1
|
Ogunmowo TH, Jing H, Raychaudhuri S, Kusick GF, Imoto Y, Li S, Itoh K, Ma Y, Jafri H, Dalva MB, Chapman ER, Ha T, Watanabe S, Liu J. Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis. Nat Commun 2023; 14:2888. [PMID: 37210439 PMCID: PMC10199930 DOI: 10.1038/s41467-023-38595-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.
Collapse
Affiliation(s)
- Tyler H Ogunmowo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Haoyuan Jing
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Sumana Raychaudhuri
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Grant F Kusick
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Yuuta Imoto
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Shuo Li
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA, US
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Ye Ma
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Haani Jafri
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
- Department of Cell and Molecular Biology and the Tulane Brain Institute, Tulane University, New Orleans, LA, US
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, US
- Howard Hughes Medical Institute, Madison, WI, US
| | - Taekjip Ha
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, US
- Howard Hughes Medical Institute, Baltimore, MD, US
| | - Shigeki Watanabe
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| |
Collapse
|
2
|
Zhang S, Yan ML, Yang L, An XB, Zhao HM, Xia SN, Jin Z, Huang SY, Qu Y, Ai J. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol 2020; 332:113389. [PMID: 32580014 DOI: 10.1016/j.expneurol.2020.113389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|
3
|
SNAP-25 phosphorylation at Ser187 regulates synaptic facilitation and short-term plasticity in an age-dependent manner. Sci Rep 2017; 7:7996. [PMID: 28801590 PMCID: PMC5554206 DOI: 10.1038/s41598-017-08237-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022] Open
Abstract
Neurotransmitter release is mediated by the SNARE complex, but the role of its phosphorylation has scarcely been elucidated. Although PKC activators are known to facilitate synaptic transmission, there has been a heated debate on whether PKC mediates facilitation of neurotransmitter release through phosphorylation. One of the SNARE proteins, SNAP-25, is phosphorylated at the residue serine-187 by PKC, but its physiological significance has been unclear. To examine these issues, we analyzed mutant mice lacking the phosphorylation of SNAP-25 serine-187 and found that they exhibited reduced release probability and enhanced presynaptic short-term plasticity, suggesting that not only the release process, but also the dynamics of synaptic vesicles was regulated by the phosphorylation. Furthermore, it has been known that the release probability changes with development, but the precise mechanism has been unclear, and we found that developmental changes in release probability of neurotransmitters were regulated by the phosphorylation. These results indicate that SNAP-25 phosphorylation developmentally facilitates neurotransmitter release but strongly inhibits presynaptic short-term plasticity via modification of the dynamics of synaptic vesicles in presynaptic terminals.
Collapse
|
4
|
Nikolaev M, Heggelund P. Functions of synapsins in corticothalamic facilitation: important roles of synapsin I. J Physiol 2015; 593:4499-510. [PMID: 26256545 DOI: 10.1113/jp270553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS The synaptic vesicle associated proteins synapsin I and synapsin II have important functions in synaptic short-term plasticity. We investigated their functions in cortical facilitatory feedback to neurons in dorsal lateral geniculate nucleus (dLGN), feedback that has important functions in state-dependent regulation of thalamic transmission of visual input to cortex. We compared results from normal wild-type (WT) mice and synapsin knockout (KO) mice in several types of synaptic plasticity, and found clear differences between the responses of neurons in the synapsin I KO and the WT, but no significant differences between the synapsin II KO and the WT. These results are in contrast to the important role of synapsin II previously demonstrated in similar types of synaptic plasticity in other brain regions, indicating that the synapsins can have different roles in similar types of STP in different parts of the brain. ABSTRACT The synaptic vesicle associated proteins synapsin I (SynI) and synapsin II (SynII) have important functions in several types of synaptic short-term plasticity in the brain, but their separate functions in different types of synapses are not well known. We investigated possible distinct functions of the two synapsins in synaptic short-term plasticity at corticothalamic synapses on relay neurons in the dorsal lateral geniculate nucleus. These synapses provide excitatory feedback from visual cortex to the relay cells, feedback that can facilitate transmission of signals from retina to cortex. We compared results from normal wild-type (WT), SynI knockout (KO) and SynII KO mice, in three types of synaptic plasticity mainly linked to presynaptic mechanism. In SynI KO mice, paired-pulse stimulation elicited increased facilitation at short interpulse intervals compared to the WT. Pulse-train stimulation elicited weaker facilitation than in the WT, and also post-tetanic potentiation was weaker in SynI KO than in the WT. Between SynII KO and the WT we found no significant differences. Thus, SynI has important functions in these types of synaptic plasticity at corticothalamic synapses. Interestingly, our data are in contrast to the important role of SynII previously shown for sustained synaptic transmission during intense stimulation in excitatory synapses in other parts of the brain, and our results suggest that SynI and SynII may have different roles in similar types of STP in different parts of the brain.
Collapse
Affiliation(s)
- Maxim Nikolaev
- Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway.,I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, 44 Thorez pr., St Petersburg, Russia
| | - Paul Heggelund
- Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway
| |
Collapse
|
5
|
Wagh D, Terry-Lorenzo R, Waites CL, Leal-Ortiz SA, Maas C, Reimer RJ, Garner CC. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1. PLoS One 2015; 10:e0120093. [PMID: 25897839 PMCID: PMC4405365 DOI: 10.1371/journal.pone.0120093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022] Open
Abstract
The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1.
Collapse
Affiliation(s)
- Dhananjay Wagh
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Ryan Terry-Lorenzo
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Clarissa L. Waites
- Department of Pathology and Cell Biology Columbia University New York, New York, United States of America
| | - Sergio A. Leal-Ortiz
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Christoph Maas
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Richard J. Reimer
- Department of Neurology and Neurological Sciences Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Craig C. Garner
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Synaptic plasticity in the auditory system: a review. Cell Tissue Res 2015; 361:177-213. [PMID: 25896885 DOI: 10.1007/s00441-015-2176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.
Collapse
|
7
|
Watanabe S, Trimbuch T, Camacho-Pérez M, Rost BR, Brokowski B, Söhl-Kielczynski B, Felies A, Davis MW, Rosenmund C, Jorgensen EM. Clathrin regenerates synaptic vesicles from endosomes. Nature 2014; 515:228-33. [PMID: 25296249 PMCID: PMC4291189 DOI: 10.1038/nature13846] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022]
Abstract
Ultrafast endocytosis can retrieve a single, large endocytic vesicle as fast as 50-100 ms after synaptic vesicle fusion. However, the fate of the large endocytic vesicles is not known. Here we demonstrate that these vesicles transition to a synaptic endosome about one second after stimulation. The endosome is resolved into coated vesicles after 3 s, which in turn become small-diameter synaptic vesicles 5-6 s after stimulation. We disrupted clathrin function using RNA interference (RNAi) and found that clathrin is not required for ultrafast endocytosis but is required to generate synaptic vesicles from the endosome. Ultrafast endocytosis fails when actin polymerization is disrupted, or when neurons are stimulated at room temperature instead of physiological temperature. In the absence of ultrafast endocytosis, synaptic vesicles are retrieved directly from the plasma membrane by clathrin-mediated endocytosis. These results may explain discrepancies among published experiments concerning the role of clathrin in synaptic vesicle endocytosis.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | - Thorsten Trimbuch
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Marcial Camacho-Pérez
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Benjamin R Rost
- 1] Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany [2] German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Bettina Brokowski
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | | | - Annegret Felies
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - M Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | - Christian Rosenmund
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Erik M Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| |
Collapse
|
8
|
Hazai D, Szudoczki R, Ding J, Soderling SH, Weinberg RJ, Sótonyi P, Rácz B. Ultrastructural abnormalities in CA1 hippocampus caused by deletion of the actin regulator WAVE-1. PLoS One 2013; 8:e75248. [PMID: 24086480 PMCID: PMC3783472 DOI: 10.1371/journal.pone.0075248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
By conveying signals from the small GTPase family of proteins to the Arp2/3 complex, proteins of the WAVE family facilitate actin remodeling. The WAVE-1 isoform is expressed at high levels in brain, where it plays a role in normal synaptic processing, and is implicated in hippocampus-dependent memory retention. We used electron microscopy to determine whether synaptic structure is modified in the hippocampus of WAVE-1 knockout mice, focusing on the neuropil of CA1 stratum radiatum. Mice lacking WAVE-1 exhibited alterations in the morphology of both axon terminals and dendritic spines; the relationship between the synaptic partners was also modified. The abnormal synaptic morphology we observed suggests that signaling through WAVE-1 plays a critical role in establishing normal synaptic architecture in the rodent hippocampus.
Collapse
Affiliation(s)
- Diána Hazai
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Róbert Szudoczki
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Jindong Ding
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States of America
| | - Scott H. Soderling
- Departments of Cell Biology and Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Richard J. Weinberg
- Department of Cell Biology & Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Péter Sótonyi
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
9
|
Ketzef M, Gitler D. Epileptic synapsin triple knockout mice exhibit progressive long-term aberrant plasticity in the entorhinal cortex. ACTA ACUST UNITED AC 2012; 24:996-1008. [PMID: 23236212 DOI: 10.1093/cercor/bhs384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studying epileptogenesis in a genetic model can facilitate the identification of factors that promote the conversion of a normal brain into one chronically prone to seizures. Synapsin triple-knockout (TKO) mice exhibit adult-onset epilepsy, thus allowing the characterization of events as preceding or following seizure onset. Although it has been proposed that a congenital reduction in inhibitory transmission is the underlying cause for epilepsy in these mice, young TKO mice are asymptomatic. We report that the genetic lesion exerts long-term progressive effects that extend well into adulthood. Although inhibitory transmission is initially reduced, it is subsequently strengthened relative to its magnitude in control mice, so that the excitation to inhibition balance in adult TKOs is inverted in favor of inhibition. In parallel, we observed long-term alterations in synaptic depression kinetics of excitatory transmission and in the extent of tonic inhibition, illustrating adaptations in synaptic properties. Moreover, age-dependent acceleration of the action potential did not occur in TKO cortical pyramidal neurons, suggesting wide-ranging secondary changes in brain excitability. In conclusion, although congenital impairments in inhibitory transmission may initiate epileptogenesis in the synapsin TKO mice, we suggest that secondary adaptations are crucial for the establishment of this epileptic network.
Collapse
Affiliation(s)
- Maya Ketzef
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
10
|
Haj-Yasein NN, Jensen V, Østby I, Omholt SW, Voipio J, Kaila K, Ottersen OP, Hvalby Ø, Nagelhus EA. Aquaporin-4 regulates extracellular space volume dynamics during high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus. Glia 2012; 60:867-74. [PMID: 22419561 DOI: 10.1002/glia.22319] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022]
Abstract
Little is known about the physiological roles of aquaporin-4 (AQP4) in the central nervous system. AQP4 water channels are concentrated in endfeet membranes of astrocytes but also localize to the fine astrocytic processes that abut central synapses. Based on its pattern of expression, we predicted that AQP4 could be involved in controlling water fluxes and changes in extracellular space (ECS) volume that are associated with activation of excitatory pathways. Here, we show that deletion of Aqp4 accentuated the shrinkage of the ECS that occurred in the mouse hippocampal CA1 region during activation of Schaffer collateral/commissural fibers. This effect was found in the stratum radiatum (where perisynaptic astrocytic processes abound) but not in the pyramidal cell layer (where astrocytic processes constitute but a minor volume fraction). For both genotypes the ECS shrinkage was most pronounced in the pyramidal cell layer. Our data attribute a physiological role to AQP4 and indicate that this water channel regulates extracellular volume dynamics in the mammalian brain.
Collapse
Affiliation(s)
- Nadia Nabil Haj-Yasein
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Filamentous (F)-actin is a known regulator of the synaptic vesicle (SV) cycle, with roles in SV mobilization, fusion, and endocytosis. However, the molecular pathways that regulate its dynamic assembly within presynaptic boutons remain unclear. In this study, we have used shRNA-mediated knockdown to demonstrate that Piccolo, a multidomain protein of the active zone cytomatrix, is a key regulator of presynaptic F-actin assembly. Boutons lacking Piccolo exhibit enhanced activity-dependent Synapsin1a dispersion and SV exocytosis, and reduced F-actin polymerization and CaMKII recruitment. These phenotypes are rescued by stabilizing F-actin filaments and mimicked by knocking down Profilin2, another regulator of presynaptic F-actin assembly. Importantly, we find that mice with a targeted deletion of exon 14 from the Pclo gene, reported to lack >95% of Piccolo, continue to express multiple Piccolo isoforms. Furthermore, neurons cultured from these mice exhibit no defects in presynaptic F-actin assembly due to the expression of these isoforms at presynaptic boutons. These data reveal that Piccolo regulates neurotransmitter release by facilitating activity-dependent F-actin assembly and the dynamic recruitment of key signaling molecules into presynaptic boutons, and highlight the need for new genetic models with which to study Piccolo loss of function.
Collapse
|
12
|
Abstract
At least two rate-limiting mechanisms in vesicle trafficking operate at mouse Schaffer collateral synapses, but their molecular/physical identities are unknown. The first mechanism determines the baseline rate at which reserve vesicles are supplied to a readily releasable pool. The second causes the supply rate to depress threefold when synaptic transmission is driven hard for extended periods. Previous models invoked depletion of a reserve vesicle pool to explain the reductions in the supply rate, but the mass-action assumption at their core is not compatible with kinetic measurements of neurotransmission under maximal-use conditions. Here we develop a new theoretical model of rate-limiting steps in vesicle trafficking that is compatible with previous and new measurements. A physical interpretation is proposed where local reserve pools consisting of four vesicles are tethered to individual release sites and are replenished stochastically in an all-or-none fashion. We then show that the supply rate depresses more rapidly in synapsin knock-outs and that the phenotype can be fully explained by changing the value of the single parameter in the model that would specify the size of the local reserve pools. Vesicle-trafficking rates between pools were not affected. Finally, optical imaging experiments argue against alternative interpretations of the theoretical model where vesicle trafficking is inhibited without reserve pool depletion. This new conceptual framework will be useful for distinguishing which of the multiple molecular and cell biological mechanisms involved in vesicle trafficking are rate limiting at different levels of synaptic throughput and are thus candidates for physiological and pharmacological modulation.
Collapse
|
13
|
Fassio A, Raimondi A, Lignani G, Benfenati F, Baldelli P. Synapsins: from synapse to network hyperexcitability and epilepsy. Semin Cell Dev Biol 2011; 22:408-15. [PMID: 21816229 DOI: 10.1016/j.semcdb.2011.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/13/2011] [Indexed: 01/31/2023]
Abstract
The synapsin family in mammals consists of at least 10 isoforms encoded by three distinct genes and composed by a mosaic of conserved and variable domains. Synapsins, although not essential for the basic development and functioning of neuronal networks, are extremely important for the fine-tuning of SV cycling and neuronal plasticity. Single, double and triple synapsin knockout mice, with the notable exception of the synapsin III knockout mice, show a severe epileptic phenotype without gross alterations in brain morphology and connectivity. However, the molecular and physiological mechanisms underlying the pathogenesis of the epileptic phenotype observed in synapsin deficient mice are still far from being elucidated. In this review, we summarize the current knowledge about the role of synapsins in the regulation of network excitability and about the molecular mechanism leading to epileptic phenotype in mouse lines lacking one or more synapsin isoforms. The current evidences indicate that synapsins exert distinct roles in excitatory versus inhibitory synapses by differentially affecting crucial steps of presynaptic physiology and by this mean participate in the determination of network hyperexcitability.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, Section of Physiology and National Institute of Neuroscience, University of Genova, Genova, Italy
| | | | | | | | | |
Collapse
|
14
|
Bogen IL, Jensen V, Hvalby Ø, Walaas SI. Glutamatergic neurotransmission in the synapsin I and II double knock-out mouse. Semin Cell Dev Biol 2011; 22:400-7. [DOI: 10.1016/j.semcdb.2011.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/13/2011] [Indexed: 01/19/2023]
|
15
|
Waites CL, Garner CC. Presynaptic function in health and disease. Trends Neurosci 2011; 34:326-37. [PMID: 21596448 DOI: 10.1016/j.tins.2011.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/14/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Neurons communicate with one another at specialized contact sites called synapses, composed of pre- and postsynaptic compartments. Presynaptic compartments, or 'boutons', signal to the postsynaptic compartment by releasing chemical neurotransmitter in response to incoming electrical impulses. Recent studies link defects in the function of presynaptic boutons to the etiology of several neurodevelopmental and neurodegenerative diseases, including autism, schizophrenia and Alzheimer's disease. In this review, we describe five core functions of presynaptic boutons and the molecules that mediate these functions, focusing on a subset that are linked to human disease. We also discuss potential mechanisms through which the loss or alteration of these specific molecules could lead to defects in synaptic communication, neural circuit function and, ultimately, cognition and behavior.
Collapse
Affiliation(s)
- Clarissa L Waites
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University School of Medicine, 1201 Welch Rd. Palo Alto, CA 94304-5485, USA
| | | |
Collapse
|
16
|
Etholm L, Lindén H, Eken T, Heggelund P. Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain Res 2011; 1383:270-88. [DOI: 10.1016/j.brainres.2011.01.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
17
|
Michmizos D, Koutsouraki E, Asprodini E, Baloyannis S. Synaptic Plasticity: A Unifying Model to Address Some Persisting Questions. Int J Neurosci 2011; 121:289-304. [DOI: 10.3109/00207454.2011.556283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Hvalby O, Jensen V, Kao HT, Walaas SI. Synapsin-dependent vesicle recruitment modulated by forskolin, phorbol ester and ca in mouse excitatory hippocampal synapses. Front Synaptic Neurosci 2010; 2:152. [PMID: 21423538 PMCID: PMC3059703 DOI: 10.3389/fnsyn.2010.00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 12/09/2010] [Indexed: 12/03/2022] Open
Abstract
Repeated release of transmitter from presynaptic elements depends on stimulus-induced Ca2+ influx together with recruitment and priming of synaptic vesicles from different vesicle pools. We have compared three different manipulations of synaptic strength, all of which are known to increase short-term synaptic efficacy through presynaptic mechanisms, in the glutamatergic CA3-to-CA1 stratum radiatum synapse in the mouse hippocampal slice preparation. Synaptic responses elicited from the readily releasable vesicle pool during low-frequency synaptic activation (0.1 Hz) were significantly enhanced by both the adenylate cyclase activator forskolin, the priming activator β-phorbol-12,13-dibutyrate (PDBu) and 4 mM [Ca2+]o′ whereas during 20 Hz stimulation, the same manipulations reduced the time needed to reach the peak and increased the magnitude of the resulting frequency facilitation. In contrast, paired-pulse facilitations were unchanged in the presence of forskolin, decreased by 4 mM [Ca2+]o and essentially abolished by PDBu. The subsequent delayed response enhancement (DRE) responses, elicited during continuous 20 Hz stimulations and mediated by recruited vesicles, were enhanced by forskolin, essentially unchanged by PDBu and slightly decreased by 4 mM [Ca2+]o· Similar experiments done on slices devoid of the vesicle-associated synapsin I and II proteins indicated that synapsin I/II-induced enhancements of vesicle recruitment were restricted to Ca2+-induced frequency facilitations and forskolin-induced enhancements of the early DRE phase, whereas the proteins had minor effects during PDBu-treatment and represented constraints on late Ca2+-induced responses. The data indicate that in these glutamatergic synapses, the comparable enhancements of single synaptic responses induced by these biochemical mechanisms can be transformed during prolonged synaptic stimulation into highly distinct short-term plasticity patterns, which are partly dependent on synapsins I/II.
Collapse
Affiliation(s)
- Oivind Hvalby
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | |
Collapse
|
19
|
Scott LL, Kogan D, Shamma AA, Quinlan EM. Differential regulation of synapsin phosphorylation by monocular deprivation in juveniles and adults. Neuroscience 2009; 166:539-50. [PMID: 20035839 DOI: 10.1016/j.neuroscience.2009.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
The rodent visual cortex retains significant ocular dominance plasticity beyond the traditional postnatal critical period. However, the intracellular mechanisms that underlie the cortical response to monocular deprivation are predicted to be different in juveniles and adults. Here we show monocular deprivation in adult, but not juvenile rats, induced an increase in the phosphorylation of the prominent presynaptic effecter protein synapsin at two key sites known to regulate synapsin function. Monocular deprivation in adults induced an increase in synapsin phosphorylation at the PKA consensus site (site 1) and the CaMKII consensus site (site 3) in the visual cortex ipsilateral to the deprived eye, which is dominated by non-deprived eye input. The increase in synapsin phosphorylation was observed in total cortical homogenate, but not synaptoneurosomes, suggesting that the pool of synapsin targeted by monocular deprivation in adults does not co-fractionate with excitatory synapses. Phosphorylation of sites 1 and 3 stimulates the release of synaptic vesicles from a reserve pool and increases in the probability of evoked neurotransmitter release, which may contribute to the strengthening of the non-deprived input characteristic of ocular dominance plasticity in adults.
Collapse
Affiliation(s)
- L L Scott
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
20
|
John JPP, Sunyer B, Höger H, Pollak A, Lubec G. Hippocampal synapsin isoform levels are linked to spatial memory enhancement by SGS742. Hippocampus 2009; 19:731-8. [PMID: 19140176 DOI: 10.1002/hipo.20553] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synapsins are essential proteins for synaptic plasticity and there is no information available for their role in cognitive enhancement (CE) of spatial memory formation. It was therefore the aim of the study to link individual synapsin proteins and their isoforms to spatial memory formation enhanced by SGS742 in the mouse. Extracted hippocampal proteins from a cognitive study treating OF1 mice with the cognitive enhancer SGS742 and tested in the Morris water maze, were run on two-dimensional gel electrophoresis. Subsequently, protein spots were unambiguously identified by qQ-TOF mass spectrometry. Quantification of proteins from four groups (NaCl-treated mice, SGS742-treated mice, SGS742-treated yoked controls, and NaCl-treated yoked controls) was carried out according to an in-gel stable isotope labeling method. A total of 17 protein spots representing synapsin isoforms were identified and quantified. Using quantification of individual synapsin isoforms showed that these can be clearly assigned to CE by the GABAB antagonist SGS742. Quantitative determination of individual synapsin isoform showed an increase in SGS742-treated mice (mean+/-SD) of ratios between light and heavy stable isotope labeled synapsin protein (SGS742 vs. controls: 2.19+/-0.41 for synapsin Ia, and 1.41+/-0.81 for synapsin IIa). Synapsins Ib and IIb were not linked to CE. The NaCl-treated controls and the use of yoked controls that were ruling out swimming- and stress-mediated changes of synapsins, unequivocally allow to propose a role for synapsins Ia and IIa in the mechanism of CE of spatial memory formation.
Collapse
|
21
|
The importance of synapsin I and II for neurotransmitter levels and vesicular storage in cholinergic, glutamatergic and GABAergic nerve terminals. Neurochem Int 2009; 55:13-21. [DOI: 10.1016/j.neuint.2009.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/14/2009] [Accepted: 02/16/2009] [Indexed: 11/20/2022]
|
22
|
Tallent MK, Varghis N, Skorobogatko Y, Hernandez-Cuebas L, Whelan K, Vocadlo DJ, Vosseller K. In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J Biol Chem 2008; 284:174-181. [PMID: 19004831 DOI: 10.1074/jbc.m807431200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is a cytosolic and nuclear carbohydrate post-translational modification most abundant in brain. We recently reported uniquely extensive O-GlcNAc modification of proteins that function in synaptic vesicle release and post-synaptic signal transduction. Here we examined potential roles for O-GlcNAc in mouse hippocampal synaptic transmission and plasticity. O-GlcNAc modifications and the enzyme catalyzing their addition (O-GlcNAc transferase) were enriched in hippocampal synaptosomes. Pharmacological elevation or reduction of O-GlcNAc levels had no effect on Schaffer collateral CA1 basal hippocampal synaptic transmission. However, in vivo elevation of O-GlcNAc levels enhanced long term potentiation (LTP), an electrophysiological correlate to some forms of learning/memory. Reciprocally, pharmacological reduction of O-GlcNAc levels blocked LTP. Additionally, elevated O-GlcNAc led to reduced paired-pulse facilitation, a form of short term plasticity attributed to presynaptic mechanisms. Synapsin I and II are presynaptic proteins that increase synaptic vesicle availability for release when phosphorylated, thus contributing to hippocampal synaptic plasticity. Synapsins are among the most extensively O-GlcNAc-modified proteins known. Elevating O-GlcNAc levels increased phosphorylation of Synapsin I/II at serine 9 (cAMP-dependent protein kinase substrate site), serine 62/67 (Erk 1/2 (MAPK 1/2) substrate site), and serine 603 (calmodulin kinase II site). Activation-specific phosphorylation events on Erk 1/2 and calmodulin kinase II, two proteins required for CA1 hippocampal LTP establishment, were increased in response to elevation of O-GlcNAc levels. Thus, O-GlcNAc is a novel regulatory signaling component of excitatory synapses, with specific roles in synaptic plasticity that involve interplay with phosphorylation.
Collapse
Affiliation(s)
- Melanie K Tallent
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Neal Varghis
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Yuliya Skorobogatko
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lisa Hernandez-Cuebas
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kelly Whelan
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Vocadlo
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Keith Vosseller
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
23
|
Garcia-Perez E, Lo DC, Wesseling JF. Kinetic isolation of a slowly recovering component of short-term depression during exhaustive use at excitatory hippocampal synapses. J Neurophysiol 2008; 100:781-95. [PMID: 18579659 DOI: 10.1152/jn.90429.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examines the kinetics of the longest lasting form of short-term depression at excitatory hippocampal synapses. After initial depletion of the readily releasable pool (RRP), continued 20-Hz stimulation was found to be fast enough to maximally drive presynaptic neurotransmitter exocytosis; maximal is defined here as the rate needed to maintain the RRP in a nearly empty steady state. Induction of depression proceeded in two distinct phases. The first was caused by RRP depletion, whereas the second is shown to reflect the progressive reduction of the overall rate at which new vesicles are supplied to the RRP and is termed "supply-rate depression." Supply-rate depression is identified further with the emergence, during heavy use, of a rate-limiting vesicle trafficking step that slows the timing of RRP replenishment by switching from a fast (tau congruent with 7 s) to a slow (tau congruent with 1 min) vesicle supply mechanism. Both mechanisms apparently follow first-order kinetics. After the induction of the maximum amount of depression, individual synapses were able to output only <1 quantum of neurotransmitter per synapse per second, matching previous predictions based on cell biological measurements of synaptic vesicle cycling. Surprisingly, the onset of supply-rate depression occurred with a marked delay, not having a detectable impact on synaptic function until after several seconds of continuous use. The delayed onset is not consistent with traditional vesicle trafficking models, but may be important for limiting the impact of supply-rate depression to pathological episodes and might function as a native antiepilepsy device.
Collapse
Affiliation(s)
- Elizabeth Garcia-Perez
- Departamento de Neurociencias, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pio XII, 55, 31008 Pamplona, Spain
| | | | | |
Collapse
|
24
|
Bogen IL, Jensen V, Hvalby O, Walaas SI. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain. Neuroscience 2008; 158:231-41. [PMID: 18606212 DOI: 10.1016/j.neuroscience.2008.05.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/08/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022]
Abstract
Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.
Collapse
Affiliation(s)
- I L Bogen
- Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, NO-0317 Oslo, Norway
| | | | | | | |
Collapse
|
25
|
Owe SG, Jensen V, Evergren E, Ruiz A, Shupliakov O, Kullmann DM, Storm-Mathisen J, Walaas SI, Hvalby Ø, Bergersen LH. Synapsin- and actin-dependent frequency enhancement in mouse hippocampal mossy fiber synapses. Cereb Cortex 2008; 19:511-23. [PMID: 18550596 PMCID: PMC2638812 DOI: 10.1093/cercor/bhn101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (approximately 0.1 Hz) but was impaired at firing rates within the physiological range (approximately 2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II.
Collapse
Affiliation(s)
- Simen G Owe
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cingolani LA, Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 2008; 9:344-56. [PMID: 18425089 DOI: 10.1038/nrn2373] [Citation(s) in RCA: 600] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapse regulation exploits the capacity of actin to function as a stable structural component or as a dynamic filament. Beyond its well-appreciated role in eliciting visible morphological changes at the synapse, the emerging picture points to an active contribution of actin to the modulation of the efficacy of pre- and postsynaptic terminals. Moreover, by engaging distinct pools of actin and divergent signalling pathways, actin-dependent morphological plasticity could be uncoupled from modulation of synaptic strength. The aim of this Review is to highlight some of the recent progress in elucidating the role of the actin cytoskeleton in synaptic function.
Collapse
Affiliation(s)
- Lorenzo A Cingolani
- MRC Laboratory for Molecular Cell Biology and MRC Cell Biology Unit, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
27
|
Jensen V, Rinholm JE, Johansen TJ, Medin T, Storm-Mathisen J, Sagvolden T, Hvalby O, Bergersen LH. N-methyl-D-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience 2008; 158:353-64. [PMID: 18571865 DOI: 10.1016/j.neuroscience.2008.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 11/15/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioural disorder among children. ADHD children are hyperactive, impulsive and have problems with sustained attention. These cardinal features are also present in the best validated animal model of ADHD, the spontaneously hypertensive rat (SHR), which is derived from the Wistar Kyoto rat (WKY). Current theories of ADHD relate symptom development to factors that alter learning. N-methyl-D-aspartate receptor (NMDAR) dependent long term changes in synaptic efficacy in the mammalian CNS are thought to represent underlying cellular mechanisms for some forms of learning. We therefore hypothesized that synaptic abnormality in excitatory, glutamatergic synaptic transmission might contribute to the altered behavior in SHRs. We studied physiological and anatomical aspects of hippocampal CA3-to-CA1 synapses in age-matched SHR and WKY (controls). Electrophysiological analysis of these synapses showed reduced synaptic transmission (reduced field excitatory postsynaptic potential for a defined fiber volley size) in SHR, whereas short-term forms of synaptic plasticity, like paired-pulse facilitation, frequency facilitation, and delayed response enhancement were comparable in the two genotypes, and long-term potentiation (LTP) of synaptic transmission was of similar magnitude. However, LTP in SHR was significantly reduced (by 50%) by the NR2B specific blocker CP-101,606 (10 microM), whereas the blocker had no effect on LTP magnitude in the control rats. This indicates that the SHR has a functional predominance of NR2B, a feature characteristic of early developmental stages in these synapses. Quantitative immunofluorescence and electron microscopic postembedding immunogold cytochemistry of the three major NMDAR subunits (NR1, NR2A; and NR2B) in stratum radiatum spine synapses revealed no differences between SHR and WKY. The results indicate that functional impairments in glutamatergic synaptic transmission may be one of the underlying mechanisms leading to the abnormal behavior in SHR, and possibly in human ADHD.
Collapse
Affiliation(s)
- V Jensen
- Molecular Neurobiology Research Group, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|