1
|
Peverini L, Shi S, Medjebeur K, Corringer PJ. Mapping the molecular motions of 5-HT 3 serotonin-gated channel by voltage-clamp fluorometry. eLife 2024; 12:RP93174. [PMID: 38913422 PMCID: PMC11196107 DOI: 10.7554/elife.93174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
The serotonin-gated ion channel (5-HT3R) mediates excitatory neuronal communication in the gut and the brain. It is the target for setrons, a class of competitive antagonists widely used as antiemetics, and is involved in several neurological diseases. Cryo-electron microscopy (cryo-EM) of the 5-HT3R in complex with serotonin or setrons revealed that the protein has access to a wide conformational landscape. However, assigning known high-resolution structures to actual states contributing to the physiological response remains a challenge. In the present study, we used voltage-clamp fluorometry (VCF) to measure simultaneously, for 5-HT3R expressed at a cell membrane, conformational changes by fluorescence and channel opening by electrophysiology. Four positions identified by mutational screening report motions around and outside the serotonin-binding site through incorporation of cysteine-tethered rhodamine dyes with or without a nearby quenching tryptophan. VCF recordings show that the 5-HT3R has access to four families of conformations endowed with distinct fluorescence signatures: 'resting-like' without ligand, 'inhibited-like' with setrons, 'pre-active-like' with partial agonists, and 'active-like' (open channel) with partial and strong agonists. Data are remarkably consistent with cryo-EM structures, the fluorescence partners matching respectively apo, setron-bound, 5-HT bound-closed, and 5-HT-bound-open conformations. Data show that strong agonists promote a concerted motion of all fluorescently labeled sensors during activation, while partial agonists, especially when loss-of-function mutations are engineered, stabilize both active and pre-active conformations. In conclusion, VCF, though the monitoring of electrophysiologically silent conformational changes, illuminates allosteric mechanisms contributing to signal transduction and their differential regulation by important classes of physiological and clinical effectors.
Collapse
Affiliation(s)
- Laurie Peverini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Sophie Shi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Karima Medjebeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| |
Collapse
|
2
|
Lefebvre SN, Taly A, Menny A, Medjebeur K, Corringer PJ. Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation. eLife 2021; 10:60682. [PMID: 34590583 PMCID: PMC8504973 DOI: 10.7554/elife.60682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using simultaneous steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a three-state Monod-Wyman-Changeux model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit). It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a reorganization of a ‘central gating region’ involving a contraction of the ECD β-sandwich and the tilt of the channel lining M2 helix.
Collapse
Affiliation(s)
- Solène N Lefebvre
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Antoine Taly
- Institut de Biologie Physico-chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.,Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
| | - Anaïs Menny
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Karima Medjebeur
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France
| |
Collapse
|
3
|
Absalom NL, Liao VWY, Kothur K, Indurthi DC, Bennetts B, Troedson C, Mohammad SS, Gupta S, McGregor IS, Bowen MT, Lederer D, Mary S, De Waele L, Jansen K, Gill D, Kurian MA, McTague A, Møller RS, Ahring PK, Dale RC, Chebib M. Gain-of-function GABRB3 variants identified in vigabatrin-hypersensitive epileptic encephalopathies. Brain Commun 2020; 2:fcaa162. [PMID: 33585817 PMCID: PMC7869430 DOI: 10.1093/braincomms/fcaa162] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/31/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.
Collapse
Affiliation(s)
- Nathan L Absalom
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vivian W Y Liao
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Dinesh C Indurthi
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bruce Bennetts
- Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
- Discipline of Paediatrics and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney, 2145, Australia
| | - Christopher Troedson
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Shekeeb S Mohammad
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Sachin Gupta
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Iain S McGregor
- Faculty of Science, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael T Bowen
- Faculty of Science, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Damien Lederer
- Institute of Pathology and Genetics, Center for Human Genetics, Gosselies 6041, Belgium
| | - Sandrine Mary
- Institute of Pathology and Genetics, Center for Human Genetics, Gosselies 6041, Belgium
| | - Liesbeth De Waele
- Department of Development and Regeneration, KULeuven, Leuven 3000, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, KULeuven, Leuven 3000, Belgium
| | - Deepak Gill
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Manju A Kurian
- Molecular Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1E 6BT, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Amy McTague
- Molecular Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1E 6BT, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5230, Denmark
| | - Philip K Ahring
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Russell C Dale
- Kids Neuroscience Centre at The Children’s Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Mary Chebib
- Faculty of Medicine and Health, School of Pharmacy, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
4
|
Absalom NL, Liao VW, Chebib M. Ligand-gated ion channels in genetic disorders and the question of efficacy. Int J Biochem Cell Biol 2020; 126:105806. [DOI: 10.1016/j.biocel.2020.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
|
5
|
Schaefer N, Signoret-Genest J, von Collenberg CR, Wachter B, Deckert J, Tovote P, Blum R, Villmann C. Anxiety and Startle Phenotypes in Glrb Spastic and Glra1 Spasmodic Mouse Mutants. Front Mol Neurosci 2020; 13:152. [PMID: 32848605 PMCID: PMC7433344 DOI: 10.3389/fnmol.2020.00152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
A GWAS study recently demonstrated single nucleotide polymorphisms (SNPs) in the human GLRB gene of individuals with a prevalence for agoraphobia. GLRB encodes the glycine receptor (GlyRs) β subunit. The identified SNPs are localized within the gene flanking regions (3' and 5' UTRs) and intronic regions. It was suggested that these nucleotide polymorphisms modify GlyRs expression and phenotypic behavior in humans contributing to an anxiety phenotype as a mild form of hyperekplexia. Hyperekplexia is a human neuromotor disorder with massive startle phenotypes due to mutations in genes encoding GlyRs subunits. GLRA1 mutations have been more commonly observed than GLRB mutations. If an anxiety phenotype contributes to the hyperekplexia disease pattern has not been investigated yet. Here, we compared two mouse models harboring either a mutation in the murine Glra1 or Glrb gene with regard to anxiety and startle phenotypes. Homozygous spasmodic animals carrying a Glra1 point mutation (alanine 52 to serine) displayed abnormally enhanced startle responses. Moreover, spasmodic mice exhibited significant changes in fear-related behaviors (freezing, rearing and time spent on back) analyzed during the startle paradigm, even in a neutral context. Spastic mice exhibit reduced expression levels of the full-length GlyRs β subunit due to aberrant splicing of the Glrb gene. Heterozygous animals appear normal without an obvious behavioral phenotype and thus might reflect the human situation analyzed in the GWAS study on agoraphobia and startle. In contrast to spasmodic mice, heterozygous spastic animals revealed no startle phenotype in a neutral as well as a conditioning context. Other mechanisms such as a modulatory function of the GlyRs β subunit within glycinergic circuits in neuronal networks important for fear and fear-related behavior may exist. Possibly, in human additional changes in fear and fear-related circuits either due to gene-gene interactions e.g., with GLRA1 genes or epigenetic factors are necessary to create the agoraphobia and in particular the startle phenotype.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Jérémy Signoret-Genest
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Cora R von Collenberg
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Britta Wachter
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Wu Z, Lape R, Jopp-Saile L, O'Callaghan BJ, Greiner T, Sivilotti LG. The startle disease mutation α1S270T predicts shortening of glycinergic synaptic currents. J Physiol 2020; 598:3417-3438. [PMID: 32445491 PMCID: PMC7649747 DOI: 10.1113/jp279803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Loss-of-function mutations in proteins found at glycinergic synapses, most commonly in the α1 subunit of the glycine receptor (GlyR), cause the startle disease/hyperekplexia channelopathy in man. It was recently proposed that the receptors responsible are presynaptic homomeric GlyRs, rather than postsynaptic heteromeric GlyRs (which mediate glycinergic synaptic transmission), because heteromeric GlyRs are less affected by many startle mutations than homomers. We examined the α1 startle mutation S270T, at the extracellular end of the M2 transmembrane helix. Recombinant heteromeric GlyRs were less impaired than homomers by this mutation when we measured their response to equilibrium applications of glycine. However, currents elicited by synaptic-like millisecond applications of glycine to outside-out patches were much shorter (7- to 10-fold) in all mutant receptors, both homomeric and heteromeric. Thus, the synaptic function of heteromeric receptors is likely to be impaired by the mutation. ABSTRACT Human startle disease is caused by mutations in glycine receptor (GlyR) subunits or in other proteins associated with glycinergic synapses. Many startle mutations are known, but it is hard to correlate the degree of impairment at molecular level with the severity of symptoms in patients. It was recently proposed that the disease is caused by disruption in the function of presynaptic homomeric GlyRs (rather than postsynaptic heteromeric GlyRs), because homomeric GlyRs are more sensitive to loss-of-function mutations than heteromers. Our patch-clamp recordings from heterologously expressed GlyRs characterised in detail the functional consequences of the α1S270T startle mutation, which is located at the extracellular end of the pore lining M2 transmembrane segment (18'). This mutation profoundly decreased the maximum single-channel open probability of homomeric GlyRs (to 0.16; cf. 0.99 for wild type) but reduced only marginally that of heteromeric GlyRs (0.96; cf. 0.99 for wild type). However, both heteromeric and homomeric mutant GlyRs became less sensitive to the neurotransmitter glycine. Responses evoked by brief, quasi-synaptic pulses of glycine onto outside-out patches were impaired in mutant receptors, as deactivation was approximately 10- and 7-fold faster for homomeric and heteromeric GlyRs, respectively. Our data suggest that the α1S270T mutation is likely to affect the opening step in GlyR activation. The faster decay of synaptic currents mediated by mutant heteromeric GlyRs is expected to reduce charge transfer at the synapse, despite the high equilibrium open probability of these mutant channels.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lea Jopp-Saile
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Benjamin J O'Callaghan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Timo Greiner
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
7
|
Steinbach JH, Akk G. Applying the Monod-Wyman-Changeux Allosteric Activation Model to Pseudo-Steady-State Responses from GABA A Receptors. Mol Pharmacol 2019; 95:106-119. [PMID: 30333132 PMCID: PMC6277929 DOI: 10.1124/mol.118.113787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
The Monod-Wyman-Changeux (MWC) cyclic model was described as a kinetic scheme to explain enzyme function and modulation more than 50 years ago and was proposed as a model for understanding the activation of transmitter-gated channels soon afterward. More recently, the MWC model has been used to describe the activation of the GABAA receptor by the transmitter, GABA, and drugs that bind to separate sites on the receptor. It is most interesting that the MWC formalism can also describe the interactions among drugs that activate the receptor. In this review, we describe properties of the MWC model that have been explored experimentally using the GABAA receptor, summarize analytical expressions for activation and interaction for drugs, and briefly review experimental results.
Collapse
Affiliation(s)
- Joe Henry Steinbach
- Department of Anesthesiology, and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology, and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Akk G, Shin DJ, Germann AL, Steinbach JH. GABA Type A Receptor Activation in the Allosteric Coagonist Model Framework: Relationship between EC 50 and Basal Activity. Mol Pharmacol 2018; 93:90-100. [PMID: 29150461 PMCID: PMC5749490 DOI: 10.1124/mol.117.110569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
The concerted transition model for multimeric proteins is a simple formulation for analyzing the behavior of transmitter-gated ion channels. We used the model to examine the relationship between the EC50 for activation of the GABA type A (GABAA) receptor by the transmitter GABA and basal activity employing concatemeric ternary GABAA receptors expressed in Xenopus oocytes. Basal activity, reflecting the receptor function in the absence of the transmitter, can be changed either by mutation to increase constitutive activity or by the addition of a second agonist (acting at a different site) to increase background activity. The model predicts that either mechanism for producing a change in basal activity will result in identical effects on the EC50 We examined receptor activation by GABA while changing the level of basal activity with the allosterically acting anesthetics propofol, pentobarbital, or alfaxalone. We found that the relationship between EC50 and basal activity was well described by the concerted transition model. Changes in the basal activity by gain-of-function mutations also resulted in predictable changes in the EC50 Finally, we altered the number of GABA-binding sites by a mutation and again found that the relationship could be well described by the model. Overall, the results support the idea that interactions between the transmitter GABA and the allosteric agonists propofol, pentobarbital, or alfaxalone can be understood as reflecting additive and independent free energy changes, without assuming any specific interactions.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology (G.A., D.J.S., A.L.G., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| | - Daniel J Shin
- Department of Anesthesiology (G.A., D.J.S., A.L.G., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| | - Allison L Germann
- Department of Anesthesiology (G.A., D.J.S., A.L.G., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Department of Anesthesiology (G.A., D.J.S., A.L.G., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Soh MS, Estrada-Mondragon A, Durisic N, Keramidas A, Lynch JW. Probing the Structural Mechanism of Partial Agonism in Glycine Receptors Using the Fluorescent Artificial Amino Acid, ANAP. ACS Chem Biol 2017; 12:805-813. [PMID: 28121133 DOI: 10.1021/acschembio.6b00926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficacy of an agonist at a pentameric ligand-gated ion channel is determined by the rate at which it induces a conformational change from the resting closed state to a preopen ("flip") state. If the ability of an agonist to promote this isomerization is sufficiently low, then it becomes a partial agonist. As partial agonists at pentameric ligand-gated ion channels show considerable promise as therapeutics, understanding the structural basis of the resting-flip-state isomerization may provide insight into therapeutic design. Accordingly, we sought to identify structural correlates of the resting-flip conformational change in the glycine receptor chloride channel. We used nonsense suppression to introduce the small, fluorescent amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (ANAP), into specific sites in the extracellular and transmembrane domains. Then, under voltage-clamp conditions in Xenopus oocytes, we simultaneously quantified current and fluorescence responses induced by structurally similar agonists with high, medium, and low efficacies (glycine, β-alanine, and taurine, respectively). Analyzing results from nine ANAP-incorporated sites, we show that glycine receptor activation by agonists with graded efficacies manifests structurally as correspondingly graded movements of the β1-β2 loop, the β8-β9 loop, and the Cys-loop from the extracellular domain and the TM2-TM3 linker in the transmembrane domain. We infer that the resting-flip transition involves an efficacy-dependent molecular reorganization at the extracellular-transmembrane domain interface that primes receptors for efficacious opening.
Collapse
Affiliation(s)
- Ming S. Soh
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Argel Estrada-Mondragon
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nela Durisic
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Angelo Keramidas
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joseph W. Lynch
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Safar F, Hurdiss E, Erotocritou M, Greiner T, Lape R, Irvine MW, Fang G, Jane D, Yu R, Dämgen MA, Biggin PC, Sivilotti LG. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. J Biol Chem 2017; 292:5031-5042. [PMID: 28174298 PMCID: PMC5377815 DOI: 10.1074/jbc.m116.767616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules.
Collapse
Affiliation(s)
- Fatemah Safar
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Elliot Hurdiss
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Marios Erotocritou
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Timo Greiner
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Remigijus Lape
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark W Irvine
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - Guangyu Fang
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - David Jane
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - Rilei Yu
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.,the Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Marc A Dämgen
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Philip C Biggin
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Lucia G Sivilotti
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
11
|
Plested AJR. Single-Channel Recording of Ligand-Gated Ion Channels. Cold Spring Harb Protoc 2016; 2016:2016/8/pdb.top087239. [PMID: 27480725 DOI: 10.1101/pdb.top087239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Single-channel recordings reveal the microscopic properties of individual ligand-gated ion channels. Such recordings contain much more information than measurements of ensemble behavior and can yield structural and functional information about the receptors that participate in fast synaptic transmission in the brain. With a little care, a standard patch-clamp electrophysiology setup can be adapted for single-channel recording in a matter of hours. Thenceforth, it is a realistic aim to record single-molecule activity with microsecond resolution from arbitrary cell types, including cell lines and neurons.
Collapse
Affiliation(s)
- Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
12
|
Wilkins ME, Caley A, Gielen MC, Harvey RJ, Smart TG. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation. J Physiol 2016; 594:3589-607. [PMID: 27028707 PMCID: PMC4929309 DOI: 10.1113/jp272122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/21/2016] [Indexed: 11/10/2022] Open
Abstract
Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission. Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem. A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs. These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact. Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease.
Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application revealed faster glycine deactivation times for the N46K mutant compared with the WT receptor. Overall, these data are consistent with N46 ensuring correct alignment of the α1 subunit interface by interaction with juxtaposed residues to preserve the structural integrity of the glycine binding site. This represents a new mechanism by which GlyR dysfunction induces startle disease. Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission. Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem. A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs. These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact. Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease.
Collapse
Affiliation(s)
- Megan E Wilkins
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alex Caley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marc C Gielen
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert J Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39, Brunswick Square, London, WC1N 1AX, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
13
|
Don't flip out: AChRs are primed to catch and hold your attention. Biophys J 2015; 107:8-9. [PMID: 24988335 DOI: 10.1016/j.bpj.2014.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/23/2022] Open
|
14
|
Breitinger U, Raafat KM, Breitinger HG. Glucose is a positive modulator for the activation of human recombinant glycine receptors. J Neurochem 2015; 134:1055-66. [DOI: 10.1111/jnc.13215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry; The German University in Cairo; New Cairo Egypt
| | - Karim M. Raafat
- Department of Biochemistry; The German University in Cairo; New Cairo Egypt
| | | |
Collapse
|
15
|
Burgos CF, Muñoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: From molecular pharmacology to behavior responses. Pharmacol Res 2015; 101:18-29. [PMID: 26158502 DOI: 10.1016/j.phrs.2015.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Leonardo Guzman
- Laboratory of Molecular Neurobiology, Department of Physiology, University of Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile.
| |
Collapse
|
16
|
Dixon CL, Harrison NL, Lynch JW, Keramidas A. Zolpidem and eszopiclone prime α1β2γ2 GABAA receptors for longer duration of activity. Br J Pharmacol 2015; 172:3522-36. [PMID: 25817320 DOI: 10.1111/bph.13142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE GABAA receptors mediate neuronal inhibition in the brain. They are the primary targets for benzodiazepines, which are widely used to treat neurological disorders including anxiety, epilepsy and insomnia. The mechanism by which benzodiazepines enhance GABAA receptor activity has been extensively studied, but there is little mechanistic information on how non-benzodiazepine drugs that bind to the same site exert their effects. Eszopiclone and zolpidem are two non-benzodiazepine drugs for which no mechanism of action has yet been proposed, despite their clinical importance as sleeping aids. Here we investigate how both drugs enhance the activity of α1β2γ2 GABAA receptors. EXPERIMENTAL APPROACH We used rapid ligand application onto macropatches and single-channel kinetic analysis to assess rates of current deactivation. We also studied synaptic currents in primary neuronal cultures and in heterosynapses, whereby native GABAergic nerve terminals form synapses with HEK293 cells expressing α1β2γ2 GABAA receptors. Drug binding and modulation was quantified with the aid of an activation mechanism. KEY RESULTS At the single-channel level, the drugs prolonged the duration of receptor activation, with similar KD values of ∼80 nM. Channel activation was prolonged primarily by increasing the equilibrium constant between two connected shut states that precede channel opening. CONCLUSIONS AND IMPLICATIONS As the derived mechanism successfully simulated the effects of eszopiclone and zolpidem on ensemble currents, we propose it as the definitive mechanism accounting for the effects of both drugs. Importantly, eszopiclone and zolpidem enhanced GABAA receptor currents via a mechanism that differs from that proposed for benzodiazepines.
Collapse
Affiliation(s)
- Christine L Dixon
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | - Neil L Harrison
- Department of Anesthesiology and Department of Pharmacology, Columbia University, New York, NY, USA
| | - Joseph W Lynch
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia.,Department of Anesthesiology and Department of Pharmacology, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Sánchez A, Yévenes GE, San Martin L, Burgos CF, Moraga-Cid G, Harvey RJ, Aguayo LG. Control of ethanol sensitivity of the glycine receptor α3 subunit by transmembrane 2, the intracellular splice cassette and C-terminal domains. J Pharmacol Exp Ther 2015; 353:80-90. [PMID: 25589412 PMCID: PMC4366752 DOI: 10.1124/jpet.114.221143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/13/2015] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that the effect of ethanol onglycine receptors (GlyRs) containing the a1 subunit is affected by interaction with heterotrimeric G proteins (Gβγ). GlyRs containing the α3 subunit are involved in inflammatory pain sensitization and rhythmic breathing and have received much recent attention. For example, it is unknown whether ethanol affects the function of this important GlyR subtype. Electrophysiologic experiments showed that GlyR α3 subunits were not potentiated by pharmacologic concentrations of ethanol or by Gβγ. Thus, we studied GlyR α1–α3 chimeras and mutants to determine the molecular properties that confer ethanol insensitivity. Mutation of corresponding glycine 254 in transmembrane domain 2 (TM2) found in a1 in the α3(A254G) –α1 chimera induced a glycine-evoked current that displayed potentiation during application of ethanol (46 ± 5%, 100 mM) and Gβγ activation (80 ± 17%). Interestingly,insertion of the intracellular α3L splice cassette into GlyR α1 abolished the enhancement of the glycine-activated current by ethanol (5 ± 6%) and activation by Gβγ (21 6 7%). In corporation of the GlyR α1 C terminus into the ethanol-resistant α3S(A254G) mutant produced a construct that displayed potentiation of the glycine-activated current with 100 mM ethanol (40 ± 6%)together with a current enhancement after G protein activation (68 ± 25%). Taken together, these data demonstrate that GlyRα3 subunits are not modulated by ethanol. Residue A254 in TM2, the α3L splice cassette, and the C-terminal domain of α3GlyRs are determinants for low ethanol sensitivity and form the molecular basis of subtype-selective modulation of GlyRs by alcohol.
Collapse
Affiliation(s)
- Andrea Sánchez
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang Y, Dixon CL, Keramidas A, Lynch JW. Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations. Neuropharmacology 2015; 89:391-7. [DOI: 10.1016/j.neuropharm.2014.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
19
|
Tadros MA, Farrell KE, Schofield PR, Brichta AM, Graham BA, Fuglevand AJ, Callister RJ. Intrinsic and synaptic homeostatic plasticity in motoneurons from mice with glycine receptor mutations. J Neurophysiol 2014; 111:1487-98. [PMID: 24401707 PMCID: PMC4839488 DOI: 10.1152/jn.00728.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/04/2014] [Indexed: 12/12/2022] Open
Abstract
Inhibitory synaptic inputs to hypoglossal motoneurons (HMs) are important for modulating excitability in brainstem circuits. Here we ask whether reduced inhibition, as occurs in three murine mutants with distinct naturally occurring mutations in the glycine receptor (GlyR), leads to intrinsic and/or synaptic homeostatic plasticity. Whole cell recordings were obtained from HMs in transverse brainstem slices from wild-type (wt), spasmodic (spd), spastic (spa), and oscillator (ot) mice (C57Bl/6, approximately postnatal day 21). Passive and action potential (AP) properties in spd and ot HMs were similar to wt. In contrast, spa HMs had lower input resistances, more depolarized resting membrane potentials, higher rheobase currents, smaller AP amplitudes, and slower afterhyperpolarization current decay times. The excitability of HMs, assessed by "gain" in injected current/firing-frequency plots, was similar in all strains whereas the incidence of rebound spiking was increased in spd. The difference between recruitment and derecruitment current (i.e., ΔI) for AP discharge during ramp current injection was more negative in spa and ot. GABAA miniature inhibitory postsynaptic current (mIPSC) amplitude was increased in spa and ot but not spd, suggesting diminished glycinergic drive leads to compensatory adjustments in the other major fast inhibitory synaptic transmitter system in these mutants. Overall, our data suggest long-term reduction in glycinergic drive to HMs results in changes in intrinsic and synaptic properties that are consistent with homeostatic plasticity in spa and ot but not in spd. We propose such plasticity is an attempt to stabilize HM output, which succeeds in spa but fails in ot.
Collapse
Affiliation(s)
- M. A. Tadros
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - K. E. Farrell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - P. R. Schofield
- Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Randwick, Australia; and
| | - A. M. Brichta
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - B. A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - A. J. Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - R. J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
20
|
Marabelli A, Moroni M, Lape R, Sivilotti LG. The kinetic properties of the α3 rat glycine receptor make it suitable for mediating fast synaptic inhibition. J Physiol 2013; 591:3289-308. [PMID: 23613537 DOI: 10.1113/jphysiol.2013.252189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycine receptors mediate fast synaptic inhibition in spinal cord and brainstem. Two α subunits are present in adult neurones, α1, which forms most of the synaptic glycine receptors, and α3. The physiological role of α3 is not known, despite the fact that α3 expression is concentrated in areas involved in nociceptive processing, such as the superficial dorsal horn. In the present study, we characterized the kinetic properties of rat homomeric α3 glycine receptors heterologously expressed in HEK293 cells. We analysed steady state single channel activity at a range of different glycine concentrations by fitting kinetic schemes and found that α3 channels resemble α1 receptors in their high maximum open probability (99.1% cf. 98% for α1), but differ in that maximum open probability is reached when all five binding sites are occupied by glycine (cf. three out of five sites for α1). α3 activation was best described by kinetic schemes that allow the channel to open also when partially liganded and that contain more than the minimum number of shut states, either as desensitized distal states (Jones and Westbrook scheme) or as pre-open gating intermediates (flip scheme). We recorded also synaptic-like α3 currents elicited by the rapid application of 1 ms pulses of high concentration glycine to outside-out patches. These currents had fast deactivation, with a time constant of decay of 9 ms. Thus, if native synaptic currents can be mediated by α3 glycine receptors, they are likely to be very close in their kinetics to α1-mediated synaptic events.
Collapse
Affiliation(s)
- Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, Medical Sciences Building, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
21
|
Anti-NMDA receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain. J Neurosci 2012; 32:11082-94. [PMID: 22875940 DOI: 10.1523/jneurosci.0064-12.2012] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Anti-NMDA receptor (NMDAR) encephalitis is a newly identified autoimmune disorder that targets NMDARs, causing severe neurological symptoms including hallucinations, psychosis, and seizures, and may result in death (Dalmau et al., 2008). However, the exact epitope to which these antibodies bind is unknown. A clearly defined antigenic region could provide more precise testing, allow for comparison of immunogenicity between patients to explore potential clinically relevant variations, elucidate the functional effects of antibodies, and make patients' antibodies a more effective tool with which to study NMDAR function. Here, we use human CSF to explore the antigenic region of the NMDAR. We created a series of mutants within the amino terminal domain of GluN1 that change patient antibody binding in transfected cells in stereotyped ways. These mutants demonstrate that the N368/G369 region of GluN1 is crucial for the creation of immunoreactivity. Mass spectrometry experiments show that N368 is glycosylated in transfected cells and rat brain regions; however, this glycosylation is not directly required for epitope formation. Mutations of residues N368/G369 change the closed time of the receptor in single channel recordings; more frequent channel openings correlates with the degree of antibody staining, and acute antibody exposure prolongs open time of the receptor. The staining pattern of mutant receptors is similar across subgroups of patients, indicating consistent immunogenicity, although we have identified one region that has a variable role in epitope formation. These findings provide tools for detailed comparison of antibodies across patients and suggest an interaction between antibody binding and channel function.
Collapse
|
22
|
The α1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J Neurosci 2012; 32:1336-52. [PMID: 22279218 DOI: 10.1523/jneurosci.4346-11.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss-of-function mutations in human glycine receptors cause hyperekplexia, a rare inherited disease associated with an exaggerated startle response. We have studied a human disease mutation in the M2-M3 loop of the glycine receptor α1 subunit (K276E) using direct fitting of mechanisms to single-channel recordings with the program HJCFIT. Whole-cell recordings from HEK293 cells showed the mutation reduced the receptor glycine sensitivity. In single-channel recordings, rat homomeric α1 K276E receptors were barely active, even at 200 mM glycine. Coexpression of the β subunit partially rescued channel function. Heteromeric mutant channels opened in brief bursts at 300 μM glycine (a concentration that is near-maximal for wild type) and reached a maximum one-channel open probability of about 45% at 100 mm glycine (compared to 96% for wild type). Distributions of apparent open times contained more than one component in high glycine and, therefore, could not be described by mechanisms with only one fully liganded open state. Fits to the data were much better with mechanisms in which opening can also occur from more than one fully liganded intermediate (e.g., "primed" models). Brief pulses of glycine (∼3 ms, 30 mM) applied to mutant channels in outside-out patches activated currents with a slower rise time (1.5 ms) than those of wild-type channels (0.2 ms) and a much faster decay. These features were predicted reasonably well by the mechanisms obtained from fitting single-channel data. Our results show that, by slowing and impairing channel gating, the K276E mutation facilitates the detection of closed reaction intermediates in the activation pathway of glycine channels.
Collapse
|
23
|
Borghese CM, Blednov YA, Quan Y, Iyer SV, Xiong W, Mihic SJ, Zhang L, Lovinger DM, Trudell JR, Homanics GE, Harris RA. Characterization of two mutations, M287L and Q266I, in the α1 glycine receptor subunit that modify sensitivity to alcohols. J Pharmacol Exp Ther 2012; 340:304-16. [PMID: 22037201 PMCID: PMC3263968 DOI: 10.1124/jpet.111.185116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317-329, 2012).
Collapse
MESH Headings
- Alcohols/pharmacology
- Amino Acid Substitution/physiology
- Animals
- Binding, Competitive/physiology
- Brain Stem/cytology
- Brain Stem/metabolism
- Cells, Cultured
- Drug Synergism
- Electrophysiological Phenomena/drug effects
- Electrophysiological Phenomena/physiology
- Ethanol/pharmacology
- Female
- Flunitrazepam/metabolism
- Gene Expression/genetics
- Gene Knock-In Techniques/methods
- Genotype
- Glycine/pharmacology
- HEK293 Cells
- Humans
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Molecular
- Motor Neuron Disease/genetics
- Motor Neuron Disease/mortality
- Motor Neuron Disease/physiopathology
- Mutation/physiology
- Neurons/drug effects
- Neurons/physiology
- Oocytes/drug effects
- Oocytes/metabolism
- Phenotype
- Receptors, Glycine/agonists
- Receptors, Glycine/antagonists & inhibitors
- Receptors, Glycine/chemistry
- Receptors, Glycine/genetics
- Receptors, Glycine/metabolism
- Spinal Cord/metabolism
- Strychnine/metabolism
- Taurine/pharmacology
- Transfection
- Xenopus laevis
- Zinc/pharmacology
Collapse
Affiliation(s)
- Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-0159, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids. PLoS One 2011; 6:e23886. [PMID: 21901142 PMCID: PMC3162021 DOI: 10.1371/journal.pone.0023886] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022] Open
Abstract
Glycine receptors (GlyRs) are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs) have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA) are positive modulators of α1, α2 and α3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly) potentiate α1 GlyRs but inhibit α2 and α3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM) region 2 and intracellular lysine 385 determine the positive modulation of α1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α1 GlyRs, without affecting inhibition of α2 and α3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.
Collapse
|
25
|
Pless SA, Leung AWY, Galpin JD, Ahern CA. Contributions of conserved residues at the gating interface of glycine receptors. J Biol Chem 2011; 286:35129-36. [PMID: 21835920 DOI: 10.1074/jbc.m111.269027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for channel gating and is lined by a number of charged and aromatic side chains that are highly conserved among different pLGICs. However, little is known about specific interactions between these residues that are likely to be important for gating in α1 GlyRs. Here we use the introduction of cysteine pairs and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218 in the pre-M1 domain that is crucial for channel gating. We further propose that Phe-145 and Phe-187 play important roles in stabilizing this interaction by providing a hydrophobic environment. In contrast to the equivalent residues in loop 2 of other pLGICs, the negative charge at Glu-53 α1 GlyRs is not crucial for normal channel function. These findings help decipher the GlyR gating pathway and show that distinct residue interaction patterns exist in different pLGICs. Furthermore, a salt bridge between Asp-148 and Arg-218 would provide a possible mechanistic explanation for the pathophysiologically relevant hyperekplexia, or startle disease, mutant Arg-218 → Gln.
Collapse
Affiliation(s)
- Stephan A Pless
- Department of Anesthesiology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
26
|
Krashia P, Lape R, Lodesani F, Colquhoun D, Sivilotti LG. The long activations of α2 glycine channels can be described by a mechanism with reaction intermediates ("flip"). ACTA ACUST UNITED AC 2011; 137:197-216. [PMID: 21282399 PMCID: PMC3032374 DOI: 10.1085/jgp.201010521] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The α2 glycine receptor (GlyR) subunit, abundant in embryonic neurons, is replaced by α1 in the adult nervous system. The single-channel activity of homomeric α2 channels differs from that of α1-containing GlyRs, as even at the lowest glycine concentration (20 µM), openings occurred in long (>300-ms) groups with high open probability (Popen; 0.96; cell-attached recordings, HEK-expressed channels). Shut-time intervals within groups of openings were dominated by short shuttings of 5–10 µs. The lack of concentration dependence in the groups of openings suggests that they represent single activations, separated by very long shut times at low concentrations. Several putative mechanisms were fitted by maximizing the likelihood of the entire sequence of open and shut times, with exact missed-events allowance (program hjcfit). Records obtained at several glycine concentrations were fitted simultaneously. The adequacy of the different schemes was judged by the accuracy with which they predicted not only single-channel data but also the time course and concentration dependence of macroscopic responses elicited by rapid glycine applications to outside-out patches. The data were adequately described only with schemes incorporating a reaction intermediate in the activation, and the best was a flip mechanism with two binding sites and one open state. Fits with this mechanism showed that for α2 channels, the opening rate constant is very fast, ∼130,000 s−1, much as for α1β GlyRs (the receptor in mature synapses), but the estimated true mean open time is 20 times longer (around 3 ms). The efficacy for the flipping step and the binding affinity were lower for α2 than for α1β channels, but the overall efficacies were similar. As we previously showed for α1 homomeric receptors, in α2 glycine channels, maximum Popen is achieved when fewer than all five of the putative binding sites in the pentamer are occupied by glycine.
Collapse
Affiliation(s)
- Paraskevi Krashia
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | | | | | | | | |
Collapse
|
27
|
Graham BA, Tadros MA, Schofield PR, Callister RJ. Probing glycine receptor stoichiometry in superficial dorsal horn neurones using the spasmodic mouse. J Physiol 2011; 589:2459-74. [PMID: 21486794 DOI: 10.1113/jphysiol.2011.206326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inhibitory glycine receptors (GlyRs) are pentameric ligand gated ion channels composed of α and β subunits assembled in a 2:3 stoichiometry. The α1/βheteromer is considered the dominant GlyR isoform at 'native' adult synapses in the spinal cord and brainstem. However, the α3 GlyR subunit is concentrated in the superficial dorsal horn (SDH: laminae I-II), a spinal cord region important for processing nociceptive signals from skin, muscle and viscera. Here we use the spasmodic mouse, which has a naturally occurring mutation (A52S) in the α1 subunit of the GlyR, to examine the effect of the mutation on inhibitory synaptic transmission and homeostatic plasticity, and to probe for the presence of various GlyR subunits in the SDH.We usedwhole cell recording (at 22-24◦C) in lumbar spinal cord slices obtained from ketamine-anaesthetized (100 mg kg⁻¹, I.P.) spasmodic and wild-type mice (mean age P27 and P29, respectively, both sexes). The amplitude and decay time constants of GlyR mediated mIPSCs in spasmodic micewere reduced by 25% and 50%, respectively (42.0 ± 3.6 pA vs. 31.0 ± 1.8 pA, P <0.05 and 7.4 ± 0.5 ms vs. 5.0 ± 0.4 ms, P <0.05; means ± SEM, n =34 and 31, respectively). Examination of mIPSC amplitude versus rise time and decay time relationships showed these differences were not due to electrotonic effects. Analysis of GABAAergic mIPSCs and A-type potassium currents revealed altered GlyR mediated neurotransmission was not accompanied by the synaptic or intrinsic homeostatic plasticity previously demonstrated in another GlyR mutant, spastic. Application of glycine to excised outside-out patches from SDH neurones showed glycine sensitivity was reduced more than twofold in spasmodic GlyRs (EC50 =130 ± 20 μM vs. 64 ± 11 μM, respectively; n =8 and 15, respectively). Differential agonist sensitivity and mIPSC decay times were subsequently used to probe for the presence of α1-containing GlyRs in SDHneurones.Glycine sensitivity, based on the response to 1-3 μM glycine, was reduced in>75% of neurones tested and decay times were faster in the spasmodic sample. Together, our data suggest most GlyRs and glycinergic synapses in the SDH contain α1 subunits and few are composed exclusively of α3 subunits. Therefore, future efforts to design therapies that target the α3 subunit must consider the potential interaction between α1 and α3 subunits in the GlyR.
Collapse
Affiliation(s)
- B A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia.
| | | | | | | |
Collapse
|
28
|
Cederholm JME, Absalom NL, Sugiharto S, Griffith R, Schofield PR, Lewis TM. Conformational changes in extracellular loop 2 associated with signal transduction in the glycine receptor. J Neurochem 2010; 115:1245-55. [PMID: 20874766 DOI: 10.1111/j.1471-4159.2010.07021.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ligand-gated ion channels efficiently couple neurotransmitter binding to the opening of an intrinsic ion channel to generate the post-synaptic potentials that are characteristic of fast synaptic transmission. In the Cys-loop family of ligand-gated ion channels, the ligand-binding site is approximately 60 Å above the channel gate. Structural modelling of related proteins and mutagenesis studies led to the hypothesis that loops 2 and 7 of the extracellular domain may couple ligand binding to receptor activation. Mutating loop 2 residues of the glycine receptor to cysteine reveals an alternating pattern of effect upon receptor function. Mutations A52C, T54C and M56C produced a threefold right-shift in EC(50) . In contrast, a 30-fold right-shift was seen for mutations E53C, T55C and D57C. Loop 2 conformational changes associated with ligand binding were assessed by measuring the rate of covalent modification of substituted cysteines by charged methane thiosulfonate reagents. We show for the first time state-dependent differences in the rate of reaction. A52C and T54C are more accessible in the resting state and M56C is more accessible in the activated state. These results demonstrate that loop 2 does undergo a conformational change as part of the mechanism that couples ligand binding to channel opening.
Collapse
Affiliation(s)
- Jennie M E Cederholm
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Yevenes GE, Moraga-Cid G, Avila A, Guzmán L, Figueroa M, Peoples RW, Aguayo LG. Molecular requirements for ethanol differential allosteric modulation of glycine receptors based on selective Gbetagamma modulation. J Biol Chem 2010; 285:30203-13. [PMID: 20647311 PMCID: PMC2943258 DOI: 10.1074/jbc.m110.134676] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/19/2010] [Indexed: 12/18/2022] Open
Abstract
It is now believed that the allosteric modulation produced by ethanol in glycine receptors (GlyRs) depends on alcohol binding to discrete sites within the protein structure. Thus, the differential ethanol sensitivity of diverse GlyR isoforms and mutants was explained by the presence of specific residues in putative alcohol pockets. Here, we demonstrate that ethanol sensitivity in two ligand-gated ion receptor members, the GlyR adult α(1) and embryonic α(2) subunits, can be modified through selective mutations that rescued or impaired Gβγ modulation. Even though both isoforms were able to physically interact with Gβγ, only the α(1) GlyR was functionally modulated by Gβγ and pharmacological ethanol concentrations. Remarkably, the simultaneous switching of two transmembrane and a single extracellular residue in α(2) GlyRs was enough to generate GlyRs modulated by Gβγ and low ethanol concentrations. Interestingly, although we found that these TM residues were different to those in the alcohol binding site, the extracellular residue was recently implicated in conformational changes important to generate a pre-open-activated state that precedes ion channel gating. Thus, these results support the idea that the differential ethanol sensitivity of these two GlyR isoforms rests on conformational changes in transmembrane and extracellular residues within the ion channel structure rather than in differences in alcohol binding pockets. Our results describe the molecular basis for the differential ethanol sensitivity of two ligand-gated ion receptor members based on selective Gβγ modulation and provide a new mechanistic framework for allosteric modulations of abuse drugs.
Collapse
Affiliation(s)
| | | | - Ariel Avila
- From the Laboratory of Neurophysiology, Department of Physiology, and
| | - Leonardo Guzmán
- From the Laboratory of Neurophysiology, Department of Physiology, and
| | - Maximiliano Figueroa
- the Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile and
| | - Robert W. Peoples
- the Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Luis G. Aguayo
- From the Laboratory of Neurophysiology, Department of Physiology, and
| |
Collapse
|
30
|
Miller PS, Smart TG. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci 2010; 31:161-74. [PMID: 20096941 DOI: 10.1016/j.tips.2009.12.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022]
Abstract
It is over forty years since the major neurotransmitters and their protein receptors were identified, and over twenty years since determination of the first amino-acid sequences of the Cys-loop receptors that recognize acetylcholine, serotonin, GABA and glycine. The last decade has seen the first structures of these proteins (and related bacterial and molluscan homologues) determined to atomic resolution. Hopefully over the next decade, more detailed molecular structures of entire Cys-loop receptors in drug-bound and drug-free conformations will become available. These, together with functional studies, will provide a clear picture of how these receptors participate in neurotransmission and how structural variations between receptor subtypes impart their unique characteristics. This insight should facilitate the design of novel and improved therapeutics to treat neurological disorders. This review considers our current understanding about the processes of agonist binding, receptor activation and channel opening, as well as allosteric modulation of the Cys-loop receptor family.
Collapse
Affiliation(s)
- Paul S Miller
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
31
|
Legendre P, Förstera B, Jüttner R, Meier JC. Glycine Receptors Caught between Genome and Proteome - Functional Implications of RNA Editing and Splicing. Front Mol Neurosci 2009; 2:23. [PMID: 19936314 PMCID: PMC2779093 DOI: 10.3389/neuro.02.023.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/13/2009] [Indexed: 11/13/2022] Open
Abstract
Information processing in the brain requires a delicate balance between excitation and inhibition. Glycine receptors (GlyR) are involved in inhibitory mechanisms mainly at a synaptic level, but potential novel roles for these receptors recently emerged due to the discovery of posttranscriptional processing. GLR transcripts are edited through enzymatic modification of a single nucleotide leading to amino acid substitution within the neurotransmitter binding domain. RNA editing produces gain-of-function receptors well suited for generation and maintenance of tonic inhibition of neuronal excitability. As neuronal activity deprivation in early stages of development or in epileptic tissue is detrimental to neurons and because RNA editing of GlyR is up-regulated in temporal lobe epilepsy patients with a severe course of disease a pathophysiological role of these receptors emerges. This review contains a state-of-the-art discussion of (patho)physiological implications of GlyR RNA editing.
Collapse
|
32
|
Sivilotti LG. What single-channel analysis tells us of the activation mechanism of ligand-gated channels: the case of the glycine receptor. J Physiol 2009; 588:45-58. [PMID: 19770192 DOI: 10.1113/jphysiol.2009.178525] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glycine receptors are, in several ways, the member of the nicotinic superfamily that is best-suited for single-channel recording. That means that they are ideal for testing ideas about how activation proceeds in a ligand-gated ion channel from the binding of the agonist to the opening of the channel. This review describes the quantitative characterization by single-channel analysis of a novel activation mechanism for the glycine receptor. The favourable properties of the glycine receptor allowed the first detection of a conformation change that follows the binding of the agonist but precedes the opening of the channel. We used the term 'flipping' to describe this pre-opening conformational change. The 'flipped' state has a binding affinity higher than the resting state, but lower than the open state. This increased affinity presumably reflects a structural change near the agonist binding site, possibly the 'capping' of the C-loop. The significance of the 'flip' activation mechanism goes beyond understanding the behaviour and the structure-function relation of glycine channels, as this mechanism can be applied also to other members of the superfamily, such as the muscle nicotinic receptor. The 'flip' mechanism has thrown light on the question of why partial agonists are not efficacious at keeping the channel open, a question that is fundamental to rational drug design. In both muscle nicotinic and glycine receptors, partial agonists are as good as full agonists at opening the channel once flipping has occurred, but are not as effective as full agonists in eliciting this early conformational change.
Collapse
Affiliation(s)
- Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, Medical Sciences Building, University College London, Gower St, London WC1E 6BT, UK.
| |
Collapse
|
33
|
Jha A, Purohit P, Auerbach A. Energy and structure of the M2 helix in acetylcholine receptor-channel gating. Biophys J 2009; 96:4075-84. [PMID: 19450479 DOI: 10.1016/j.bpj.2009.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 11/18/2022] Open
Abstract
We studied single-channel currents from neuromuscular acetylcholine receptor-channels with mutations in the pore-lining, M2 helix of the epsilon-subunit. Three parameters were quantified: 1), the diliganded gating equilibrium constant (E(2)), which reflects the energy difference between C(losed) and O(pen) conformations; 2), the correlation between the opening rate constant and E(2) on a log-log scale (Phi), which illuminates the energy character of the residue (C- versus O-like) within the C<-->O isomerization process; and 3), the open-channel current amplitude (i(0)), which reports whether a mutation alters the energetics of ion permeation. The largest E(2) changes were observed in the cytoplasmic half of epsilonM2 (5', 9', 12', 13', and 16'), with smaller changes apparent for residues > or =17'. Phi was approximately 0.54 for most epsilonM2 residues, but was approximately 0.32 at the positions that had largest E(2) changes. An arginine substitution reduced i(0) significantly at six positions, with the magnitude of the reduction increasing, 16'-->2'. The measurements suggest that the 9', 12', and 13' residues experience large and late free-energy changes in the channel-opening process. We speculate that in the gating isomerization the pore-facing residues >6' and <16' experience multiple energy perturbations associated with changes in protein structure and, perhaps, hydration.
Collapse
Affiliation(s)
- Archana Jha
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York, USA
| | | | | |
Collapse
|
34
|
Pless SA, Lynch JW. Magnitude of a conformational change in the glycine receptor beta1-beta2 loop is correlated with agonist efficacy. J Biol Chem 2009; 284:27370-6. [PMID: 19643731 DOI: 10.1074/jbc.m109.048405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficacy of agonists at Cys-loop ion channel receptors is determined by the rate they isomerize receptors to a pre-open flip state. Once the flip state is reached, the shut-open reaction is similar for low and high efficacy agonists. The present study sought to identify a conformational change associated with the closed-flip transition in the alpha1-glycine receptor. We employed voltage-clamp fluorometry to compare ligand-binding domain conformational changes induced by the following agonists, listed from highest to lowest affinity and efficacy: glycine > beta-alanine > taurine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. Agonist affinity and efficacy correlated inversely with maximum fluorescence magnitudes at labeled residues in ligand-binding domain loops D and E, suggesting that large conformational changes in this region preclude efficacious gating. However, agonist affinity and efficacy correlated directly with maximum fluorescence magnitudes from a label attached to A52C in loop 2, near the transmembrane domain interface. Because glycine experiences the largest affinity increase between closed and flip states, we propose that the magnitude of this fluorescence signal is directly proportional to the agonist affinity increase. In contrast, labeled residues in loops C, F, and the pre-M1 domain yielded agonist-independent fluorescence responses. Our results support the conclusion that a closed-flip conformation change, with a magnitude proportional to the agonist affinity increase from closed to flip states, occurs in the microenvironment of Ala-52.
Collapse
Affiliation(s)
- Stephan A Pless
- Queensland Brain Institute and School of Biomedical Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
35
|
Gating mechanisms in Cys-loop receptors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:37-49. [PMID: 19404635 DOI: 10.1007/s00249-009-0452-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/23/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
The Cys-loop receptor superfamily of ligand-gated ion channels has a prominent role in neuronal signalling. These receptors are pentamers, each subunit containing ten beta-strands in the extracellular domain and four alpha-helical transmembrane domains (M1-M4). The M2 domain of each subunit lines the intrinsic ion channel pore and residues within the extracellular domain form ligand binding sites. Ligand binding initiates a conformational change that opens the ion-selective pore. The coupling between ligand binding in the extracellular domain and opening of the intrinsic ion channel pore located in the membrane is not fully understood. Several loop structures, such as loop 2, the Cys-loop, the pre-M1 region and the M2-M3 loop have been implicated in receptor activation. The current "conformational change wave" hypothesis suggests that binding of a ligand initiates a rotation of the beta-sheets around an axis that passes through the Cys-loop. Due to this rotation, the Cys-loop and loop 2 are displaced. Movement of the M2-M3 loop then twists the M2 domain leading to a separation of the helices and opening of the pore. The publication of a crystal structure of an acetylcholine binding protein and the refined structure of the Torpedo marmorata acetylcholine receptor have improved the understanding of the mechanisms and structures involved in coupling ligand binding to channel gating. In this review, the most recent findings on some of these loop structures will be reported and discussed in view of their role in the gating mechanism.
Collapse
|
36
|
Steinbach JH. Unready for action. Nature 2008; 454:704-5. [DOI: 10.1038/454704a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Keramidas A, Harrison NL. Agonist-dependent single channel current and gating in alpha4beta2delta and alpha1beta2gamma2S GABAA receptors. ACTA ACUST UNITED AC 2008; 131:163-81. [PMID: 18227274 PMCID: PMC2213567 DOI: 10.1085/jgp.200709871] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The family of γ-aminobutyric acid type A receptors (GABAARs) mediates two types of inhibition in the mammalian brain. Phasic inhibition is mediated by synaptic GABAARs that are mainly comprised of α1, β2, and γ2 subunits, whereas tonic inhibition is mediated by extrasynaptic GABAARs comprised of α4/6, β2, and δ subunits. We investigated the activation properties of recombinant α4β2δ and α1β2γ2S GABAARs in response to GABA and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3(2H)-one (THIP) using electrophysiological recordings from outside-out membrane patches. Rapid agonist application experiments indicated that THIP produced faster opening rates at α4β2δ GABAARs (β ∼1600 s−1) than at α1β2γ2S GABAARs (β ∼ 460 s−1), whereas GABA activated α1β2γ2S GABAARs more rapidly (β ∼1800 s−1) than α4β2δ GABAARs (β < 440 s−1). Single channel recordings of α1β2γ2S and α4β2δ GABAARs showed that both channels open to a main conductance state of ∼25 pS at −70 mV when activated by GABA and low concentrations of THIP, whereas saturating concentrations of THIP elicited ∼36 pS openings at both channels. Saturating concentrations of GABA elicited brief (<10 ms) openings with low intraburst open probability (PO ∼ 0.3) at α4β2δ GABAARs and at least two “modes” of single channel bursting activity, lasting ∼100 ms at α1β2γ2S GABAARs. The most prevalent bursting mode had a PO of ∼0.7 and was described by a reaction scheme with three open and three shut states, whereas the “high” PO mode (∼0.9) was characterized by two shut and three open states. Single channel activity elicited by THIP in α4β2δ and α1β2γ2S GABAARs occurred as a single population of bursts (PO ∼0.4–0.5) of moderate duration (∼33 ms) that could be described by schemes containing two shut and two open states for both GABAARs. Our data identify kinetic properties that are receptor-subtype specific and others that are agonist specific, including unitary conductance.
Collapse
Affiliation(s)
- Angelo Keramidas
- CV Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, NY, NY 10021, USA.
| | | |
Collapse
|
38
|
Structural and single-channel results indicate that the rates of ligand binding domain closing and opening directly impact AMPA receptor gating. J Neurosci 2008; 28:932-43. [PMID: 18216201 DOI: 10.1523/jneurosci.3309-07.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At most excitatory central synapses, glutamate is released from presynaptic terminals and binds to postsynaptic AMPA receptors, initiating a series of conformational changes that result in ion channel opening. Efficient transmission at these synapses requires that glutamate binding to AMPA receptors results in rapid and near-synchronous opening of postsynaptic receptor channels. In addition, if the information encoded in the frequency of action potential discharge is to be transmitted faithfully, glutamate must dissociate from the receptor quickly, enabling the synapse to discriminate presynaptic action potentials that are spaced closely in time. The current view is that the efficacy of agonists is directly related to the extent to which ligand binding results in closure of the binding domain. For glutamate to dissociate from the receptor, however, the binding domain must open. Previously, we showed that mutations in glutamate receptor subunit 2 that should destabilize the closed conformation not only sped deactivation but also altered the relative efficacy of glutamate and quisqualate. Here we present x-ray crystallographic and single-channel data that support the conclusions that binding domain closing necessarily precedes channel opening and that the kinetics of conformational changes at the level of the binding domain importantly influence ion channel gating. Our findings suggest that the stability of the closed-cleft conformation has been tuned during evolution so that glutamate dissociates from the receptor as rapidly as possible but remains an efficacious agonist.
Collapse
|
39
|
Synaptic function and modulation of glycine receptor channels in the hypoglossal nucleus. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0040-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Steinbach JH. A slip ‘twixt the cup and the lip: a new way to impair function of transmitter-gated channels. J Physiol 2007; 581:3. [PMID: 17379629 PMCID: PMC2075217 DOI: 10.1113/jphysiol.2007.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- J H Steinbach
- Department of Anaesthesiology, Washington University, Campus Box 8054, 660 South Euclid Ave., St Louis, MO 63110, USA.
| |
Collapse
|