1
|
McDonald KS, Kalogeris TJ, Veteto AB, Davis DJ, Hanft LM. Myosin binding protein-C modulates loaded sarcomere shortening in rodent permeabilized cardiac myocytes. J Gen Physiol 2025; 157:e202413678. [PMID: 40126337 PMCID: PMC11932042 DOI: 10.1085/jgp.202413678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025] Open
Abstract
During the ejection phase of the cardiac cycle, left ventricular (LV) cardiac myocytes undergo loaded shortening and generate power. However, few studies have measured sarcomere shortening during loaded contractions. Here, we simultaneously monitored muscle length (ML) and sarcomere length (SL) during isotonic contractions in rodent permeabilized LV cardiac myocyte preparations. In permeabilized cardiac myocyte preparations from rats, we found that ML and SL traces were closely matched, as SL velocities were within ∼77% of ML velocities during half-maximal Ca2+ activations. We next tested whether cardiac myosin binding protein-C (cMyBP-C) regulates loaded shortening and power output by modulating cross-bridge availability. We characterized force-velocity and power-load relationships in wildtype (WT) and cMyBP-C deficient (Mybpc3-/-) mouse permeabilized cardiac myocyte preparations, at both the ML and SL level, before and after treatment with the small molecule myosin inhibitor, mavacamten. We found that SL traces closely matched ML traces in both WT and Mybpc3-/- cardiac myocytes. However, Mybpc3-/- cardiac myocytes exhibited disproportionately high sarcomere shortening velocities at high loads. Interestingly, in Mybpc3-/- cardiac myocytes, 0.5 µM mavacamten slowed SL-loaded shortening across the force-velocity curve and normalized SL shortening velocity at high loads. Overall, these results suggest that cMyBP-C moderates sarcomere-loaded shortening, especially at high loads, at least in part, by modulating cross-bridge availability.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Adam B. Veteto
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Daniel J. Davis
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Jani VP, Koleini N, Fenwick AJ, Sharp TE, Goodchild TT, Hill JA, Lefer DJ, Cammarato A, Kass DA. Cardiomyocyte myofilament function in common animal models of heart failure with preserved ejection fraction. J Mol Cell Cardiol 2024; 197:34-39. [PMID: 39427968 DOI: 10.1016/j.yjmcc.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Human cardiomyocytes from very obese patients with heart failure and preserved ejection fraction (HFpEF) have markedly depressed calcium-activated tension and increased resting stiffness. To test if either are recapitulated by obese-HFpEF animal models, tension‑calcium and tension-sarcomere length relations were measured in myocytes from mice on a high fat diet (HFD) with L-NAME, ZSF1 rats, and Göttingen minipigs on HFD + DOCA (MP). Only MP myocytes displayed reduced Ca2+-activated tension, and none exhibited increased resting stiffness versus respective controls. Consistent with prior myofibrillar data, crossbridge attachment and detachment rates at matched tension were slower in rodent models, and detachment slower in MP.
Collapse
Affiliation(s)
- Vivek P Jani
- Divison of Cardiology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21205, United States of America
| | - Navid Koleini
- Divison of Cardiology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21205, United States of America
| | - Axel J Fenwick
- Divison of Cardiology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21205, United States of America
| | - Thomas E Sharp
- Cardiovascular Center of Excellence, School of Medicine, LSU Health Science Center, 433 Bolivar St, New Orleans, LA 70112, United States of America
| | - Traci T Goodchild
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd Pavilion, Los Angeles, CA 90048, United States of America
| | - Joseph A Hill
- Division of Cardiology, UT Southwestern Medical Center, 5352 Harry Hines Blvd., Dallas, TX 75390, United States of America
| | - David J Lefer
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd Pavilion, Los Angeles, CA 90048, United States of America
| | - Anthony Cammarato
- Divison of Cardiology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21205, United States of America
| | - David A Kass
- Divison of Cardiology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21205, United States of America.
| |
Collapse
|
3
|
Lookin O, Balakin A, Protsenko Y. Differences in Effects of Length-Dependent Regulation of Force and Ca 2+ Transient in the Myocardial Trabeculae of the Rat Right Atrium and Ventricle. Int J Mol Sci 2023; 24:ijms24108960. [PMID: 37240302 DOI: 10.3390/ijms24108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The comparative differences in the fundamental mechanisms of contractility regulation and calcium handling of atrial and ventricular myocardium remain poorly studied. An isometric force-length protocol was performed for the entire range of preloads in isolated rat right atrial (RA) and ventricular (RV) trabeculae with simultaneous measurements of force (Frank-Starling mechanism) and Ca2+ transients (CaT). Differences were found between length-dependent effects in RA and RV muscles: (a) the RA muscles were stiffer, faster, and presented with weaker active force than the RV muscles throughout the preload range; (b) the active/passive force-length relationships were almost linear for the RA and RV muscles; (c) the value of the relative length-dependent growth of passive/active mechanical tension did not differ between the RA and RV muscles; (d) the time-to-peak and amplitude of CaT did not differ between the RA and RV muscles; (e) the CaT decay phase was essentially monotonic and almost independent of preload in the RA muscles, but not in the RV muscles. Higher peak tension, prolonged isometric twitch, and CaT in the RV muscle may be the result of higher Ca2+ buffering by myofilaments. The molecular mechanisms that constitute the Frank-Starling mechanism are common in the rat RA and RV myocardium.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya Str., 620049 Yekaterinburg, Russia
| | - Alexander Balakin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya Str., 620049 Yekaterinburg, Russia
| | - Yuri Protsenko
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya Str., 620049 Yekaterinburg, Russia
| |
Collapse
|
4
|
Hanft LM, Robinett JC, Kalogeris TJ, Campbell KS, Biesiadecki BJ, McDonald KS. Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts. J Gen Physiol 2023; 155:e202213290. [PMID: 37000170 PMCID: PMC10067705 DOI: 10.1085/jgp.202213290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
The heart's pumping capacity is determined by myofilament power generation. Power is work done per unit time and measured as the product of force and velocity. At a sarcomere level, these contractile properties are linked to the number of attached cross-bridges and their cycling rate, and many signaling pathways modulate one or both factors. We previously showed that power is increased in rodent permeabilized cardiac myocytes following PKA-mediated phosphorylation of myofibrillar proteins. The current study found that that PKA increased power by ∼30% in permeabilized cardiac myocyte preparations (n = 8) from human failing hearts. To address myofilament molecular specificity of PKA effects, mechanical properties were measured in rat permeabilized slow-twitch skeletal muscle fibers before and after exchange of endogenous slow skeletal troponin with recombinant human Tn complex that contains cardiac (c)TnT, cTnC and either wildtype (WT) cTnI or pseudo-phosphorylated cTnI at sites Ser23/24Asp, Tyr26Glu, or the combinatorial Ser23/24Asp and Tyr26Glu. We found that cTnI Ser23/24Asp, Tyr26Glu, and combinatorial Ser23/24Asp and Tyr26Glu were sufficient to increase power by ∼20%. Next, we determined whether pseudo-phosphorylated cTnI at Ser23/24 was sufficient to increase power in cardiac myocytes from human failing hearts. Following cTn exchange that included cTnI Ser23/24Asp, power output increased ∼20% in permeabilized cardiac myocyte preparations (n = 6) from the left ventricle of human failing hearts. These results implicate cTnI N-terminal phosphorylation as a molecular regulator of myocyte power and could serve as a regional target for small molecule therapy to unmask myocyte power reserve capacity in human failing hearts.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Kosta S, Dauby PC. Frank-Starling mechanism, fluid responsiveness, and length-dependent activation: Unravelling the multiscale behaviors with an in silico analysis. PLoS Comput Biol 2021; 17:e1009469. [PMID: 34634040 PMCID: PMC8504729 DOI: 10.1371/journal.pcbi.1009469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
The Frank-Starling mechanism is a fundamental regulatory property which underlies the cardiac output adaptation to venous filling. Length-dependent activation is generally assumed to be the cellular origin of this mechanism. At the heart scale, it is commonly admitted that an increase in preload (ventricular filling) leads to an increased cellular force and an increased volume of ejected blood. This explanation also forms the basis for vascular filling therapy. It is actually difficult to unravel the exact nature of the relationship between length-dependent activation and the Frank-Starling mechanism, as three different scales (cellular, ventricular and cardiovascular) are involved. Mathematical models are powerful tools to overcome these limitations. In this study, we use a multiscale model of the cardiovascular system to untangle the three concepts (length-dependent activation, Frank-Starling, and vascular filling). We first show that length-dependent activation is required to observe both the Frank-Starling mechanism and a positive response to high vascular fillings. Our results reveal a dynamical length dependent activation-driven response to changes in preload, which involves interactions between the cellular, ventricular and cardiovascular levels and thus highlights fundamentally multiscale behaviors. We show however that the cellular force increase is not enough to explain the cardiac response to rapid changes in preload. We also show that the absence of fluid responsiveness is not related to a saturating Frank-Starling effect. As it is challenging to study those multiscale phenomena experimentally, this computational approach contributes to a more comprehensive knowledge of the sophisticated length-dependent properties of cardiac muscle.
Collapse
Affiliation(s)
- Sarah Kosta
- GIGA–In Silico Medicine, University of Liège, Liège, Belgium
| | - Pierre C. Dauby
- GIGA–In Silico Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
The Idiosyncratic Physiological Traits of the Naked Mole-Rat; a Resilient Animal Model of Aging, Longevity, and Healthspan. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:221-254. [PMID: 34424518 DOI: 10.1007/978-3-030-65943-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The subterranean-dwelling naked mole-rat (Heterocephalus glaber) is an extremophilic rodent, able to thrive in the harsh underground conditions of sub-Saharan Northeast Africa. This pelage-free mammal exhibits numerous unusual ecophysiological features including pronounced tolerance of thermolability, hypoxia, hypercapnia and noxious substances. As a mammal, the naked mole-rat provides a proof-of-concept that age-related changes in physiology are avoidable. At ages far beyond their expected lifespans given both their body size and/or the timing of early developmental milestones, naked mole-rats fail to exhibit meaningful changes in physiological health or demographic mortality. Lack of physiological deterioration with age is also evident in lean and fat mass, bone quality, and reproductive capacity. Rather, regardless of age, under basal conditions naked mole-rats appear to "idle on low" with their "shields up" as is manifested by low body temperature, metabolic rate, cardiac output and kidney concentrating ability, enabling better protection of organs and cellular function. When needed, they can nevertheless ramp up these functions, increasing cardiac output and metabolism 2-5 fold. Here we review many unusual aspects of their physiology and examine how these attributes facilitate both tolerance of the diverse suite of hostile conditions encountered in their natural milieu as well as contribute to their extraordinary longevity and resistance to common, age-related chronic diseases.
Collapse
|
7
|
Akiyama Y, Nakayama A, Nakano S, Amiya R, Hirose J. An Electrical Stimulation Culture System for Daily Maintenance-Free Muscle Tissue Production. CYBORG AND BIONIC SYSTEMS 2021; 2021:9820505. [PMID: 36285137 PMCID: PMC9494718 DOI: 10.34133/2021/9820505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Low-labor production of tissue-engineered muscles (TEMs) is one of the key technologies to realize the practical use of muscle-actuated devices. This study developed and then demonstrated the daily maintenance-free culture system equipped with both electrical stimulation and medium replacement functions. To avoid ethical issues, immortal myoblast cells C2C12 were used. The system consisting of gel culture molds, a medium replacement unit, and an electrical stimulation unit could produce 12 TEMs at one time. The contractile forces of the TEMs were measured with a newly developed microforce measurement system. Even the TEMs cultured without electrical stimulation generated forces of almost 2 mN and were shortened by 10% in tetanic contractions. Regarding the contractile forces, electrical stimulation by a single pulse at 1 Hz was most effective, and the contractile forces in tetanus were over 2.5 mN. On the other hand, continuous pulses decreased the contractile forces of TEMs. HE-stained cross-sections showed that myoblast cells proliferated and fused into myotubes mainly in the peripheral regions, and fewer cells existed in the internal region. This must be due to insufficient supplies of oxygen and nutrients inside the TEMs. By increasing the supplies, one TEM might be able to generate a force up to around 10 mN. The tetanic forces of the TEMs produced by the system were strong enough to actuate microstructures like previously reported crawling robots. This daily maintenance-free culture system which could stably produce TEMs strong enough to be utilized for microrobots should contribute to the advancement of biohybrid devices.
Collapse
Affiliation(s)
- Yoshitake Akiyama
- Faculty of Textile Science and Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
- Department of Biomedical Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Akemi Nakayama
- Faculty of Textile Science and Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Shota Nakano
- Department of Biomedical Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | | | - Jun Hirose
- Tech Alpha, 649-1 Ohtsuka, Hachioji, Tokyo, Japan
| |
Collapse
|
8
|
Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol Life Sci 2021; 78:7309-7337. [PMID: 34704115 PMCID: PMC8629898 DOI: 10.1007/s00018-021-03971-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023]
Abstract
Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly β-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & β-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.
Collapse
|
9
|
Allen ME, Pennington ER, Perry JB, Dadoo S, Makrecka-Kuka M, Dambrova M, Moukdar F, Patel HD, Han X, Kidd GK, Benson EK, Raisch TB, Poelzing S, Brown DA, Shaikh SR. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Commun Biol 2020; 3:389. [PMID: 32680996 PMCID: PMC7368046 DOI: 10.1038/s42003-020-1101-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion. Respirometry with permeabilized ventricular fibers indicates that ischemia-reperfusion induced decrements in the activity of complexes I, II, and IV are alleviated with elamipretide. Serial block face scanning electron microscopy used to create 3D reconstructions of cristae ultrastructure reveals that disease-induced fragmentation of cristae networks are improved with elamipretide. Mass spectrometry shows elamipretide did not protect against the reduction of cardiolipin concentration after ischemia-reperfusion. Finally, elamipretide improves biophysical properties of biomimetic membranes by aggregating cardiolipin. The data suggest mitochondrial structure-function are interdependent and demonstrate elamipretide targets mitochondrial membranes to sustain cristae networks and improve bioenergetic function.
Collapse
Affiliation(s)
- Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, USA
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Maija Dambrova
- Latvian Institute for Organic Synthesis Riga Latvia, Norwich, UK
| | - Fatiha Moukdar
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Hetal D Patel
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Grahame K Kidd
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
- Renovo Neural Inc, Cleveland, OH, USA
| | | | - Tristan B Raisch
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
| | - Steven Poelzing
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Virginia Tech Center for Drug Discovery, Blacksburg, VA, USA
- Virginia Tech Metabolism Core Virginia Tech, Blacksburg, VA, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
McDonald KS, Hanft LM, Robinett JC, Guglin M, Campbell KS. Regulation of Myofilament Contractile Function in Human Donor and Failing Hearts. Front Physiol 2020; 11:468. [PMID: 32523542 PMCID: PMC7261867 DOI: 10.3389/fphys.2020.00468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
Heart failure (HF) often includes changes in myocardial contractile function. This study addressed the myofibrillar basis for contractile dysfunction in failing human myocardium. Regulation of contractile properties was measured in cardiac myocyte preparations isolated from frozen, left ventricular mid-wall biopsies of donor (n = 7) and failing human hearts (n = 8). Permeabilized cardiac myocyte preparations were attached between a force transducer and a position motor, and both the Ca2+ dependence and sarcomere length (SL) dependence of force, rate of force, loaded shortening, and power output were measured at 15 ± 1°C. The myocyte preparation size was similar between groups (donor: length 148 ± 10 μm, width 21 ± 2 μm, n = 13; HF: length 131 ± 9 μm, width 23 ± 1 μm, n = 16). The maximal Ca2+-activated isometric force was also similar between groups (donor: 47 ± 4 kN⋅m-2; HF: 44 ± 5 kN⋅m-2), which implicates that previously reported force declines in multi-cellular preparations reflect, at least in part, tissue remodeling. Maximal force development rates were also similar between groups (donor: k tr = 0.60 ± 0.05 s-1; HF: k tr = 0.55 ± 0.04 s-1), and both groups exhibited similar Ca2+ activation dependence of k tr values. Human cardiac myocyte preparations exhibited a Ca2+ activation dependence of loaded shortening and power output. The peak power output normalized to isometric force (PNPO) decreased by ∼12% from maximal Ca2+ to half-maximal Ca2+ activations in both groups. Interestingly, the SL dependence of PNPO was diminished in failing myocyte preparations. During sub-maximal Ca2+ activation, a reduction in SL from ∼2.25 to ∼1.95 μm caused a ∼26% decline in PNPO in donor myocytes but only an ∼11% change in failing myocytes. These results suggest that altered length-dependent regulation of myofilament function impairs ventricular performance in failing human hearts.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Maya Guglin
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Reda SM, Chandra M. Dilated cardiomyopathy mutation (R174W) in troponin T attenuates the length-mediated increase in cross-bridge recruitment and myofilament Ca 2+ sensitivity. Am J Physiol Heart Circ Physiol 2019; 317:H648-H657. [PMID: 31373515 DOI: 10.1152/ajpheart.00171.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alterations in length-dependent activation (LDA) may constitute a mechanism by which cardiomyopathy mutations lead to deleterious phenotypes and compromised heart function, because LDA underlies the molecular basis by which the heart tunes myocardial force production on a beat-to-beat basis (Frank-Starling mechanism). In this study, we investigated the effect of DCM-linked mutation (R173W) in human cardiac troponin T (TnT) on myofilament LDA. R173W mutation is associated with left ventricular dilatation and systolic dysfunction and is found in multiple families. R173W mutation is in the central region (residues 80-180) of TnT, which is known to be important for myofilament cooperativity and cross-bridge (XB) recruitment. Steady-state and dynamic contractile parameters were measured in detergent-skinned guinea pig left ventricular muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnTWT) or mutant TnT (TnTR174W; guinea pig analog of human R173W mutation) at two different sarcomere lengths (SL): short (1.9 µm) and long (2.3 µm). TnTR174W decreased pCa50 (-log [Ca2+]free required for half-maximal activation) to a greater extent at long than at short SL; for example, pCa50 decreased by 0.12 pCa units at long SL and by 0.06 pCa units at short SL. Differential changes in pCa50 at short and long SL attenuated the SL-dependent increase in myofilament Ca2+ sensitivity (ΔpCa50) in TnTR174W fibers; ΔpCa50 was 0.10 units in TnTWT fibers but only 0.04 units in TnTR174W fibers. Furthermore, TnTR174W blunted the SL-dependent increase in the magnitude of XB recruitment. Our observations suggest that the R173W mutation in human cardiac TnT may impair Frank-Starling mechanism.NEW & NOTEWORTHY This work characterizes the effect of dilated cardiomyopathy mutation in cardiac troponin T (TnTR174W) on myofilament length-dependent activation. TnTR174W attenuates the length-dependent increase in cross-bridge recruitment and myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Sherif M Reda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
12
|
Reda SM, Gollapudi SK, Chandra M. Developmental increase in β-MHC enhances sarcomere length-dependent activation in the myocardium. J Gen Physiol 2019; 151:635-644. [PMID: 30602626 PMCID: PMC6504293 DOI: 10.1085/jgp.201812183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 01/10/2023] Open
Abstract
The expression of β-myosin heavy chain (β-MHC) in the guinea pig heart increases during postnatal development. Reda et al. show that this increase in β-MHC enhances length-mediated increases in myofilament Ca2+ sensitivity and sarcomere length–dependent changes in contractile function. Shifts in myosin heavy chain (MHC) isoforms in cardiac myocytes have been shown to alter cardiac muscle function not only in healthy developing hearts but also in diseased hearts. In guinea pig hearts, there is a large age-dependent shift in MHC isoforms from 80% α-MHC/20% β-MHC at 3 wk to 14% α-MHC/86% β-MHC at 11 wk. Because kinetic differences in α- and β-MHC cross-bridges (XBs) are known to impart different cooperative effects on thin filaments, we hypothesize here that differences in α- and β-MHC expression in guinea pig cardiac muscle impact sarcomere length (SL)–dependent contractile function. We therefore measure steady state and dynamic contractile parameters in detergent-skinned cardiac muscle preparations isolated from the left ventricles of young (3 wk old) or adult (11 wk old) guinea pigs at two different SLs: short (1.9 µm) and long (2.3 µm). Our data show that SL-dependent effects on contractile parameters are augmented in adult guinea pig cardiac muscle preparations. Notably, the SL-mediated increase in myofilament Ca2+ sensitivity (ΔpCa50) is twofold greater in adult guinea pig muscle preparations (ΔpCa50 being 0.11 units in adult preparations but only 0.05 units in young preparations). Furthermore, adult guinea pig cardiac muscle preparations display greater SL-dependent changes than young muscle preparations in (1) the magnitude of length-mediated increase in the recruitment of new force-bearing XBs, (2) XB detachment rate, (3) XB strain-mediated effects on other force-bearing XBs, and (4) the rate constant of force redevelopment. Our findings suggest that increased β-MHC expression enhances length-dependent activation in the adult guinea pig cardiac myocardium.
Collapse
Affiliation(s)
- Sherif M Reda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
13
|
Kieu TT, Awinda PO, Tanner BCW. Omecamtiv Mecarbil Slows Myosin Kinetics in Skinned Rat Myocardium at Physiological Temperature. Biophys J 2019; 116:2149-2160. [PMID: 31103235 DOI: 10.1016/j.bpj.2019.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Heart failure is a life-threatening condition that occurs when the heart muscle becomes weakened and cannot adequately circulate blood and nutrients around the body. Omecamtiv mecarbil (OM) is a compound that has been developed to treat systolic heart failure via targeting the cardiac myosin heavy chain to increase myocardial contractility. Biophysical and biochemical studies have found that OM increases calcium (Ca2+) sensitivity of contraction by prolonging the myosin working stroke and increasing the actin-myosin cross-bridge duty ratio. Most in vitro studies probing the effects of OM on cross-bridge kinetics and muscle force production have been conducted at subphysiological temperature, even though temperature plays a critical role in enzyme activity and cross-bridge function. Herein, we used skinned, ventricular papillary muscle strips from rats to investigate the effects of [OM] on Ca2+-activated force production, cross-bridge kinetics, and myocardial viscoelasticity at physiological temperature (37°C). We find that OM only increases myocardial contractility at submaximal Ca2+ activation levels and not maximal Ca2+ activation levels. As [OM] increased, the kinetic rate constants for cross-bridge recruitment and detachment slowed for both submaximal and maximal Ca2+-activated conditions. These findings support a mechanism by which OM increases cardiac contractility at physiological temperature via increasing cross-bridge contributions to thin-filament activation as cross-bridge kinetics slow and the duration of cross-bridge attachment increases. Thus, force only increases at submaximal Ca2+ activation due to cooperative recruitment of neighboring cross-bridges, because thin-filament activation is not already saturated. In contrast, OM does not increase myocardial force production for maximal Ca2+-activated conditions at physiological temperature because cooperative activation of thin filaments may already be saturated.
Collapse
Affiliation(s)
- Thinh T Kieu
- Department of Integrative Physiology and Neuroscience
| | | | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience; Washington Center for Muscle Biology, Washington State University, Pullman, Washington.
| |
Collapse
|
14
|
Breithaupt JJ, Pulcastro HC, Awinda PO, DeWitt DC, Tanner BCW. Regulatory light chain phosphorylation augments length-dependent contraction in PTU-treated rats. J Gen Physiol 2018; 151:66-76. [PMID: 30523115 PMCID: PMC6314387 DOI: 10.1085/jgp.201812158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Contraction of cardiac muscle is regulated by sarcomere length and proteins that comprise the sarcomeric filaments. Breithaupt et al. find that phosphorylation of myosin regulatory light chain augments length-dependent activation of contraction when β-cardiac myosin heavy chain predominates. Force production by actin–myosin cross-bridges in cardiac muscle is regulated by thin-filament proteins and sarcomere length (SL) throughout the heartbeat. Prior work has shown that myosin regulatory light chain (RLC), which binds to the neck of myosin heavy chain, increases cardiac contractility when phosphorylated. We recently showed that cross-bridge kinetics slow with increasing SLs, and that RLC phosphorylation amplifies this effect, using skinned rat myocardial strips predominantly composed of the faster α-cardiac myosin heavy chain isoform. In the present study, to assess how RLC phosphorylation influences length-dependent myosin function as myosin motor speed varies, we used a propylthiouracil (PTU) diet to induce >95% expression of the slower β-myosin heavy chain isoform in rat cardiac ventricles. We measured the effect of RLC phosphorylation on Ca2+-activated isometric contraction and myosin cross-bridge kinetics (via stochastic length perturbation analysis) in skinned rat papillary muscle strips at 1.9- and 2.2-µm SL. Maximum tension and Ca2+ sensitivity increased with SL, and RLC phosphorylation augmented this response at 2.2-µm SL. Subtle increases in viscoelastic myocardial stiffness occurred with RLC phosphorylation at 2.2-µm SL, but not at 1.9-µm SL, thereby suggesting that RLC phosphorylation increases β-myosin heavy chain binding or stiffness at longer SLs. The cross-bridge detachment rate slowed as SL increased, providing a potential mechanism for prolonged cross-bridge attachment to augment length-dependent activation of contraction at longer SLs. Length-dependent slowing of β-myosin heavy chain detachment rate was not affected by RLC phosphorylation. Together with our previous studies, these data suggest that both α- and β-myosin heavy chain isoforms show a length-dependent activation response and prolonged myosin attachment as SL increases in rat myocardial strips, and that RLC phosphorylation augments length-dependent activation at longer SLs. In comparing cardiac isoforms, however, we found that β-myosin heavy chain consistently showed greater length-dependent sensitivity than α-myosin heavy chain. Our work suggests that RLC phosphorylation is a vital contributor to the regulation of myocardial contractility in both cardiac myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - David C DeWitt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
15
|
Force-Dependent Recruitment from the Myosin Off State Contributes to Length-Dependent Activation. Biophys J 2018; 115:543-553. [PMID: 30054031 DOI: 10.1016/j.bpj.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022] Open
Abstract
Cardiac muscle develops more force when it is activated at longer lengths. The concentration of Ca2+ required to develop half-maximal force also decreases. These effects are known as length-dependent activation and are thought to play critical roles in the Frank-Starling relationship and cardiovascular homeostasis. The molecular mechanisms underpinning length-dependent activation remain unclear, but recent experiments suggest that they may include recruitment of myosin heads from the off (sometimes called super-relaxed) state. This manuscript presents a mathematical model of muscle contraction that was developed to investigate this hypothesis. Myosin heads in the model transitioned between an off state (that could not interact with actin), an on state (that could bind to actin), and a single attached state. Simulations were fitted to experimental data using multidimensional parameter optimization. Statistical analysis showed that a model in which the rate of the off-to-on transition increased linearly with force reproduced the length-dependent behavior of chemically permeabilized myocardium better than a model with a constant off-to-on transition rate (F-test, p < 0.001). This result suggests that the thick-filament transitions are modulated by force. Additional calculations showed that the model incorporating a mechanosensitive thick filament could also reproduce twitch responses measured in a trabecula stretched to different lengths. A final set of simulations was then used to test the model. These calculations predicted how reducing passive stiffness would impact the length dependence of the calcium sensitivity of contractile force. The prediction (a 60% reduction in ΔpCa50) mimicked the 58% reduction in ΔpCa50 in myocardium from rats that expressed a giant isoform of titin and had low resting tension. Together, these computational results suggest that force-dependent recruitment of myosin heads from the thick-filament off state contributes to length-dependent activation and the Frank-Starling relationship.
Collapse
|
16
|
Reda SM, Chandra M. Cardiomyopathy mutation (F88L) in troponin T abolishes length dependency of myofilament Ca 2+ sensitivity. J Gen Physiol 2018; 150:809-819. [PMID: 29776992 PMCID: PMC5987878 DOI: 10.1085/jgp.201711974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 04/24/2018] [Indexed: 01/14/2023] Open
Abstract
The F88L mutation in cardiac troponin T (TnTF88L) is associated with hypertrophic cardiomyopathy. Reda and Chandra reveal that it abolishes length-mediated increase in myofilament Ca2+ sensitivity and attenuates cooperative mechanisms governing length-dependent activation. Recent clinical studies have revealed a new hypertrophic cardiomyopathy–associated mutation (F87L) in the central region of human cardiac troponin T (TnT). However, despite its implication in several incidences of sudden cardiac death in young and old adults, whether F87L is associated with cardiac contractile dysfunction is unknown. Because the central region of TnT is important for modulating the muscle length–mediated recruitment of new force-bearing cross-bridges (XBs), we hypothesize that the F87L mutation causes molecular changes that are linked to the length-dependent activation of cardiac myofilaments. Length-dependent activation is important because it contributes significantly to the Frank–Starling mechanism, which enables the heart to vary stroke volume as a function of changes in venous return. We measured steady-state and dynamic contractile parameters in detergent-skinned guinea pig cardiac muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnTWT) or the guinea pig analogue (TnTF88L) of the human mutation at two different sarcomere lengths (SLs): short (1.9 µm) and long (2.3 µm). TnTF88L increases pCa50 (−log [Ca2+]free required for half-maximal activation) to a greater extent at short SL than at long SL; for example, pCa50 increases by 0.25 pCa units at short SL and 0.17 pCa units at long SL. The greater increase in pCa50 at short SL leads to the abolishment of the SL-dependent increase in myofilament Ca2+ sensitivity (ΔpCa50) in TnTF88L fibers, ΔpCa50 being 0.10 units in TnTWT fibers but only 0.02 units in TnTF88L fibers. Furthermore, at short SL, TnTF88L attenuates the negative impact of strained XBs on force-bearing XBs and augments the magnitude of muscle length–mediated recruitment of new force-bearing XBs. Our findings suggest that the TnTF88L-mediated effects on cardiac thin filaments may lead to a negative impact on the Frank–Starling mechanism.
Collapse
Affiliation(s)
- Sherif M Reda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
17
|
Grimes KM, Barefield DY, Kumar M, McNamara JW, Weintraub ST, de Tombe PP, Sadayappan S, Buffenstein R. The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent. Pflugers Arch 2017; 469:1603-1613. [PMID: 28780592 PMCID: PMC5856255 DOI: 10.1007/s00424-017-2046-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/27/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
The long-lived, hypoxic-tolerant naked mole-rat well-maintains cardiac function over its three-decade-long lifespan and exhibits many cardiac features atypical of similar-sized laboratory rodents. For example, they exhibit low heart rates and resting cardiac contractility, yet have a large cardiac reserve. These traits are considered ecophysiological adaptations to their dank subterranean atmosphere of low oxygen and high carbon dioxide levels and may also contribute to negligible declines in cardiac function during aging. We asked if naked mole-rats had a different myofilament protein signature to that of similar-sized mice that commonly show both high heart rates and high basal cardiac contractility. Adult mouse ventricles predominantly expressed α-myosin heavy chain (97.9 ± 0.4%). In contrast, and more in keeping with humans, β myosin heavy chain was the dominant isoform (79.0 ± 2.0%) in naked mole-rat ventricles. Naked mole-rat ventricles diverged from those of both humans and mice, as they expressed both cardiac and slow skeletal isoforms of troponin I. This myofilament protein profile is more commonly observed in mice in utero and during cardiomyopathies. There were no species differences in phosphorylation of cardiac myosin binding protein-C or troponin I. Phosphorylation of both ventricular myosin light chain 2 and cardiac troponin T in naked mole-rats was approximately half that observed in mice. Myofilament function was also compared between the two species using permeabilized cardiomyocytes. Together, these data suggest a cardiac myofilament protein signature that may contribute to the naked mole-rat's suite of adaptations to its natural subterranean habitat.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Rochelle Buffenstein
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Calico Life Sciences, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
18
|
Gollapudi SK, Reda SM, Chandra M. Omecamtiv Mecarbil Abolishes Length-Mediated Increase in Guinea Pig Cardiac Myofiber Ca 2+ Sensitivity. Biophys J 2017; 113:880-888. [PMID: 28834724 DOI: 10.1016/j.bpj.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 07/05/2017] [Indexed: 01/14/2023] Open
Abstract
Omecamtiv mecarbil (OM) is a pharmacological agent that augments cardiac contractile function by enhancing myofilament Ca2+ sensitivity. Given that interventions that increase myofilament Ca2+ sensitivity have the potential to alter length-dependent activation (LDA) of cardiac myofilaments, we tested the influence of OM on this fundamental property of the heart. This is significant not only because LDA is prominent in cardiac muscle but also because it contributes to the Frank-Starling law, a mechanism by which the heart increases stroke volume in response to an increase in venous return. We measured steady-state and dynamic contractile indices in detergent-skinned guinea pig (Cavia porcellus) cardiac muscle fibers in the absence and presence of 0.3 and 3.0 μM OM at two different sarcomere lengths (SLs), short SL (1.9 μm) and long SL (2.3 μm). Myofilament Ca2+ sensitivity, as measured by pCa50 (-log of [Ca2+]free concentration required for half-maximal activation), increased significantly at both short and long SLs in OM-treated fibers when compared to untreated fibers; however, the magnitude of increase in pCa50 was twofold greater at short SL than at long SL. A consequence of this greater increase in pCa50 at short SL was that pCa50 did not increase any further at long SL, suggesting that OM abolished the SL dependency of pCa50. Furthermore, the SL dependency of rate constants of cross-bridge distortion dynamics (c) and force redevelopment (ktr) was abolished in 0.3-μM-OM-treated fibers. The negative impact of OM on the SL dependency of pCa50, c, and ktr was also observed in 3.0-μM-OM-treated fibers, indicating that cooperative mechanisms linked to LDA were altered by the OM-mediated effects on cardiac myofilaments.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington
| | - Sherif M Reda
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington.
| |
Collapse
|
19
|
Mickelson AV, Chandra M. Hypertrophic cardiomyopathy mutation in cardiac troponin T (R95H) attenuates length-dependent activation in guinea pig cardiac muscle fibers. Am J Physiol Heart Circ Physiol 2017; 313:H1180-H1189. [PMID: 28842439 DOI: 10.1152/ajpheart.00369.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023]
Abstract
The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnTR94H)-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnTWT) and the guinea pig analog of the human R94H mutation (TnTR95H) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnTR95H increased pCa50 (-log of free Ca2+ concentration) to a greater extent at short SL; TnTR95H increased pCa50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa50 associated with an increase in SL from 1.9 to 2.3 µm (ΔpCa50) was attenuated nearly twofold in TnTR95H fibers; ΔpCa50 was 0.09 pCa units for TnTWT fibers but only 0.05 pCa units for TnTR95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnTR95H Collectively, our observations on the SL dependency of pCa50 and rate constants of cross-bridge distortion dynamics and tension redevelopment suggest that mechanisms underlying the length-dependent activation cardiac myofilaments are attenuated by TnTR95HNEW & NOTEWORTHY Mutant cardiac troponin T (TnTR95H) differently affects myofilament Ca2+ sensitivity at short and long sarcomere length, indicating that mechanisms underlying length-dependent activation are altered by TnTR95H TnTR95H enhances myofilament Ca2+ sensitivity to a greater extent at short sarcomere length, thus attenuating the length-dependent increase in myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Alexis V Mickelson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
20
|
Hanft LM, Emter CA, McDonald KS. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. Am J Physiol Heart Circ Physiol 2017; 313:H103-H113. [PMID: 28455288 PMCID: PMC5538866 DOI: 10.1152/ajpheart.00069.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/22/2022]
Abstract
Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure.NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously undiscovered changes in myofibrillar power output were found and were associated with alterations in myofilament proteins, providing potential new targets to exploit for improved ventricular pump function in heart failure.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri; and
| | - Craig A Emter
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
21
|
Toepfer CN, West TG, Ferenczi MA. Revisiting Frank-Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr ) in a length-dependent fashion. J Physiol 2016; 594:5237-54. [PMID: 27291932 PMCID: PMC5023691 DOI: 10.1113/jp272441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022] Open
Abstract
Key points Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr) at submaximal [Ca2+]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca2+]‐activated cardiac trabecula accelerates ktr. Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85–1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank–Starling is evident at maximal [Ca2+] activation and therefore does not necessarily require length‐dependent change in [Ca2+]‐sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank–Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction.
Abstract Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin‐associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr) in maximally activating [Ca2+]. Activation was achieved by rapidly increasing the temperature (temperature‐jump of 0.5–20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85–1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC‐exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained for in vivo phosphorylation. Clearly, phosphorylation affects the magnitude of ktr following step shortening or ramp shortening. Using a two‐state model, we explore the effect of RLC phosphorylation on the kinetics of force development, which proposes that phosphorylation affects the kinetics of both attachment and detachment of cross‐bridges. In summary, RLC phosphorylation affects the rate and extent of force redevelopment. These findings were obtained in maximally activated muscle at saturating [Ca2+] and are not explained by changes in the Ca2+‐sensitivity of acto‐myosin interactions. The length‐dependence of the rate of force redevelopment, together with the modulation by the state of RLC phosphorylation, suggests that these effects play a role in the Frank–Starling law of the heart. Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr) at submaximal [Ca2+]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca2+]‐activated cardiac trabecula accelerates ktr. Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85–1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank–Starling is evident at maximal [Ca2+] activation and therefore does not necessarily require length‐dependent change in [Ca2+]‐sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank–Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction.
Collapse
Affiliation(s)
- Christopher N Toepfer
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK. .,Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD, USA.
| | - Timothy G West
- Structure & Motion Laboratory, Royal Veterinary College London, North Mymms, UK
| | - Michael A Ferenczi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
Milani-Nejad N, Chung JH, Canan BD, Davis JP, Fedorov VV, Higgins RSD, Kilic A, Mohler PJ, Janssen PML. Insights into length-dependent regulation of cardiac cross-bridge cycling kinetics in human myocardium. Arch Biochem Biophys 2016; 601:48-55. [PMID: 26854725 PMCID: PMC4899103 DOI: 10.1016/j.abb.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
Abstract
Cross-bridge cycling kinetics play an essential role in the heart's ability to contract and relax. The rate of tension redevelopment (ktr) slows down as a muscle length is increased in intact human myocardium. We set out to determine the effect of rapid length step changes and protein kinase A (PKA) and protein kinase C-βII (PKC-βII) inhibitors on the ktr in ultra-thin non-failing and failing human right ventricular trabeculae. After stabilizing the muscle either at L90 (90% of optimal length) or at Lopt (optimal length), we rapidly changed the length to either Lopt or L90 and measured ktr. We report that length-dependent changes in ktr occur very rapidly (in the order of seconds or faster) in both non-failing and failing muscles and that the length at which a muscle had been stabilized prior to the length change does not significantly affect ktr. In addition, at L90 and at Lopt, PKA and PKC-βII inhibitors did not significantly change ktr. Our results reveal that length-dependent regulation of cross-bridge cycling kinetics predominantly occurs rapidly and involves the intrinsic properties of the myofilament rather than post-translational modifications that are known to occur in the cardiac muscle as a result of a change in muscle/sarcomere length.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, USA
| | - Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, USA
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
| | - Robert S D Higgins
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, USA
| | - Ahmet Kilic
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
23
|
Hanft LM, Cornell TD, McDonald CA, Rovetto MJ, Emter CA, McDonald KS. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function. Arch Biochem Biophys 2016; 601:22-31. [PMID: 26854722 DOI: 10.1016/j.abb.2016.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/08/2023]
Abstract
Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA-induced phosphorylation of cMyBP-C and cTnI may contribute to ventricular pump failure.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Timothy D Cornell
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Colin A McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Michael J Rovetto
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Craig A Emter
- Department of Biomedical Sciences, College of Veterinary Medicine University of Missouri, Columbia, MO 65211, USA
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
24
|
Gollapudi SK, Chandra M. The effect of cardiomyopathy mutation (R97L) in mouse cardiac troponin T on the muscle length-mediated recruitment of crossbridges is modified divergently by α- and β-myosin heavy chain. Arch Biochem Biophys 2016; 601:105-12. [PMID: 26792537 DOI: 10.1016/j.abb.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/28/2015] [Accepted: 01/08/2016] [Indexed: 01/19/2023]
Abstract
Hypertrophic cardiomyopathy mutations in cardiac troponin T (TnT) lead to sudden cardiac death. Augmented myofilament Ca(2+) sensitivity is a common feature in TnT mutants, but such observations fail to provide a rational explanation for severe cardiac phenotypes. To better understand the mutation-induced effect on the cardiac phenotype, it is imperative to determine the effects on dynamic contractile features such as the muscle length (ML)-mediated activation against α- and β-myosin heavy chain (MHC) isoforms. α- and β-MHC are not only differentially expressed in rodent and human hearts, but they also modify ML-mediated activation differently. Mouse analog of human TnTR94L (TnTR97L) or wild-type TnT was reconstituted into de-membranated muscle fibers from normal (α-MHC) and transgenic (β-MHC) mouse hearts. TnTR97L augmented myofilament Ca(2+) sensitivity by a similar amount in α- and β-MHC fibers. However, TnTR97L augmented the negative impact of strained crossbridges on other crossbridges (γ) by 22% in α-MHC fibers, but attenuated γ by 21% in β-MHC fibers. TnTR97L decreased the magnitude of ML-mediated recruitment of crossbridges (ER) by 37% in α-MHC fibers, but increased ER by 35% in β-MHC fibers. We provide a mechanistic basis for the TnTR97L-induced effects in α- and β-MHC fibers and discuss the relevance to human hearts.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, WA, USA.
| |
Collapse
|
25
|
Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCW. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. Arch Biochem Biophys 2016; 601:56-68. [PMID: 26763941 DOI: 10.1016/j.abb.2015.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022]
Abstract
Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA.
| |
Collapse
|
26
|
Tanner BCW, Breithaupt JJ, Awinda PO. Myosin MgADP release rate decreases at longer sarcomere length to prolong myosin attachment time in skinned rat myocardium. Am J Physiol Heart Circ Physiol 2015; 309:H2087-97. [PMID: 26475586 DOI: 10.1152/ajpheart.00555.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022]
Abstract
Cardiac contractility increases as sarcomere length increases, suggesting that intrinsic molecular mechanisms underlie the Frank-Starling relationship to confer increased cardiac output with greater ventricular filling. The capacity of myosin to bind with actin and generate force in a muscle cell is Ca(2+) regulated by thin-filament proteins and spatially regulated by sarcomere length as thick-to-thin filament overlap varies. One mechanism underlying greater cardiac contractility as sarcomere length increases could involve longer myosin attachment time (ton) due to slowed myosin kinetics at longer sarcomere length. To test this idea, we used stochastic length-perturbation analysis in skinned rat papillary muscle strips to measure ton as [MgATP] varied (0.05-5 mM) at 1.9 and 2.2 μm sarcomere lengths. From this ton-MgATP relationship, we calculated cross-bridge MgADP release rate and MgATP binding rates. As MgATP increased, ton decreased for both sarcomere lengths, but ton was roughly 70% longer for 2.2 vs. 1.9 μm sarcomere length at maximally activated conditions. These ton differences were driven by a slower MgADP release rate at 2.2 μm sarcomere length (41 ± 3 vs. 74 ± 7 s(-1)), since MgATP binding rate was not different between the two sarcomere lengths. At submaximal activation levels near the pCa50 value of the tension-pCa relationship for each sarcomere length, length-dependent increases in ton were roughly 15% longer for 2.2 vs. 1.9 μm sarcomere length. These changes in cross-bridge kinetics could amplify cooperative cross-bridge contributions to force production and thin-filament activation at longer sarcomere length and suggest that length-dependent changes in myosin MgADP release rate may contribute to the Frank-Starling relationship in the heart.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
27
|
Milani-Nejad N, Canan BD, Elnakish MT, Davis JP, Chung JH, Fedorov VV, Binkley PF, Higgins RSD, Kilic A, Mohler PJ, Janssen PML. The Frank-Starling mechanism involves deceleration of cross-bridge kinetics and is preserved in failing human right ventricular myocardium. Am J Physiol Heart Circ Physiol 2015; 309:H2077-86. [PMID: 26453335 DOI: 10.1152/ajpheart.00685.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Mohammad T Elnakish
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Philip F Binkley
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Robert S D Higgins
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ahmet Kilic
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| |
Collapse
|
28
|
Schwan J, Campbell SG. Prospects for In Vitro Myofilament Maturation in Stem Cell-Derived Cardiac Myocytes. Biomark Insights 2015; 10:91-103. [PMID: 26085788 PMCID: PMC4463797 DOI: 10.4137/bmi.s23912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocytes derived from human stem cells are quickly becoming mainstays of cardiac regenerative medicine, in vitro disease modeling, and drug screening. Their suitability for such roles may seem obvious, but assessments of their contractile behavior suggest that they have not achieved a completely mature cardiac muscle phenotype. This could be explained in part by an incomplete transition from fetal to adult myofilament protein isoform expression. In this commentary, we review evidence that supports this hypothesis and discuss prospects for ultimately generating engineered heart tissue specimens that behave similarly to adult human myocardium. We suggest approaches to better characterize myofilament maturation level in these in vitro systems, and illustrate how new computational models could be used to better understand complex relationships between muscle contraction, myofilament protein isoform expression, and maturation.
Collapse
Affiliation(s)
- Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Rodriguez ML, Graham BT, Pabon LM, Han SJ, Murry CE, Sniadecki NJ. Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. J Biomech Eng 2015; 136:051005. [PMID: 24615475 DOI: 10.1115/1.4027145] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/10/2014] [Indexed: 12/31/2022]
Abstract
Human stem cell-derived cardiomyocytes hold promise for heart repair, disease modeling, drug screening, and for studies of developmental biology. All of these applications can be improved by assessing the contractility of cardiomyocytes at the single cell level. We have developed an in vitro platform for assessing the contractile performance of stem cell-derived cardiomyocytes that is compatible with other common endpoints such as microscopy and molecular biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were seeded onto elastomeric micropost arrays in order to characterize the contractile force, velocity, and power produced by these cells. We assessed contractile function by tracking the deflection of microposts beneath an individual hiPSC-CM with optical microscopy. Immunofluorescent staining of these cells was employed to assess their spread area, nucleation, and sarcomeric structure on the microposts. Following seeding of hiPSC-CMs onto microposts coated with fibronectin, laminin, and collagen IV, we found that hiPSC-CMs on laminin coatings demonstrated higher attachment, spread area, and contractile velocity than those seeded on fibronectin or collagen IV coatings. Under optimized conditions, hiPSC-CMs spread to an area of approximately 420 μm2, generated systolic forces of approximately 15 nN/cell, showed contraction and relaxation rates of 1.74 μm/s and 1.46 μm/s, respectively, and had a peak contraction power of 29 fW. Thus, elastomeric micropost arrays can be used to study the contractile strength and kinetics of hiPSC-CMs. This system should facilitate studies of hiPSC-CM maturation, disease modeling, and drug screens as well as fundamental studies of human cardiac contraction.
Collapse
|
30
|
Mamidi R, Gresham KS, Stelzer JE. Length-dependent changes in contractile dynamics are blunted due to cardiac myosin binding protein-C ablation. Front Physiol 2014; 5:461. [PMID: 25520665 PMCID: PMC4251301 DOI: 10.3389/fphys.2014.00461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022] Open
Abstract
Enhanced cardiac contractile function with increased sarcomere length (SL) is, in part, mediated by a decrease in the radial distance between myosin heads and actin. The radial disposition of myosin heads relative to actin is modulated by cardiac myosin binding protein-C (cMyBP-C), suggesting that cMyBP-C contributes to the length-dependent activation (LDA) in the myocardium. However, the precise roles of cMyBP-C in modulating cardiac LDA are unclear. To determine the impact of cMyBP-C on LDA, we measured isometric force, myofilament Ca2+-sensitivity (pCa50) and length-dependent changes in kinetic parameters of cross-bridge (XB) relaxation (krel), and recruitment (kdf) due to rapid stretch, as well as the rate of force redevelopment (ktr) in response to a large slack-restretch maneuver in skinned ventricular multicellular preparations isolated from the hearts of wild-type (WT) and cMyBP-C knockout (KO) mice, at SL's 1.9 μm or 2.1 μm. Our results show that maximal force was not significantly different between KO and WT preparations but length-dependent increase in pCa50 was attenuated in the KO preparations. pCa50 was not significantly different between WT and KO preparations at long SL (5.82 ± 0.02 in WT vs. 5.87 ± 0.02 in KO), whereas pCa50 was significantly different between WT and KO preparations at short SL (5.71 ± 0.02 in WT vs. 5.80 ± 0.01 in KO; p < 0.05). The ktr, measured at half-maximal Ca2+-activation, was significantly accelerated at short SL in WT preparations (8.74 ± 0.56 s−1 at 1.9 μm vs. 5.71 ± 0.40 s−1 at 2.1 μm, p < 0.05). Furthermore, krel and kdf were accelerated by 32% and 50%, respectively at short SL in WT preparations. In contrast, ktr was not altered by changes in SL in KO preparations (8.03 ± 0.54 s−1 at 1.9 μm vs. 8.90 ± 0.37 s−1 at 2.1 μm). Similarly, KO preparations did not exhibit length-dependent changes in krel and kdf. Collectively, our data implicate cMyBP-C as an important regulator of LDA via its impact on dynamic XB behavior due to changes in SL.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
31
|
Biesiadecki BJ, Davis JP, Ziolo MT, Janssen PML. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. Biophys Rev 2014; 6:273-289. [PMID: 28510030 PMCID: PMC4255972 DOI: 10.1007/s12551-014-0143-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cardiac muscle relaxation is an essential step in the cardiac cycle. Even when the contraction of the heart is normal and forceful, a relaxation phase that is too slow will limit proper filling of the ventricles. Relaxation is too often thought of as a mere passive process that follows contraction. However, many decades of advancements in our understanding of cardiac muscle relaxation have shown it is a highly complex and well-regulated process. In this review, we will discuss three distinct events that can limit the rate of cardiac muscle relaxation: the rate of intracellular calcium decline, the rate of thin-filament de-activation, and the rate of cross-bridge cycling. Each of these processes are directly impacted by a plethora of molecular events. In addition, these three processes interact with each other, further complicating our understanding of relaxation. Each of these processes is continuously modulated by the need to couple bodily oxygen demand to cardiac output by the major cardiac physiological regulators. Length-dependent activation, frequency-dependent activation, and beta-adrenergic regulation all directly and indirectly modulate calcium decline, thin-filament deactivation, and cross-bridge kinetics. We hope to convey our conclusion that cardiac muscle relaxation is a process of intricate checks and balances, and should not be thought of as a single rate-limiting step that is regulated at a single protein level. Cardiac muscle relaxation is a system level property that requires fundamental integration of three governing systems: intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA.
| |
Collapse
|
32
|
Cardiac tissue structure, properties, and performance: a materials science perspective. Ann Biomed Eng 2014; 42:2003-13. [PMID: 25081385 DOI: 10.1007/s10439-014-1071-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
Abstract
From an engineering perspective, many forms of heart disease can be thought of as a reduction in biomaterial performance, in which the biomaterial is the tissue comprising the ventricular wall. In materials science, the structure and properties of a material are recognized to be interconnected with performance. In addition, for most measurements of structure, properties, and performance, some processing is required. Here, we review the current state of knowledge regarding cardiac tissue structure, properties, and performance as well as the processing steps taken to acquire those measurements. Understanding the impact of these factors and their interactions may enhance our understanding of heart function and heart failure. We also review design considerations for cardiac tissue property and performance measurements because, to date, most data on cardiac tissue has been obtained under non-physiological loading conditions. Novel measurement systems that account for these design considerations may improve future experiments and lead to greater insight into cardiac tissue structure, properties, and ultimately performance.
Collapse
|
33
|
Hanft LM, Greaser ML, McDonald KS. Titin-mediated control of cardiac myofibrillar function. Arch Biochem Biophys 2014; 552-553:83-91. [PMID: 24269766 PMCID: PMC4028433 DOI: 10.1016/j.abb.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 01/06/2023]
Abstract
According to the Frank-Starling relationship, ventricular pressure or stroke volume increases with end-diastolic volume. This is regulated, in large part, by the sarcomere length (SL) dependent changes in cardiac myofibrillar force, loaded shortening, and power. Consistent with this, both cardiac myofibrillar force and absolute power fall at shorter SL. However, when Ca(2+) activated force levels are matched between short and long SL (by increasing the activator [Ca(2+)]), short SL actually yields faster loaded shortening and greater peak normalized power output (PNPO). A potential mechanism for faster loaded shortening at short SL is that, at short SL, titin becomes less taut, which increases the flexibility of the cross-bridges, a process that may be mediated by titin's interactions with thick filament proteins. We propose a more slackened titin yields greater myosin head radial and azimuthal mobility and these flexible cross-bridges are more likely to maintain thin filament activation, which would allow more force-generating cross-bridges to work against a fixed load resulting in faster loaded shortening. We tested this idea by measuring SL-dependence of power at matched forces in rat skinned cardiac myocytes containing either N2B titin or a longer, more compliant N2BA titin. We predicted that, in N2BA titin containing cardiac myocytes, power-load curves would not be shifted upward at short SL compared to long SL (when force is matched). Consistent with this, peak normalized power was actually less at short SL versus long SL (at matched force) in N2BA-containing myocytes (N2BA titin: ΔPNPO (Short SL peak power minus long SL peak power)=-0.057±0.049 (n=5) versus N2B titin: ΔPNPO=+0.012±0.012 (n=5). These findings support a model whereby SL per se controls mechanical properties of cross-bridges and this process is mediated by titin. This myofibrillar mechanism may help sustain ventricular power during periods of low preloads, and perhaps a breakdown of this mechanism is involved in impaired function of failing hearts.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Marion L Greaser
- Muscle Biology Laboratory, University of Wisconsin, Madison, WI 53706, United States
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
34
|
Rodriguez AG, Rodriguez ML, Han SJ, Sniadecki NJ, Regnier M. Enhanced contractility with 2-deoxy-ATP and EMD 57033 is correlated with reduced myofibril structure and twitch power in neonatal cardiomyocytes. Integr Biol (Camb) 2013; 5:1366-73. [PMID: 24056444 DOI: 10.1039/c3ib40135a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As cardiomyocytes mature, their sarcomeres and Z-band widths increase in length in order for their myofibrils to produce stronger twitch forces during a contraction. In this study, we tested the hypothesis that tensional homeostasis is affected by altering myofibril forces. To assess this hypothesis, neonatal rat cardiomyocytes were cultured on arrays of microposts to measure cellular contractility. An optical line scanning technique was used to measure the deflections in the microposts with high temporal resolution, enabling the analysis of twitch force, twitch velocity, and twitch power. Myofibril force production was elevated by vector-mediated overexpression of ribonucleotide reductase (RR) to increase cellular dATP content or by adding the inotropic agent EMD 57033 (EMD). We found that RR and EMD treatment did not affect cardiomyocyte twitch force, but it did lead to reduced twitch velocity and twitch power. Immunofluorescent analysis of α-actinin revealed that RR-over-expressing cardiomyocytes and EMD-treated cardiomyocytes had lower spread area, sarcomere length, and Z-band width as compared to control cells. These results indicate a correlation between myofibril structure and cardiac power. This correlation was confirmed by exposing the cells to the myosin II inhibitor blebbistatin, and then subsequently washing it out. After wash-out, cardiomyocytes exhibited a reduction in twitch force, velocity, and power due to shorter sarcomere length and Z-band widths. Our results suggest that cardiac myofibril structure is regulated by tensional homeostasis. If myofibril-generated forces in cardiomyocytes are elevated, a state of tensional homeostasis is maintained by producing sufficient twitch forces with a lower degree myofibril structure.
Collapse
Affiliation(s)
- Anthony G Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
35
|
Milani-Nejad N, Xu Y, Davis JP, Campbell KS, Janssen PML. Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature. ACTA ACUST UNITED AC 2013; 141:133-9. [PMID: 23277479 PMCID: PMC3536524 DOI: 10.1085/jgp.201210894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (ktr; which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K+ contractures to induce a tonic level of force, we showed the ktr was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of ktr in rat muscle at optimal length (Lopt) and 90% of optimal length (L90) revealed that ktr was significantly slower at Lopt (27.7 ± 3.3 and 27.8 ± 3.0 s−1 in duplicate analyses) than at L90 (45.1 ± 7.6 and 47.5 ± 9.2 s−1). We therefore show that ktr can be measured in intact rat and rabbit cardiac trabeculae, and that the ktr decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank–Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
36
|
Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 2013; 22:1991-2002. [PMID: 23461462 DOI: 10.1089/scd.2012.0490] [Citation(s) in RCA: 554] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue, we tested the hypothesis that prolonged in vitro culture of human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived CMs would result in the maturation of their structural and contractile properties to a more adult-like phenotype. Compared to their early-stage counterparts (PSC-CMs after 20-40 days of in vitro differentiation and culture), late-stage hESC-CMs and hiPSC-CMs (80-120 days) showed dramatic differences in morphology, including increased cell size and anisotropy, greater myofibril density and alignment, sarcomeres visible by bright-field microscopy, and a 10-fold increase in the fraction of multinucleated CMs. Ultrastructural analysis confirmed improvements in the myofibrillar density, alignment, and morphology. We measured the contractile performance of late-stage hESC-CMs and hiPSC-CMs and noted a doubling in shortening magnitude with slowed contraction kinetics compared to the early-stage cells. We then examined changes in the calcium-handling properties of these matured CMs and found an increase in calcium release and reuptake rates with no change in the maximum amplitude. Finally, we performed electrophysiological assessments in hESC-CMs and found that late-stage myocytes have hyperpolarized maximum diastolic potentials, increased action potential amplitudes, and faster upstroke velocities. To correlate these functional changes with gene expression, we performed qPCR and found a robust induction of the key cardiac structural markers, including β-myosin heavy chain and connexin-43, in late-stage hESC-CMs and hiPSC-CMs. These findings suggest that PSC-CMs are capable of slowly maturing to more closely resemble the phenotype of adult CMs and may eventually possess the potential to regenerate the lost myocardium with robust de novo force-producing tissue.
Collapse
Affiliation(s)
- Scott D Lundy
- Departments of Bioengineering, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
37
|
Hersch N, Wolters B, Dreissen G, Springer R, Kirchgeßner N, Merkel R, Hoffmann B. The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening. Biol Open 2013; 2:351-61. [PMID: 23519595 PMCID: PMC3603417 DOI: 10.1242/bio.20133830] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/23/2012] [Indexed: 12/25/2022] Open
Abstract
Cardiomyocytes are responsible for the permanent blood flow by coordinated heart contractions. This vital function is accomplished over a long period of time with almost the same performance, although heart properties, as its elasticity, change drastically upon aging or as a result of diseases like myocardial infarction. In this paper we have analyzed late rat embryonic heart muscle cells' morphology, sarcomere/costamere formation and force generation patterns on substrates of various elasticities ranging from ∼1 to 500 kPa, which covers physiological and pathological heart stiffnesses. Furthermore, adhesion behaviour, as well as single myofibril/sarcomere contraction patterns, was characterized with high spatial resolution in the range of physiological stiffnesses (15 kPa to 90 kPa). Here, sarcomere units generate an almost stable contraction of ∼4%. On stiffened substrates the contraction amplitude remains stable, which in turn leads to increased force levels allowing cells to adapt almost instantaneously to changing environmental stiffness. Furthermore, our data strongly indicate specific adhesion to flat substrates via both costameric and focal adhesions. The general appearance of the contractile and adhesion apparatus remains almost unaffected by substrate stiffness.
Collapse
Affiliation(s)
- Nils Hersch
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang Y, Tanner BCW, Lombardo AT, Tremble SM, Maughan DW, Vanburen P, Lewinter MM, Robbins J, Palmer BM. Cardiac myosin isoforms exhibit differential rates of MgADP release and MgATP binding detected by myocardial viscoelasticity. J Mol Cell Cardiol 2012; 54:1-8. [PMID: 23123290 DOI: 10.1016/j.yjmcc.2012.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 10/05/2012] [Accepted: 10/22/2012] [Indexed: 01/26/2023]
Abstract
We measured myosin crossbridge detachment rate and the rates of MgADP release and MgATP binding in mouse and rat myocardial strips bearing one of the two cardiac myosin heavy chain (MyHC) isoforms. Mice and rats were fed an iodine-deficient, propylthiouracil diet resulting in ~100% expression of β-MyHC in the ventricles. Ventricles of control animals expressed ~100% α-MyHC. Chemically-skinned myocardial strips prepared from papillary muscle were subjected to sinusoidal length perturbation analysis at maximum calcium activation pCa 4.8 and 17°C. Frequency characteristics of myocardial viscoelasticity were used to calculate crossbridge detachment rate over 0.01 to 5mM [MgATP]. The rate of MgADP release, equivalent to the asymptotic value of crossbridge detachment rate at high MgATP, was highest in mouse α-MyHC (111.4±6.2s(-1)) followed by rat α-MyHC (65.0±7.3s(-1)), mouse β-MyHC (24.3±1.8s(-1)) and rat β-MyHC (15.5±0.8s(-1)). The rate of MgATP binding was highest in mouse α-MyHC (325±32 mM(-1) s(-1)) then mouse β-MyHC (152±23 mM(-1) s(-1)), rat α-MyHC (108±10 mM(-1) s(-1)) and rat β-MyHC (55±6 mM(-1) s(-1)). Because the events of MgADP release and MgATP binding occur in a post power-stroke state of the myosin crossbridge, we infer that MgATP release and MgATP binding must be regulated by isoform- and species-specific structural differences located outside the nucleotide binding pocket, which is identical in sequence for these four myosins. We postulate that differences in the stiffness profile of the entire myosin molecule, including the thick filament and the myosin-actin interface, are primarily responsible for determining the strain on the nucleotide binding pocket and the subsequent differences in the rates of nucleotide release and binding observed among the four myosins examined here.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Length-dependent effects on cardiac contractile dynamics are different in cardiac muscle containing α- or β-myosin heavy chain. Arch Biochem Biophys 2012; 535:3-13. [PMID: 23111184 DOI: 10.1016/j.abb.2012.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 11/20/2022]
Abstract
Actomyosin crossbridges (XBs) are the fundamental source of force generation and pressure development in the myocardium. Faster kinetics are imparted on XBs comprised of the fast, α-myosin heavy chain (MHC) isoform, whereas slower kinetics are imparted on XBs comprised of the slow, β-MHC isoform. Other factors, such as sarcomere length (SL), influence XB formation, presumably acting through allosteric effects on the kinetics that regulate the XB cycle. We sought to determine whether the slower XB kinetics of β-MHC were more sensitive to such length-dependent effects than those of α-MHC. We studied the SL effects on mechanical properties of demembranated muscle fibers from normal and propylthiouracil-treated mouse hearts, which expressed predominantly α-MHC or β-MHC, respectively. Interestingly, XB detachment kinetics were more length-sensitive in β-MHC fibers, as estimated by tension cost and XB detachment rate constant (c), and as inferred by ktr. The nonlinearity in force responses to various-amplitude step-like changes in muscle length was more pronounced in β-MHC fibers. This phenomenon is attributed to a greater cooperative/allosteric mechanism in β-MHC fibers, as estimated by model parameter γ. These data suggest a mechanism whereby greater cooperative/allosteric effects impart an enhanced length-sensitivity of XB cycling kinetics in fibers containing the slower cycling β-MHC.
Collapse
|
40
|
McDonald KS, Hanft LM, Domeier TL, Emter CA. Length and PKA Dependence of Force Generation and Loaded Shortening in Porcine Cardiac Myocytes. Biochem Res Int 2012; 2012:371415. [PMID: 22844597 PMCID: PMC3398585 DOI: 10.1155/2012/371415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/01/2012] [Indexed: 11/17/2022] Open
Abstract
In healthy hearts, ventricular ejection is determined by three myofibrillar properties; force, force development rate, and rate of loaded shortening (i.e., power). The sarcomere length and PKA dependence of these mechanical properties were measured in porcine cardiac myocytes. Permeabilized myocytes were prepared from left ventricular free walls and myocyte preparations were calcium activated to yield ~50% maximal force after which isometric force was measured at varied sarcomere lengths. Porcine myocyte preparations exhibited two populations of length-tension relationships, one being shallower than the other. Moreover, myocytes with shallow length-tension relationships displayed steeper relationships following PKA. Sarcomere length-K(tr) relationships also were measured and K(tr) remained nearly constant over ~2.30 μm to ~1.90 μm and then increased at lengths below 1.90 μm. Loaded-shortening and peak-normalized power output was similar at ~2.30 μm and ~1.90 μm even during activations with the same [Ca(2+)], implicating a myofibrillar mechanism that sustains myocyte power at lower preloads. PKA increased myocyte power and yielded greater shortening-induced cooperative deactivation in myocytes, which likely provides a myofibrillar mechanism to assist ventricular relaxation. Overall, the bimodal distribution of myocyte length-tension relationships and the PKA-mediated changes in myocyte length-tension and power are likely important modulators of Frank-Starling relationships in mammalian hearts.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Laurin M. Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Timothy L. Domeier
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Craig A. Emter
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
41
|
Rodriguez A, Han S, Regnier M, Sniadecki N. Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. Biophys J 2011; 101:2455-64. [PMID: 22098744 PMCID: PMC3218322 DOI: 10.1016/j.bpj.2011.09.057] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/14/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022] Open
Abstract
During neonatal development, there is an increase in myocardial stiffness that coincides with an increase in the contractility of the heart. In vitro assays have shown that substrate stiffness plays a role in regulating the twitch forces produced by immature cardiomyocytes. However, its effect on twitch power is unclear due to difficulties in measuring the twitch velocity of cardiomyocytes. Here, we introduce what we consider a novel approach to quantify twitch power by combining the temporal resolution of optical line scanning with the subcellular force resolution of micropost arrays. Using this approach, twitch power was found to be greater for cells cultured on stiffer posts, despite having lower twitch velocities. The increased power was attributed in part to improved myofibril structure (increased sarcomere length and Z-band width) and intracellular calcium levels. Immunofluorescent staining of α-actin revealed that cardiomyocytes had greater sarcomere length and Z-band width when cultured on stiffer arrays. Moreover, the concentration of intracellular calcium at rest and its rise with each twitch contraction was greater for cells on the stiffer posts. Altogether, these findings indicate that cardiomyocytes respond to substrate stiffness with biomechanical and biochemical changes that lead to an increase in cardiac contractility.
Collapse
Affiliation(s)
| | - Sangyoon J. Han
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Nathan J. Sniadecki
- Department of Bioengineering, University of Washington, Seattle, Washington
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Miller MS, Farman GP, Braddock JM, Soto-Adames FN, Irving TC, Vigoreaux JO, Maughan DW. Regulatory light chain phosphorylation and N-terminal extension increase cross-bridge binding and power output in Drosophila at in vivo myofilament lattice spacing. Biophys J 2011; 100:1737-46. [PMID: 21463587 DOI: 10.1016/j.bpj.2011.02.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/20/2011] [Accepted: 02/03/2011] [Indexed: 12/01/2022] Open
Abstract
The N-terminal extension and phosphorylation of the myosin regulatory light chain (RLC) independently improve Drosophila melanogaster flight performance. Here we examine the functional and structural role of the RLC in chemically skinned fibers at various thick and thin filament lattice spacings from four transgenic Drosophila lines: rescued null or control (Dmlc2(+)), truncated N-terminal extension (Dmlc2(Δ2-46)), disrupted myosin light chain kinase phosphorylation sites (Dmlc2(S66A,S67A)), and dual mutant (Dmlc2(Δ2-46; S66A,S67A)). The N-terminal extension truncation and phosphorylation sites disruption mutations decreased oscillatory power output and the frequency of maximum power output in maximally Ca(2+)-activated fibers compressed to near in vivo inter-thick filament spacing, with the phosphorylation sites disruption mutation having a larger affect. The diminished power output parameters with the N-terminal extension truncation and phosphorylation sites disruption mutations were due to the reduction of the number of strongly-bound cross-bridges and rate of myosin force production, with the larger parameter reductions in the phosphorylation sites disruption mutation additionally related to reduced myosin attachment time. The phosphorylation and N-terminal extension-dependent boost in cross-bridge kinetics corroborates previous structural data, which indicate these RLC attributes play a complementary role in moving and orienting myosin heads toward actin target sites, thereby increasing fiber and whole fly power generation.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
McDonald KS. The interdependence of Ca2+ activation, sarcomere length, and power output in the heart. Pflugers Arch 2011; 462:61-7. [PMID: 21404040 PMCID: PMC10155511 DOI: 10.1007/s00424-011-0949-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 11/30/2022]
Abstract
Myocardium generates power to perform external work on the circulation; yet, many questions regarding intermolecular mechanisms regulating power output remain unresolved. Power output equals force × shortening velocity, and some interesting new observations regarding control of these two factors have arisen. While it is well established that sarcomere length tightly controls myocyte force, sarcomere length-tension relationships also appear to be markedly modulated by PKA-mediated phosphorylation of myofibrillar proteins. Concerning loaded shortening, historical models predict independent cross-bridge mechanics; however, it seems that the mechanical state of one population of cross-bridges affects the activity of other cross-bridges by, for example, recruitment of cross-bridges from the non-cycling pool to the cycling force-generating pool during submaximal Ca(2+) activation. This is supported by the findings that Ca(2+) activation levels, myofilament phosphorylation, and sarcomere length are all modulators of loaded shortening and power output independent of their effects on force. This fine tuning of power output probably helps optimize myocardial energetics and to match ventricular supply with peripheral demand; yet, the discernment of the chemo-mechanical signals that modulate loaded shortening needs further clarification since power output may be a key convergent point and feedback regulator of cytoskeleton and cellular signals that control myocyte growth and survival.
Collapse
Affiliation(s)
- Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, MA 415 Medical Sciences Building, Columbia, MO 65212, USA.
| |
Collapse
|
44
|
Cazorla O, Lacampagne A. Regional variation in myofilament length-dependent activation. Pflugers Arch 2011; 462:15-28. [DOI: 10.1007/s00424-011-0933-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
|
45
|
Hanft LM, McDonald KS. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres. J Physiol 2010; 588:2891-903. [PMID: 20530113 DOI: 10.1113/jphysiol.2010.190504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length-tension relationships appear able to switch between slow-twitch-like and fast-twitch-like by PKA-mediated myofibrillar phosphorylation, which implicates a novel means for controlling Frank-Starling relationships.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | |
Collapse
|
46
|
Hanft LM, McDonald KS. Sarcomere length dependence of power output is increased after PKA treatment in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2009; 296:H1524-31. [PMID: 19252095 DOI: 10.1152/ajpheart.00864.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Frank-Starling relationship of the heart yields increased stroke volume with greater end-diastolic volume, and this relationship is steeper after beta-adrenergic stimulation. The underlying basis for the Frank-Starling mechanism involves length-dependent changes in both Ca(2+) sensitivity of myofibrillar force and power output. In this study, we tested the hypothesis that PKA-induced phosphorylation of myofibrillar proteins would increase the length dependence of myofibrillar power output, which would provide a myofibrillar basis to, in part, explain the steeper Frank-Starling relations after beta-adrenergic stimulation. For these experiments, adult rat left ventricles were mechanically disrupted, permeabilized cardiac myocyte preparations were attached between a force transducer and position motor, and the length dependence of loaded shortening and power output were measured before and after treatment with PKA. PKA increased the phosphorylation of myosin binding protein C and cardiac troponin I, as assessed by autoradiography. In terms of myocyte mechanics, PKA decreased the Ca(2+) sensitivity of force and increased loaded shortening and power output at all relative loads when the myocyte preparations were at long sarcomere length ( approximately 2.30 mum). PKA had less of an effect on loaded shortening and power output at short sarcomere length ( approximately 2.0 mum). These changes resulted in a greater length dependence of myocyte power output after PKA treatment; peak normalized power output increased approximately 20% with length before PKA and approximately 40% after PKA. These results suggest that PKA-induced phosphorylation of myofibrillar proteins explains, in part, the steeper ventricular function curves (i.e., Frank-Starling relationship) after beta-adrenergic stimulation of the left ventricle.
Collapse
Affiliation(s)
- Laurin M Hanft
- Dept. of Physiology, School of Medicine, Univ. of Missouri, Columbia, MO, USA
| | | |
Collapse
|
47
|
Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness. J Theor Biol 2008; 255:92-105. [DOI: 10.1016/j.jtbi.2008.07.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/19/2008] [Accepted: 07/22/2008] [Indexed: 11/21/2022]
|
48
|
Emter CA, Bowles DK. Curing the cure: utilizing exercise to limit cardiotoxicity. Med Sci Sports Exerc 2008; 40:806-7. [PMID: 18408620 DOI: 10.1249/mss.0b013e3181684d03] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
49
|
Ait Mou Y, le Guennec JY, Mosca E, de Tombe PP, Cazorla O. Differential contribution of cardiac sarcomeric proteins in the myofibrillar force response to stretch. Pflugers Arch 2008; 457:25-36. [PMID: 18449562 DOI: 10.1007/s00424-008-0501-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 11/24/2022]
Abstract
The present study examined the contribution of myofilament contractile proteins to regional function in guinea pig myocardium. We investigated the effect of stretch on myofilament contractile proteins, Ca(2+) sensitivity, and cross-bridge cycling kinetics (K (tr)) of force in single skinned cardiomyocytes isolated from the sub-endocardial (ENDO) or sub-epicardial (EPI) layer. As observed in other species, ENDO cells were stiffer, and Ca(2+) sensitivity of force at long sarcomere length was higher compared with EPI cells. Maximal K (tr) was unchanged by stretch, but was higher in EPI cells possibly due to a higher alpha-MHC content. Submaximal Ca(2+)-activated K (tr) increased only in ENDO cells with stretch. Stretch of skinned ENDO muscle strips induced increased phosphorylation in both myosin-binding protein C and myosin light chain 2. We concluded that transmural MHC isoform expression and differential regulatory protein phosphorylation by stretch contributes to regional differences in stretch modulation of activation in guinea pig left ventricle.
Collapse
Affiliation(s)
- Younss Ait Mou
- INSERM, U 637, Université MONTPELLIER I, UFR de Médecine, F-34295, Montpellier, France
| | | | | | | | | |
Collapse
|
50
|
Hanft LM, Korte FS, McDonald KS. Cardiac function and modulation of sarcomeric function by length. Cardiovasc Res 2007; 77:627-36. [PMID: 18079105 DOI: 10.1093/cvr/cvm099] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Frank-Starling relationship provides beat-to-beat regulation of ventricular function by matching ventricular input and output. This review addresses the subcellular mechanisms by which the ventricle adjusts its output (i.e. stroke volume) by changes in end-diastolic volume. The subcellular processes are placed in the context of the four phases of the cardiac cycle with emphasis on the sarcomeric properties that mediate the number of force-generating cross-bridges recruited during pressure development. Additional mechanistic insight is provided regarding the factors that regulate myocyte loaded shortening speeds, which are paramount for dictating ejection volume. Emphasis is placed on the interplay between cross-bridge-induced cooperative activation of the thin filament and cooperative deactivation of the thin filament induced by muscle shortening. The balance of these two properties seems to determine systolic haemodynamics, and how this balance is modulated by sarcomere length, in part, underlies the Frank-Starling relationship.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, MA 415, Medical Sciences Building, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | | |
Collapse
|