Rep 2018; 20:1123-1135. [PMID: 28768197 PMCID: PMC5554777 DOI: 10.1016/j.celrep.2017.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/12/2017] [Accepted: 07/09/2017] [Indexed: 11/10/2022] Open
Abstract
Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs) associated with transmembrane AMPAR regulatory proteins (TARPs). At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood. We report here that TARP γ-2 reduces the ability of low glutamate concentrations to cause AMPAR desensitization and enhances channel gating at low glutamate occupancy. Simulations show that, by shifting the balance between AMPAR activation and desensitization, TARPs can markedly facilitate the transduction of spillover-mediated synaptic signaling. Furthermore, the dual effects of TARPs can account for biphasic steady-state glutamate concentration-response curves—a phenomenon termed “autoinactivation,” previously thought to reflect desensitization-mediated AMPAR/TARP dissociation. TARP γ-2 reduces desensitization and enhances the gating of singly liganded AMPARs This accounts for biphasic steady-state dose-response curves (autoinactivation) The effects of γ-2 are predicted to enhance synaptic spillover currents Desensitization does not lead to functional dissociation of the AMPAR/TARP complex
Collapse
|
3
|
Benke T, Traynelis SF. AMPA-Type Glutamate Receptor Conductance Changes and Plasticity: Still a Lot of Noise. Neurochem Res 2018; 44:539-548. [PMID: 29476449 DOI: 10.1007/s11064-018-2491-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Abstract
Twenty years ago, we reported from the Collingridge Lab that a single-channel conductance increase through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPARs) could mediate one form of plasticity associated with long-term potentiation (LTP) in the hippocampus (Benke et al., Nature 395:793-797, 1998). Revealed through peak-scaled non-stationary fluctuation analysis (PS-NSFA, also known as noise analysis), this component of LTP could be exclusively mediated by direct increases in channel conductance or by increases in the number of high conductance synaptic AMPARs. Re-evaluation of our original data in the light of the molecular details regarding AMPARs, conductance changes and plasticity suggests that insertion of high-conductance GluA1 homomers can account for our initial findings. Any potential cost associated with manufacture or trafficking of new receptors could be mitigated if pre-existing synaptic AMPARs also undergo a modest conductance change. The literature suggests that the presence of high conductance AMPARs and/or GluA1 homomers confers an unstable synaptic state, suggesting state transitions. An experimental paradigm is proposed to differentiate these possibilities. Validation of this state diagram could provide insight into development, disease pathogenesis and treatment.
Collapse
Affiliation(s)
- Tim Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Hartveit E, Zandt BJ, Madsen E, Castilho Á, Mørkve SH, Veruki ML. AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity. Brain Struct Funct 2017; 223:769-804. [PMID: 28936725 DOI: 10.1007/s00429-017-1520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/10/2017] [Indexed: 10/24/2022]
Abstract
In chemical synapses, neurotransmitter molecules released from presynaptic vesicles activate populations of postsynaptic receptors that vary in functional properties depending on their subunit composition. Differential expression and localization of specific receptor subunits are thought to play fundamental roles in signal processing, but our understanding of how that expression is adapted to the signal processing in individual synapses and microcircuits is limited. At ribbon synapses, glutamate release is independent of action potentials and characterized by a high and rapidly changing rate of release. Adequately translating such presynaptic signals into postsynaptic electrical signals poses a considerable challenge for the receptor channels in these synapses. Here, we investigated the functional properties of AMPA receptors of AII amacrine cells in rat retina that receive input at spatially segregated ribbon synapses from OFF-cone and rod bipolar cells. Using patch-clamp recording from outside-out patches, we measured the concentration dependence of response amplitude and steady-state desensitization, the single-channel conductance and the maximum open probability. The GluA4 subunit seems critical for the functional properties of AMPA receptors in AII amacrines and immunocytochemical labeling suggested that GluA4 is located at synapses made by both OFF-cone bipolar cells and rod bipolar cells. Finally, we used a series of experimental observables to develop kinetic models for AII amacrine AMPA receptors and subsequently used the models to explore the behavior of the receptors and responses generated by glutamate concentration profiles mimicking those occurring in synapses. These models will facilitate future in silico modeling of synaptic signaling and processing in AII amacrine cells.
Collapse
Affiliation(s)
- Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Bas-Jan Zandt
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Eirik Madsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Department of Radiology, Førde Central Hospital, Førde, Norway
| | - Áurea Castilho
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Svein Harald Mørkve
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Margaret Lin Veruki
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
5
|
The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures. Biophys J 2017; 113:2143-2151. [PMID: 28844473 DOI: 10.1016/j.bpj.2017.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 11/24/2022] Open
Abstract
Ion channels activated by glutamate mediate excitatory synaptic transmission in the central nervous system. Similar to other ligand-gated ion channels, their gating cycle begins with transitions from a ligand-free closed state to glutamate-bound active and desensitized states. In an attempt to reveal the molecular mechanisms underlying gating, numerous structures for glutamate receptors have been solved in complexes with agonists, antagonists, allosteric modulators, and auxiliary proteins. The embarrassingly rich library of structures emerging from this work reveals very dynamic molecules with a more complex conformational spectrum than anticipated from functional studies. Unanticipated conformations solved for complexes with competitive antagonists and a lack of understanding of the structural basis for ion channel subconductance states further highlight challenges that have yet to be addressed.
Collapse
|
6
|
Renner MC, Albers EH, Gutierrez-Castellanos N, Reinders NR, van Huijstee AN, Xiong H, Lodder TR, Kessels HW. Synaptic plasticity through activation of GluA3-containing AMPA-receptors. eLife 2017; 6:25462. [PMID: 28762944 PMCID: PMC5578739 DOI: 10.7554/elife.25462] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
Excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). In CA1 pyramidal neurons of the hippocampus two types of AMPARs predominate: those that contain subunits GluA1 and GluA2 (GluA1/2), and those that contain GluA2 and GluA3 (GluA2/3). Whereas subunits GluA1 and GluA2 have been extensively studied, the contribution of GluA3 to synapse physiology has remained unclear. Here we show in mice that GluA2/3s are in a low-conductance state under basal conditions, and although present at synapses they contribute little to synaptic currents. When intracellular cyclic AMP (cAMP) levels rise, GluA2/3 channels shift to a high-conductance state, leading to synaptic potentiation. This cAMP-driven synaptic potentiation requires the activation of both protein kinase A (PKA) and the GTPase Ras, and is induced upon the activation of β-adrenergic receptors. Together, these experiments reveal a novel type of plasticity at CA1 hippocampal synapses that is expressed by the activation of GluA3-containing AMPARs.
Collapse
Affiliation(s)
- Maria C Renner
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Eva Hh Albers
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Nicolas Gutierrez-Castellanos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Niels R Reinders
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Aile N van Huijstee
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Hui Xiong
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Tessa R Lodder
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Greger IH, Watson JF, Cull-Candy SG. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 2017; 94:713-730. [DOI: 10.1016/j.neuron.2017.04.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
8
|
Shelley C. Single-channel analysis of glutamate receptors. CURRENT PROTOCOLS IN PHARMACOLOGY 2015; 68:11.17.1-11.17.23. [PMID: 25737156 DOI: 10.1002/0471141755.ph1117s68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This is a companion to UNIT 11.16: Single-Channel Recording of Glutamate Receptors. Described here are techniques for analyzing single-channel currents recorded from glutamate receptors to characterize their properties. In addition, issues that need to be taken into account when analyzing glutamate receptor single-channel recording results are discussed.
Collapse
Affiliation(s)
- Chris Shelley
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.,Present address: Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania
| |
Collapse
|
9
|
Dutta-Roy R, Rosenmund C, Edelstein SJ, Le Novère N. Ligand-dependent opening of the multiple AMPA receptor conductance states: a concerted model. PLoS One 2015; 10:e0116616. [PMID: 25629405 PMCID: PMC4309570 DOI: 10.1371/journal.pone.0116616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/21/2014] [Indexed: 01/27/2023] Open
Abstract
Modulation of the properties of AMPA receptors at the post-synaptic membrane is one of the main suggested mechanisms underlying fast synaptic transmission in the central nervous system of vertebrates. Electrophysiological recordings of single channels stimulated with agonists showed that both recombinant and native AMPA receptors visit multiple conductance states in an agonist concentration dependent manner. We propose an allosteric model of the multiple conductance states based on concerted conformational transitions of the four subunits, as an iris diaphragm. Our model predicts that the thermodynamic behaviour of the conductance states upon full and partial agonist stimulations can be described with increased affinity of receptors as they progress to higher conductance states. The model also predicts the existence of AMPA receptors in non-liganded conductive substates. However, the probability of spontaneous openings decreases with increasing conductances. Finally, we predict that the large conductance states are stabilized within the rise phase of a whole-cell EPSC in glutamatergic hippocampal neurons. Our model provides a mechanistic link between ligand concentration and conductance states that can explain thermodynamic and kinetic features of AMPA receptor gating.
Collapse
Affiliation(s)
- Ranjita Dutta-Roy
- Department of Medicine Solna, Karolinska Insitutet, 171 76 Stockholm, Sweden
- NWFZ, Charite Universitatsmedizin, 101 17 Berlin, Germany
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | | | | | - Nicolas Le Novère
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- The Babraham Institute, Babraham, Cambridgeshire CB22 3AT, UK
- * E-mail:
| |
Collapse
|
10
|
Molecular mechanisms contributing to TARP regulation of channel conductance and polyamine block of calcium-permeable AMPA receptors. J Neurosci 2014; 34:11673-83. [PMID: 25164663 DOI: 10.1523/jneurosci.0383-14.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD.
Collapse
|
11
|
Shelley C, Farrant M, Cull-Candy SG. TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states. J Physiol 2012; 590:5723-38. [PMID: 22988139 DOI: 10.1113/jphysiol.2012.238006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fast excitatory synaptic transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs), whose biophysical properties are dramatically modulated by the presence of transmembrane AMPAR regulatory proteins (TARPs). To help construct a kinetic model that will realistically describe native AMPAR/TARP function, we have examined the single-channel properties of homomeric GluA1 AMPARs in combination with the TARPs, γ-2, γ-4 and γ-5. In a saturating concentration of agonist, each of these AMPAR/TARP combinations gave rise to single-channel currents with multiple conductance levels that appeared intrinsic to the receptor-channel complex, and showed long-lived subconductance states. The open time and burst length distributions of the receptor complexes displayed multiple dwell-time components. In the case of γ-2- and γ-4-associated receptors, these distributions included a long-lived component lasting tens of milliseconds that was absent from both GluA1 alone and γ-5-associated receptors. The open time distributions for each conductance level required two dwell-time components, indicating that at each conductance level the channel occupies a minimum of two kinetically distinct open states. We have explored how these data place novel constraints on possible kinetic models of TARP-associated AMPARs that may be used to define AMPAR-mediated synaptic transmission.
Collapse
Affiliation(s)
- Chris Shelley
- Department of Neuroscience, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
12
|
Taflia A, Holcman D. Estimating the synaptic current in a multiconductance AMPA receptor model. Biophys J 2011; 101:781-92. [PMID: 21843468 DOI: 10.1016/j.bpj.2011.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 10/17/2022] Open
Abstract
Synaptic transmission starts after the presynaptic neuron has released diffusing neurotransmitters, leading to postsynaptic receptor activation and a postsynaptic current, mostly mediated by glutamatergic (AMPARs) receptors for excitatory neurons. Despite intense experimental and theoretical research, it is still unclear how factors such as the synaptic cleft geometry, the organization, the number and the multiconductance state of receptors, the geometry of postsynaptic density (PSD), and the neurotransmitter release location, shape the mean and the variance of the postsynaptic current and its plastic changes. To estimate the synaptic current amplitude and to account for the stochastic nature of synaptic transmission, we develop a semianalytical method in which we obtain a general expression for the coefficient of variation. The method uses the experimental data about the multiconductance channels. We find that PSD morphological changes can significantly modulate the synaptic current, which is maximally reliable (the coefficient of variation is minimal) for an optimal size of the PSD, that depends on the vesicular release active zone. We show that this optimal PSD size is due to nonlinear phenomena involving the receptor multibinding cooperativity. We conclude that changes in the PSD geometry can sustain a form of synaptic plasticity, independent of a change in the number of receptors.
Collapse
Affiliation(s)
- Adi Taflia
- Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
13
|
Abstract
The properties of synaptic AMPA receptors (AMPARs) depend on their subunit composition and association with transmembrane AMPAR regulatory proteins (TARPs). Although both GluA2 incorporation and TARP association have been shown to influence AMPAR channel conductance, the manner in which different TARPs modulate the mean channel conductance of GluA2-containing AMPARs is unknown. Using ultrafast agonist application and nonstationary fluctuation analysis, we found that TARP subtypes differentially increase the mean channel conductance, but not the peak open probability, of recombinant GluA2-containing AMPARs. TARP γ-8, in particular, enhances mean channel conductance to a greater degree than γ-2, γ-3, or γ-4. We then examined the action of a use-dependent antagonist of GluA2-containing AMPARs, philanthotoxin-74 (PhTx-74), on recombinant AMPARs and on GluA2-containing AMPARs in cerebellar granule neurons from stargazer mice transfected with TARPs. We found that the rate and extent of channel block varies with TARP subtype, in a manner that correlates linearly with mean channel conductance. Furthermore, block of GluA2-containing AMPARs by polyamine toxins varied depending on whether channels were activated by the full agonist glutamate or the partial agonist kainate, consistent with conductance state-dependent block. Block of GluA2-lacking AMPARs by PhTx-433 is also modulated by TARP association and is a function of agonist efficacy. Our data indicate that channel block by polyamine toxins is sensitive to the mean channel conductance of AMPARs, which varies with TARP subtype and agonist efficacy. Furthermore, our results illustrate the utility of polyamine toxins as sensitive probes of AMPAR channel conductance and suggest the possibility that TARPs may influence their channel properties by selectively stabilizing specific channel conformations, rather than altering the pore structure.
Collapse
|
14
|
Gebhardt C, Cull-Candy SG. Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability. J Physiol 2010; 588:3933-41. [PMID: 20807790 DOI: 10.1113/jphysiol.2010.195115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent evidence suggests that lithium, which is used in the treatment of bipolar disorders, may act by influencing AMPAR properties at central glutamatergic synapses. While it is clear that lithium potentiates recombinant AMPAR responses in a subunit specific way, the origin of this potentiation is not known. We examined the effects of lithium on native AMPAR channels in CA1 pyramidal cells in hippocampal slices where AMPARs are expected to be associated with auxiliary subunits. We found that lithium produced a selective increase in single-channel open probability (P(open)), with little effect on single-channel conductance or burst length. From the present and previous finding it is likely that lithium causes a reduction in the time to recovery from desensitization, resulting in the observed increase in P(open). This would be consistent with the view that lithium acts like certain other allosteric AMPAR modulators to reduce the time spent in the desensitized state, but differs from those that act by slowing dissociation of glutamate.
Collapse
Affiliation(s)
- Christine Gebhardt
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | |
Collapse
|
15
|
Stubblefield EA, Benke TA. Distinct AMPA-type glutamatergic synapses in developing rat CA1 hippocampus. J Neurophysiol 2010; 104:1899-912. [PMID: 20685930 DOI: 10.1152/jn.00099.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) properties during synaptogenesis to describe the development of individual glutamatergic synapses on rat hippocampal CA1 principal neurons. Pharmacologically isolated AMPAR-mediated glutamatergic synaptic currents [evoked by stimulation of the Schaffer Collateral pathway, excitatory postsynaptic currents (EPSCs)], had significantly greater inward-rectification at ages P5-7 compared with P8-18. These inward rectifying EPSCs demonstrated paired-pulse dependent unblocking at positive holding potentials, consistent with voltage-dependent internal polyamine block. Measurements of paired-pulse facilitation did not support altered presynaptic properties associated with inward rectification. Using asynchronous EPSCs (aEPSCs) to analyze populations of individual synapses, we found that quantal amplitudes (Q) increased across early postnatal development (P5-P18) and were directly modulated by increases in the number of activated receptors. Quantal AMPAR decay kinetics (aEPSC τ(decay)s) exhibited the highest coefficient of variation (CV) from P5 to 7 and became markedly less variable at P8-18. At P5-7, faster quantal kinetics coexisted with much slower kinetics; only slower quantal kinetics were found at P8-18. This supports diverse quantal synaptic properties limited to P5-7. Multivariate cluster analysis of Q, CV(τ decay), and median τ(decay) supported a segregation of neurons into two distinct age groups of P5-7 and P8-18, similar to the age-related segregation suggested by inward rectification. Taken together, these findings support synaptic, calcium permeable AMPARs at a subset of synapses onto CA1 pyramidal neurons exclusively at P5-7. These distinct synapses coexist with those sharing the properties of more mature synapses. These synapses disappear after P7 as activated receptor numbers increase with age.
Collapse
|
16
|
Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal. Neuropsychopharmacology 2010; 35:1897-909. [PMID: 20445501 PMCID: PMC2904841 DOI: 10.1038/npp.2010.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benzodiazepine withdrawal anxiety is associated with potentiation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) currents in hippocampal CA1 pyramidal neurons attributable to increased synaptic incorporation of GluA1-containing AMPARs. The contribution of calcium/calmodulin-dependent protein kinase II (CaMKII) to enhanced glutamatergic synaptic strength during withdrawal from 1-week oral flurazepam (FZP) administration was further examined in hippocampal slices. As earlier reported, AMPAR-mediated miniature excitatory postsynaptic current (mEPSC) amplitude increased in CA1 neurons from 1- and 2-day FZP-withdrawn rats, along with increased single-channel conductance in neurons from 2-day rats, estimated by non-stationary noise analysis. Input-output curve slope was increased without a change in paired-pulse facilitation, suggesting increased AMPAR postsynaptic efficacy rather than altered glutamate release. The increased mEPSC amplitude and AMPAR conductance were related to CaMKII activity, as intracellular inclusion of CaMKIINtide or autocamtide-2-related inhibitory peptide, but not scrambled peptide, prevented both AMPAR amplitude and conductance changes. mEPSC inhibition by 1-naphthyl acetyl spermine and the negative shift in rectification index at both withdrawal time points were consistent with functional incorporation of GluA2-lacking AMPARs. GluA1 but not GluA2 or GluA3 levels were increased in immunoblots of postsynaptic density (PSD)-enriched subcellular fractions of CA1 minislices from 1-day FZP-withdrawn rats, when mEPSC amplitude, but not conductance, was increased. Both GluA1 expression levels and CaMKII alpha-mediated GluA1 Ser(831) phosphorylation were increased in PSD-subfractions from 2-day FZP-withdrawn rats. As phospho-Thr(286)CaMKII alpha was unchanged, CaMKII alpha may be activated through an alternative signaling pathway. Synaptic insertion and subsequent CaMKII alpha-mediated Ser(831) phosphorylation of GluA1 homomers contribute to benzodiazepine withdrawal-induced AMPAR potentiation and may represent an important hippocampal pathway mediating both drug-induced and activity-dependent plasticity.
Collapse
|
17
|
Abstract
AMPA receptors are ligand-gated ion channels that show multiple conductance levels, indicating that gating of individual AMPA subunits is to some extent independent of the other subunits. To study AMPAR subunit interactions during activation gating, we recorded from single channels in the absence of channel block and desensitization and at negative and positive membrane potentials. In saturating glutamate, the relative occupancies of the various conductance levels are consistent with complete subunit independence. In contrast, the relative occupancies in subsaturating glutamate indicate that the channel switches between a low open probability mode and a high open probability mode in which the behavior of the channel is identical to that in saturating glutamate. These gating modes occur at both negative and positive potentials, with the high open probability mode becoming more prominent at positive potentials. The switch between gating modes and its modulation by voltage and other factors may constitute a novel mechanism regulating AMPAR-mediated synaptic activity.
Collapse
|
18
|
Muller T, Albrecht D, Gebhardt C. Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice. Learn Mem 2009; 16:395-405. [DOI: 10.1101/lm.1398709] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Wilding TJ, Fulling E, Zhou Y, Huettner JE. Amino acid substitutions in the pore helix of GluR6 control inhibition by membrane fatty acids. J Gen Physiol 2008; 132:85-99. [PMID: 18562501 PMCID: PMC2442176 DOI: 10.1085/jgp.200810009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/15/2008] [Indexed: 12/19/2022] Open
Abstract
RNA editing at the Q/R site in the GluR5 and GluR6 subunits of neuronal kainate receptors regulates channel inhibition by lipid-derived modulators including the cis-unsaturated fatty acids arachidonic acid and docosahexaenoic acid. Kainate receptor channels in which all of the subunits are in the edited (R) form exhibit strong inhibition by these compounds, whereas wild-type receptors that include a glutamine (Q) at the Q/R site in one or more subunits are resistant to inhibition. In the present study, we have performed an arginine scan of residues in the pore loop of the GluR6(Q) subunit. Amino acids within the range from -19 to +7 of the Q/R site of GluR6(Q) were individually mutated to arginine and the mutant cDNAs were expressed as homomeric channels in HEK 293 cells. All but one of the single arginine substitution mutants yielded functional channels. Only weak inhibition, typical of wild-type GluR6(Q) channels, was observed for substitutions +1 to +6 downstream of the Q/R site. However, arginine substitution at several locations upstream of the Q/R site resulted in homomeric channels exhibiting strong inhibition by fatty acids, which is characteristic of homomeric GluR6(R) channels. Based on homology with the pore loop of potassium channels, locations at which R substitution induces susceptibility to fatty acid inhibition face away from the cytoplasm toward the M1 and M3 helices and surrounding lipids.
Collapse
Affiliation(s)
- Timothy J Wilding
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
20
|
Recruitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I. J Neurosci 2008; 28:6000-9. [PMID: 18524905 DOI: 10.1523/jneurosci.0384-08.2008] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ca(2+)-permeable AMPA receptors (CP-AMPARs) at central glutamatergic synapses are of special interest because of their unique biophysical and signaling properties that contribute to synaptic plasticity and their roles in multiple neuropathologies. However, intracellular signaling pathways that recruit synaptic CP-AMPARs are unknown, and involvement of CP-AMPARs in hippocampal region CA1 synaptic plasticity is controversial. Here, we report that intracellular infusion of active CaM-kinase I (CaMKI) into cultured hippocampal neurons enhances miniature EPSC amplitude because of recruitment of CP-AMPARs, likely from an extrasynaptic pool. The ability of CaMKI, which regulates the actin cytoskeleton, to recruit synaptic CP-AMPARs was blocked by inhibiting actin polymerization with latrunculin A. CaMK regulation of CP-AMPARs was also confirmed in hippocampal slices. CA1 long-term potentiation (LTP) after theta bursts, but not high-frequency tetani, produced a rapid, transient expression of synaptic CP-AMPARs that facilitated LTP. This component of TBS LTP was blocked by inhibition of CaM-kinase kinase (CaMKK), the upstream activator of CaMKI. Our calculations show that adding CP-AMPARs numbering <5% of existing synaptic AMPARs is sufficient to account for the potentiation observed in LTP. Thus, synaptic expression of CP-AMPARs is a very efficient mechanism for rapid enhancement of synaptic strength that depends on CaMKK/CaMKI signaling, actin dynamics, and the pattern of synaptic activity used to induce CA1 LTP.
Collapse
|
21
|
Structural and single-channel results indicate that the rates of ligand binding domain closing and opening directly impact AMPA receptor gating. J Neurosci 2008; 28:932-43. [PMID: 18216201 DOI: 10.1523/jneurosci.3309-07.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At most excitatory central synapses, glutamate is released from presynaptic terminals and binds to postsynaptic AMPA receptors, initiating a series of conformational changes that result in ion channel opening. Efficient transmission at these synapses requires that glutamate binding to AMPA receptors results in rapid and near-synchronous opening of postsynaptic receptor channels. In addition, if the information encoded in the frequency of action potential discharge is to be transmitted faithfully, glutamate must dissociate from the receptor quickly, enabling the synapse to discriminate presynaptic action potentials that are spaced closely in time. The current view is that the efficacy of agonists is directly related to the extent to which ligand binding results in closure of the binding domain. For glutamate to dissociate from the receptor, however, the binding domain must open. Previously, we showed that mutations in glutamate receptor subunit 2 that should destabilize the closed conformation not only sped deactivation but also altered the relative efficacy of glutamate and quisqualate. Here we present x-ray crystallographic and single-channel data that support the conclusions that binding domain closing necessarily precedes channel opening and that the kinetics of conformational changes at the level of the binding domain importantly influence ion channel gating. Our findings suggest that the stability of the closed-cleft conformation has been tuned during evolution so that glutamate dissociates from the receptor as rapidly as possible but remains an efficacious agonist.
Collapse
|
22
|
Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, Makwana M, Brandner S, Adams RH, Jefferys JGR, Kann O, Behrens A. ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J 2007; 26:4891-901. [PMID: 17972914 DOI: 10.1038/sj.emboj.7601911] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/10/2007] [Indexed: 12/21/2022] Open
Abstract
The ERK MAPK signalling pathway is a highly conserved kinase cascade linking transmembrane receptors to downstream effector mechanisms. To investigate the function of ERK in neurons, a constitutively active form of MEK1 (caMEK1) was conditionally expressed in the murine brain, which resulted in ERK activation and caused spontaneous epileptic seizures. ERK activation stimulated phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) and augmented NMDA receptor 2B (NR2B) protein levels. Pharmacological inhibition of NR2B function impaired synaptic facilitation in area cornus ammonicus region 3 (CA3) in acute hippocampal slices derived from caMEK1-expressing mice and abrogated epilepsy in vivo. In addition, expression of caMEK1 caused phosphorylation of the transcription factor, cAMP response element-binding protein (CREB) and increased transcription of ephrinB2. EphrinB2 overexpression resulted in increased NR2B tyrosine phosphorylation, which was essential for caMEK1-induced epilepsy in vivo, since conditional inactivation of ephrinB2 greatly reduced seizure frequency in caMEK1 transgenic mice. Therefore, our study identifies a mechanism of epileptogenesis that links MAP kinase to Eph/Ephrin and NMDA receptor signalling.
Collapse
Affiliation(s)
- Abdolrahman S Nateri
- Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hansen KB, Yuan H, Traynelis SF. Structural aspects of AMPA receptor activation, desensitization and deactivation. Curr Opin Neurobiol 2007; 17:281-8. [PMID: 17419047 DOI: 10.1016/j.conb.2007.03.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
Glutamate mediates most of the excitatory neurotransmission in the mammalian central nervous system by activating ionotropic glutamate receptors. Structural and functional studies of ionotropic glutamate receptors have offered detailed insight into the mechanism by which these integral membrane proteins function. In particular, advances in our understanding of the atomic structure of the agonist-binding domain have provided new opportunities to consider the conformational changes that take place in a functioning ligand-gated ion channel. Several recent studies have turned up important new ideas about the structural determinants of channel activation, deactivation and desensitization of AMPA receptors. Working hypotheses derived from this structural insight offer a rare opportunity to enrich and guide functional studies.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
24
|
Postlethwaite M, Hennig MH, Steinert JR, Graham BP, Forsythe ID. Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held. J Physiol 2006; 579:69-84. [PMID: 17138605 PMCID: PMC2075387 DOI: 10.1113/jphysiol.2006.123612] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It is well established that synaptic transmission declines at temperatures below physiological, but many in vitro studies are conducted at lower temperatures. Recent evidence suggests that temperature-dependent changes in presynaptic mechanisms remain in overall equilibrium and have little effect on transmitter release at low transmission frequencies. Our objective was to examine the postsynaptic effects of temperature. Whole-cell patch-clamp recordings from principal neurons in the medial nucleus of the trapezoid body showed that a rise from 25 degrees C to 35 degrees C increased miniature EPSC (mEPSC) amplitude from -33 +/- 2.3 to -46 +/- 5.7 pA (n=6) and accelerated mEPSC kinetics. Evoked EPSC amplitude increased from -3.14 +/- 0.59 to -4.15 +/- 0.73 nA with the fast decay time constant accelerating from 0.75 +/- 0.09 ms at 25 degrees C to 0.56 +/- 0.08 ms at 35 degrees C. Direct application of glutamate produced currents which similarly increased in amplitude from -0.76 +/- 0.10 nA at 25 degrees C to -1.11 +/- 0.19 nA 35 degrees C. Kinetic modelling of fast AMPA receptors showed that a temperature-dependent scaling of all reaction rate constants by a single multiplicative factor (Q10=2.4) drives AMPA channels with multiple subconductances into the higher-conducting states at higher temperature. Furthermore, Monte Carlo simulation and deconvolution analysis of transmission at the calyx of Held showed that this acceleration of the receptor kinetics explained the temperature dependence of both the mEPSC and evoked EPSC. We propose that acceleration in postsynaptic AMPA receptor kinetics, rather than altered presynaptic release, is the primary mechanism by which temperature changes alter synaptic responses at low frequencies.
Collapse
Affiliation(s)
- M Postlethwaite
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|