1
|
Das A, Sinha T, Mishra SS, Das D, Panda AC. Identification of potential proteins translated from circular RNA splice variants. Eur J Cell Biol 2023; 102:151286. [PMID: 36645925 PMCID: PMC7614519 DOI: 10.1016/j.ejcb.2023.151286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules generated from precursor RNAs by the head-to-tail backsplicing of exons. Hundreds of studies demonstrated that circRNAs are ubiquitously expressed and regulate cellular events by modulating microRNA (miRNA) and RNA-binding protein (RBP) activities. A few circRNAs are also known to translate into functional polypeptides regulating cellular physiology. All these functions primarily depend on the full-length sequence of the circRNAs. CircRNA backsplice junction sequence is the key to identifying circRNAs and their full-length mature sequence. However, some multi-exonic circRNAs exist in different isoforms sharing identical backsplice junction sequences and are termed circRNA splice variants. Here, we analyzed the previously published HeLa cell RNA-seq datasets to identify circRNA splice variants using the de novo module of the CIRCexplorer2 circRNA annotation pipeline. A subset of circRNAs with splice variants was validated by the circRNA-rolling circle amplification (circRNA-RCA) method. Interestingly, several validated circRNAs were predicted to translate into proteins by the riboCIRC database. Furthermore, polyribosome fractionation followed by quantitative PCR confirmed the association of a subset of circRNAs with polyribosome supporting their protein-coding potential. Finally, bioinformatics analysis of proteins derived from splice variants of circCORO1C and circASPH suggested altered protein sequences and structures that could affect their physiological functions. Together, our study identified novel circRNA splice variants and their potential translation into protein isoforms which may regulate various physiological processes.
Collapse
Affiliation(s)
- Aniruddha Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | | | - Debojyoti Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India.
| |
Collapse
|
2
|
Zhao Y, Riching AS, Knight WE, Chi C, Broadwell LJ, Du Y, Abdel-Hafiz M, Ambardekar AV, Irwin DC, Proenza C, Xu H, Leinwand LA, Walker LA, Woulfe KC, Bristow MR, Buttrick PM, Song K. Cardiomyocyte-Specific Long Noncoding RNA Regulates Alternative Splicing of the Triadin Gene in the Heart. Circulation 2022; 146:699-714. [PMID: 35862102 PMCID: PMC9427731 DOI: 10.1161/circulationaha.121.058017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/07/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Abnormalities in Ca2+ homeostasis are associated with cardiac arrhythmias and heart failure. Triadin plays an important role in Ca2+ homeostasis in cardiomyocytes. Alternative splicing of a single triadin gene produces multiple triadin isoforms. The cardiac-predominant isoform, mouse MT-1 or human Trisk32, is encoded by triadin exons 1 to 8. In humans, mutations in the triadin gene that lead to a reduction in Trisk32 levels in the heart can cause cardiac dysfunction and arrhythmias. Decreased levels of Trisk32 in the heart are also common in patients with heart failure. However, mechanisms that maintain triadin isoform composition in the heart remain elusive. METHODS We analyzed triadin expression in heart explants from patients with heart failure and cardiac arrhythmias and in hearts from mice carrying a knockout allele for Trdn-as, a cardiomyocyte-specific long noncoding RNA encoded by the antisense strand of the triadin gene, between exons 9 and 11. Catecholamine challenge with isoproterenol was performed on Trdn-as knockout mice to assess the role of Trdn-as in cardiac arrhythmogenesis, as assessed by ECG. Ca2+ transients in adult mouse cardiomyocytes were measured with the IonOptix platform or the GCaMP system. Biochemistry assays, single-molecule fluorescence in situ hybridization, subcellular localization imaging, RNA sequencing, and molecular rescue assays were used to investigate the mechanisms by which Trdn-as regulates cardiac function and triadin levels in the heart. RESULTS We report that Trdn-as maintains cardiac function, at least in part, by regulating alternative splicing of the triadin gene. Knockout of Trdn-as in mice downregulates cardiac triadin, impairs Ca2+ handling, and causes premature death. Trdn-as knockout mice are susceptible to cardiac arrhythmias in response to catecholamine challenge. Normalization of cardiac triadin levels in Trdn-as knockout cardiomyocytes is sufficient to restore Ca2+ handling. Last, Trdn-as colocalizes and interacts with serine/arginine splicing factors in cardiomyocyte nuclei and is essential for efficient recruitment of splicing factors to triadin precursor mRNA. CONCLUSIONS These findings reveal regulation of alternative splicing as a novel mechanism by which a long noncoding RNA controls cardiac function. This study indicates potential therapeutics for heart disease by targeting the long noncoding RNA or pathways regulating alternative splicing.
Collapse
Affiliation(s)
- Yuanbiao Zhao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew S. Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Walter E. Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lindsey J. Broadwell
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mostafa Abdel-Hafiz
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amrut V. Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David C. Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lori A. Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael R. Bristow
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter M. Buttrick
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Affiliation(s)
- Pablo Montañés-Agudo
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Meibergdreef 9, The Netherlands
| | - Yigal M Pinto
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Meibergdreef 9, The Netherlands
| |
Collapse
|
4
|
Quantification of the calcium signaling deficit in muscles devoid of triadin. PLoS One 2022; 17:e0264146. [PMID: 35213584 PMCID: PMC8880904 DOI: 10.1371/journal.pone.0264146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Triadin, a protein of the sarcoplasmic reticulum (SR) of striated muscles, anchors the calcium-storing protein calsequestrin to calcium release RyR channels at the junction with t-tubules, and modulates these channels by conformational effects. Triadin ablation induces structural SR changes and alters the expression of other proteins. Here we quantify alterations of calcium signaling in single skeletal myofibers of constitutive triadin-null mice. We find higher resting cytosolic and lower SR-luminal [Ca2+], 40% lower calsequestrin expression, and more CaV1.1, RyR1 and SERCA1. Despite the increased CaV1.1, the mobile intramembrane charge was reduced by ~20% in Triadin-null fibers. The initial peak of calcium release flux by pulse depolarization was minimally altered in the null fibers (revealing an increase in peak calcium permeability). The “hump” phase that followed, attributable to calcium detaching from calsequestrin, was 25% lower, a smaller change than expected from the reduced calsequestrin content and calcium saturation. The exponential decay rate of calcium transients was 25% higher, consistent with the higher SERCA1 content. Recovery of calcium flux after a depleting depolarization was faster in triadin-null myofibers, consistent with the increased uptake rate and lower SR calsequestrin content. In sum, the triadin knockout determines an increased RyR1 channel openness, which depletes the SR, a substantial loss of calsequestrin and gains in other couplon proteins. Powerful functional compensations ensue: activation of SOCE that increases [Ca2+]cyto; increased SERCA1 activity, which limits the decrease in [Ca2+]SR and a restoration of SR calcium storage of unknown substrate. Together, they effectively limit the functional loss in skeletal muscles.
Collapse
|
5
|
Generation of a Triadin KnockOut Syndrome Zebrafish Model. Int J Mol Sci 2021; 22:ijms22189720. [PMID: 34575879 PMCID: PMC8471218 DOI: 10.3390/ijms22189720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Different forms of sudden cardiac death have been described, including a recently identified form of genetic arrhythmogenic disorder, named “Triadin KnockOut Syndrome” (TKOS). TKOS is associated with recessive mutations in the TRDN gene, encoding for TRIADIN, but the pathogenic mechanism underlying the malignant phenotype has yet to be completely defined. Moreover, patients with TKOS are often refractory to conventional treatment, substantiating the need to identify new therapeutic strategies in order to prevent or treat cardiac events. The zebrafish (Danio rerio) heart is highly comparable to the human heart in terms of functions, signal pathways and ion channels, representing a good model to study cardiac disorders. In this work, we generated the first zebrafish model for trdn loss-of-function, by means of trdn morpholino injections, and characterized its phenotype. Although we did not observe any gross cardiac morphological defect between trdn loss-of-function embryos and controls, we found altered cardiac rhythm that was recovered by the administration of arrhythmic drugs. Our model will provide a suitable platform to study the effect of TRDN mutations and to perform drug screening to identify new pharmacological strategies for patients carrying TRDN mutations.
Collapse
|
6
|
Muslimova EF, Rebrova TY, Kondratieva DS, Afanasiev SA. Role of Phospholamban (PLN), Triadin (TRDN), and Junctin (ASPH) Genes in the Development of Myocardial Contractile Dysfunction. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Sébastien M, Aubin P, Brocard J, Brocard J, Marty I, Fauré J. Dynamics of triadin, a muscle-specific triad protein, within sarcoplasmic reticulum subdomains. Mol Biol Cell 2020; 31:261-272. [PMID: 31877066 PMCID: PMC7183767 DOI: 10.1091/mbc.e19-07-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In skeletal muscle, proteins of the calcium release complex responsible for the excitation-contraction (EC) coupling are exclusively localized in specific reticulum–plasma membrane (ER-PM) contact points named triads. The CRC protein triadin (T95) is localized in the sarcoplasmic reticulum (SR) subdomain of triads where it forms large multimers. However, the mechanisms leading to the steady-state accumulation of T95 in these specific areas of SR are largely unknown. To visualize T95 dynamics, fluorescent chimeras were expressed in triadin knockout myotubes, and their mobility was compared with the mobility of Sec61β, a membrane protein of the SR unrelated to the EC coupling process. At all stages of skeletal muscle cells differentiation, we show a permanent flux of T95 diffusing in the SR membrane. Moreover, we find evidence that a longer residence time in the ER-PM contact point is due to the transmembrane domain of T95 resulting in an overall triad localization.
Collapse
Affiliation(s)
- Muriel Sébastien
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Perrine Aubin
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Jacques Brocard
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Julie Brocard
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Isabelle Marty
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Julien Fauré
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France.,Grenoble Institut Neurosciences, Inserm, U1216, CHU Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
8
|
Rossi D, Gigli L, Gamberucci A, Bordoni R, Pietrelli A, Lorenzini S, Pierantozzi E, Peretto G, De Bellis G, Della Bella P, Ferrari M, Sorrentino V, Benedetti S, Sala S, Di Resta C. A novel homozygous mutation in the TRDN gene causes a severe form of pediatric malignant ventricular arrhythmia. Heart Rhythm 2019; 17:296-304. [PMID: 31437535 DOI: 10.1016/j.hrthm.2019.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Triadin is a protein expressed in cardiac and skeletal muscle that has an essential role in the structure and functional regulation of calcium release units and excitation-contraction coupling. Mutations in the triadin gene (TRDN) have been described in different forms of human arrhythmia syndromes with early onset and severe arrhythmogenic phenotype, including triadin knockout syndrome. OBJECTIVE The purpose of this study was to characterize the pathogenetic mechanism underlying a case of severe pediatric malignant arrhythmia associated with a defect in the TRDN gene. METHODS We used a trio whole exome sequencing approach to identify the genetic defect in a 2-year-old boy who had been resuscitated from sudden cardiac arrest and had frequent episodes of ventricular fibrillation and a family history positive for sudden death. We then performed in vitro functional analysis to investigate possible pathogenic mechanisms underlying this severe phenotype. RESULTS We identified a novel homozygous missense variant (p.L56P) in the TRDN gene in the proband that was inherited from the heterozygous unaffected parents. Expression of a green fluorescent protein (GFP)-tagged mutant human cardiac triadin isoform (TRISK32-L56P-GFP) in heterologous systems revealed that the mutation alters protein dynamics. Furthermore, when co-expressed with the type 2 ryanodine receptor, caffeine-induced calcium release from TRISK32-L56P-GFP was relatively lower compared to that observed with the wild-type construct. CONCLUSION The results of this study allowed us to hypothesize a pathogenic mechanism underlying this rare arrhythmogenic recessive form, suggesting that the mutant protein potentially can trigger arrhythmias by altering calcium homeostasis.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lorenzo Gigli
- Department of Arrhythmology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberta Bordoni
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Alessandro Pietrelli
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Stefania Lorenzini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giovanni Peretto
- Department of Arrhythmology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Paolo Della Bella
- Department of Arrhythmology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurizio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy; Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara Benedetti
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Simone Sala
- Department of Arrhythmology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Di Resta
- Vita-Salute San Raffaele University, Milan, Italy; Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
9
|
Franzini-Armstrong C. The relationship between form and function throughout the history of excitation-contraction coupling. J Gen Physiol 2018; 150:189-210. [PMID: 29317466 PMCID: PMC5806676 DOI: 10.1085/jgp.201711889] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Franzini-Armstrong reviews the development of the excitation–contraction coupling field over time. The concept of excitation–contraction coupling is almost as old as Journal of General Physiology. It was understood as early as the 1940s that a series of stereotyped events is responsible for the rapid contraction response of muscle fibers to an initial electrical event at the surface. These early developments, now lost in what seems to be the far past for most young investigators, have provided an endless source of experimental approaches. In this Milestone in Physiology, I describe in detail the experiments and concepts that introduced and established the field of excitation–contraction coupling in skeletal muscle. More recent advances are presented in an abbreviated form, as readers are likely to be familiar with recent work in the field.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
10
|
Hancox JC, James AF, Walsh MA, Stuart AG. Triadin mutations - a cause of ventricular arrhythmias in children and young adults. JOURNAL OF CONGENITAL CARDIOLOGY 2017. [DOI: 10.1186/s40949-017-0011-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Abstract
There has been a significant progress in our understanding of the molecular mechanisms by which calcium (Ca2+) ions mediate various types of cardiac arrhythmias. A growing list of inherited gene defects can cause potentially lethal cardiac arrhythmia syndromes, including catecholaminergic polymorphic ventricular tachycardia, congenital long QT syndrome, and hypertrophic cardiomyopathy. In addition, acquired deficits of multiple Ca2+-handling proteins can contribute to the pathogenesis of arrhythmias in patients with various types of heart disease. In this review article, we will first review the key role of Ca2+ in normal cardiac function-in particular, excitation-contraction coupling and normal electric rhythms. The functional involvement of Ca2+ in distinct arrhythmia mechanisms will be discussed, followed by various inherited arrhythmia syndromes caused by mutations in Ca2+-handling proteins. Finally, we will discuss how changes in the expression of regulation of Ca2+ channels and transporters can cause acquired arrhythmias, and how these mechanisms might be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Andrew P Landstrom
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.)
| | - Dobromir Dobrev
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.)
| | - Xander H T Wehrens
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.).
| |
Collapse
|
12
|
Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors. Pflugers Arch 2016; 468:1985-1994. [PMID: 27595738 DOI: 10.1007/s00424-016-1869-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Triadin isoforms, splice variants of one gene, maintain healthy Ca2+ homeostasis in skeletal muscle by subserving several functions including an influence on Ca2+ release through the ligand-gated ryanodine receptor (RyR1) ion channels. The predominant triadin isoform in skeletal muscle, Trisk 95, activates RyR1 in vitro via binding to previously unidentified amino acids between residues 200 and 232. Here, we identify three amino acids that influence Trisk 95 binding to RyR1 and ion channel activation, using peptides encompassing residues 200-232. Selective alanine substitutions show that K218, K220, and K224 together facilitate normal Trisk 95 binding to RyR1 and channel activation. Neither RyR1 binding nor activation are altered by alanine substitution of K220 alone or of K218 and K224. Therefore K218, K220, and K224 contribute to a robust binding and activation site that is disrupted only when the charge on all three residues is neutralized. We suggest that charged pair interactions between acidic RyR1 residues D4878, D4907, and E4908 and Trisk 95 residues K218, K220, and K224 facilitate Trisk 95 binding to RyR1 and channel activation. Since K218, K220, and K224 are also required for CSQ binding to RyRs (Kobayashi et al. 17, J Biol Chem 275, 17639-17646), the results suggest that Trisk 95 may not simultaneously bind to RyR1 and CSQ, contrary to the widely held belief that triadin monomers form a quaternary complex with junctin, CSQ and RyR1. Therefore, the in vivo role of triadin monomers in modulating RyR1 activity is likely unrelated to CSQ.
Collapse
|
13
|
Ríos E, Figueroa L, Manno C, Kraeva N, Riazi S. The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle. ACTA ACUST UNITED AC 2016; 145:459-74. [PMID: 26009541 PMCID: PMC4442791 DOI: 10.1085/jgp.201411321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel category of diseases of striated muscle is proposed, the couplonopathies, as those that affect components of the couplon and thereby alter its operation. Couplons are the functional units of intracellular calcium release in excitation–contraction coupling. They comprise dihydropyridine receptors, ryanodine receptors (Ca2+ release channels), and a growing list of ancillary proteins whose alteration may lead to disease. Within a generally similar plan, the couplons of skeletal and cardiac muscle show, in a few places, marked structural divergence associated with critical differences in the mechanisms whereby they fulfill their signaling role. Most important among these are the presence of a mechanical or allosteric communication between voltage sensors and Ca2+ release channels, exclusive to the skeletal couplon, and the smaller capacity of the Ca stores in cardiac muscle, which results in greater swings of store concentration during physiological function. Consideration of these structural and functional differences affords insights into the pathogenesis of several couplonopathies. The exclusive mechanical connection of the skeletal couplon explains differences in pathogenesis between malignant hyperthermia (MH) and catecholaminergic polymorphic ventricular tachycardia (CPVT), conditions most commonly caused by mutations in homologous regions of the skeletal and cardiac Ca2+ release channels. Based on mechanistic considerations applicable to both couplons, we identify the plasmalemma as a site of secondary modifications, typically an increase in store-operated calcium entry, that are relevant in MH pathogenesis. Similar considerations help explain the different consequences that mutations in triadin and calsequestrin have in these two tissues. As more information is gathered on the composition of cardiac and skeletal couplons, this comparative and mechanistic approach to couplonopathies should be useful to understand pathogenesis, clarify diagnosis, and propose tissue-specific drug development.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Lourdes Figueroa
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
14
|
Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. J Muscle Res Cell Motil 2015; 36:501-15. [DOI: 10.1007/s10974-015-9421-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/24/2023]
|
15
|
Marty I. Triadin regulation of the ryanodine receptor complex. J Physiol 2014; 593:3261-6. [PMID: 26228554 DOI: 10.1113/jphysiol.2014.281147] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/19/2014] [Indexed: 11/08/2022] Open
Abstract
The calcium release complex is the major player in excitation-contraction coupling, both in cardiac and skeletal muscle. The core of the complex is the ryanodine receptor, and triadin is a regulating protein. Nevertheless, the precise function of triadin is only partially understood. Besides its function in the anchoring of calsequestrin at the triad/dyad, our recent results allow us to propose hypotheses on new triadin scaffolding functions, based on the studies performed using different models, from triadin knockout mice to human patients, and expression in non-muscle cells, taking into account the presence of multiple triadin isoforms.
Collapse
Affiliation(s)
- Isabelle Marty
- Grenoble Institut des Neurosciences, Inserm U836, Université Joseph Fourier-Bat EJ Safra, Chemin Fortuné Ferrini, 38700, La Tronche, France
| |
Collapse
|
16
|
Manno C, Figueroa L, Royer L, Pouvreau S, Lee CS, Volpe P, Nori A, Zhou J, Meissner G, Hamilton SL, Ríos E. Altered Ca2+ concentration, permeability and buffering in the myofibre Ca2+ store of a mouse model of malignant hyperthermia. J Physiol 2013; 591:4439-57. [PMID: 23798496 DOI: 10.1113/jphysiol.2013.259572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Malignant hyperthermia (MH) is linked to mutations in the type 1 ryanodine receptor, RyR1, the Ca2+ channel of the sarcoplasmic reticulum (SR) of skeletal muscle. The Y522S MH mutation was studied for its complex presentation, which includes structurally and functionally altered cell 'cores'. Imaging cytosolic and intra-SR [Ca2+] in muscle cells of heterozygous YS mice we determined Ca2+ release flux activated by clamp depolarization, permeability (P) of the SR membrane (ratio of flux and [Ca2+] gradient) and SR Ca2+ buffering power (B). In YS cells resting [Ca2+]SR was 45% of the value in normal littermates (WT). P was more than doubled, so that initial flux was normal. Measuring [Ca2+]SR(t) revealed dynamic changes in B(t). The alterations were similar to those caused by cytosolic BAPTA, which promotes release by hampering Ca2+-dependent inactivation (CDI). The [Ca2+] transients showed abnormal 'breaks', decaying phases after an initial rise, traced to a collapse in flux and P. Similar breaks occurred in WT myofibres with calsequestrin reduced by siRNA; calsequestrin content, however, was normal in YS muscle. Thus, the Y522S mutation causes greater openness of the RyR1, lowers resting [Ca2+]SR and alters SR Ca2+ buffering in a way that copies the functional instability observed upon reduction of calsequestrin content. The similarities with the effects of BAPTA suggest that the mutation, occurring near the cytosolic vestibule of the channel, reduces CDI as one of its primary effects. The unstable SR buffering, mimicked by silencing of calsequestrin, may help precipitate the loss of Ca2+ control that defines a fulminant MH event.
Collapse
Affiliation(s)
- Carlo Manno
- S. L. Hamilton: ; E. Ríos: Rush University School of Medicine, Department of Molecular Biophysics and Physiology, 1750 West Harrison St., Suite 1279JS, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rao C, Prodromakis T, Kolker L, Chaudhry UA, Trantidou T, Sridhar A, Weekes C, Camelliti P, Harding SE, Darzi A, Yacoub MH, Athanasiou T, Terracciano CM. The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials 2013; 34:2399-411. [PMID: 23261219 PMCID: PMC3605579 DOI: 10.1016/j.biomaterials.2012.11.055] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022]
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) have been widely proposed as in vitro models of myocardial physiology and disease. A significant obstacle, however, is their immature phenotype. We hypothesised that Ca(2+) cycling of iPSC-CM is influenced by culture conditions and can be manipulated to obtain a more mature cellular behaviour. To test this hypothesis we seeded iPSC-CM onto fibronectin coated microgrooved polydimethylsiloxane (PDMS) scaffolds fabricated using photolithography, or onto unstructured PDMS membrane. After two weeks in culture, the structure and function of iPSC-CM were studied. PDMS microgrooved culture substrates brought about cellular alignment (p < 0.0001) and more organised sarcomere. The Ca(2+) cycling properties of iPSC-CM cultured on these substrates were significantly altered with a shorter time to peak amplitude (p = 0.0002 at 1 Hz), and more organised sarcoplasmic reticulum (SR) Ca(2+) release in response to caffeine (p < 0.0001), suggesting improved SR Ca(2+) cycling. These changes were not associated with modifications in gene expression. Whilst structured tissue culture may make iPSC-CM more representative of adult myocardium, further construct development and characterisation is required to optimise iPSC-CM as a model of adult myocardium.
Collapse
Affiliation(s)
- Christopher Rao
- National Heart and Lung Institute, Imperial College London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Themistoklis Prodromakis
- Centre for Bio-Inspired Technologies, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom
| | - Ljudmila Kolker
- National Heart and Lung Institute, Imperial College London, United Kingdom
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Umar A.R. Chaudhry
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Tatiana Trantidou
- Centre for Bio-Inspired Technologies, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom
| | - Arun Sridhar
- David Jack Centre for Research and Development, GlaxoSmithKline, Ware, United Kingdom
| | - Claire Weekes
- David Jack Centre for Research and Development, GlaxoSmithKline, Ware, United Kingdom
| | - Patrizia Camelliti
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Magdi H. Yacoub
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | | |
Collapse
|
18
|
Dulhunty AF, Wium E, Li L, Hanna AD, Mirza S, Talukder S, Ghazali NA, Beard NA. Proteins within the intracellular calcium store determine cardiac RyR channel activity and cardiac output. Clin Exp Pharmacol Physiol 2013; 39:477-84. [PMID: 22524859 DOI: 10.1111/j.1440-1681.2012.05704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SUMMARY The contractile function of the heart requires the release of Ca(2+) from intracellular Ca(2+) stores in the sarcoplasmic reticulum (SR) of cardiac muscle cells. The efficacy of Ca(2+) release depends on the amount of Ca(2+) loaded into the Ca(2+) store and the way in which this 'Ca(2+) load' influences the activity of the cardiac ryanodine receptor Ca(2+) release channel (RyR2). The effects of the Ca(2+) load on Ca(2+) release through RyR2 are facilitated by: (i) the sensitivity of RyR2 itself to luminal Ca(2+) concentrations; and (ii) interactions between the cardiac Ca(2+) -binding protein calsequestrin (CSQ) 2 and RyR2, transmitted through the 'anchoring' proteins junctin and/or triadin. Mutations in RyR2 are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT) and sudden cardiac death. The tachycardia is associated with changes in the sensitivity of RyR2 to luminal Ca(2+) . Triadin-, junctin- or CSQ-null animals survive, but their longevity and ability to tolerate stress is compromised. These studies reveal the importance of the proteins in normal muscle function, but do not reveal the molecular nature of their functional interactions, which must be defined before changes in the proteins leading to CPVT and heart disease can be understood. Herein, we discuss known interactions between the RyR, triadin, junctin and CSQ with emphasis on the cardiac isoforms of the proteins. Where there is little known about the cardiac isoforms, we discuss evidence from skeletal isoforms.
Collapse
Affiliation(s)
- Angela F Dulhunty
- Department of Translational Biosciences, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Märtson A, Kõks S, Reimann E, Prans E, Erm T, Maasalu K. Transcriptome analysis of osteosarcoma identifies suppression of wnt pathway and up-regulation of adiponectin as potential biomarker. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2052-7993-1-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
A skeletal muscle ryanodine receptor interaction domain in triadin. PLoS One 2012; 7:e43817. [PMID: 22937102 PMCID: PMC3427183 DOI: 10.1371/journal.pone.0043817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/26/2012] [Indexed: 11/19/2022] Open
Abstract
Excitation-contraction coupling in skeletal muscle depends, in part, on a functional interaction between the ligand-gated ryanodine receptor (RyR1) and integral membrane protein Trisk 95, localized to the sarcoplasmic reticulum membrane. Various domains on Trisk 95 can associate with RyR1, yet the domain responsible for regulating RyR1 activity has remained elusive. We explored the hypothesis that a luminal Trisk 95 KEKE motif (residues 200-232), known to promote RyR1 binding, may also form the RyR1 activation domain. Peptides corresponding to Trisk 95 residues 200-232 or 200-231 bound to RyR1 and increased the single channel activity of RyR1 by 1.49 ± 0.11-fold and 1.8 ± 0.15-fold respectively, when added to its luminal side. A similar increase in [(3)H]ryanodine binding, which reflects open probability of the channels, was also observed. This RyR1 activation is similar to activation induced by full length Trisk 95. Circular dichroism showed that both peptides were intrinsically disordered, suggesting a defined secondary structure is not necessary to mediate RyR1 activation. These data for the first time demonstrate that Trisk 95's 200-231 region is responsible for RyR1 activation. Furthermore, it shows that no secondary structure is required to achieve this activation, the Trisk 95 residues themselves are critical for the Trisk 95-RyR1 interaction.
Collapse
|
21
|
Fourest-Lieuvin A, Rendu J, Osseni A, Pernet-Gallay K, Rossi D, Oddoux S, Brocard J, Sorrentino V, Marty I, Fauré J. Role of triadin in the organization of reticulum membrane at the muscle triad. J Cell Sci 2012; 125:3443-53. [PMID: 22505613 DOI: 10.1242/jcs.100958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminal cisternae represent one of the functional domains of the skeletal muscle sarcoplasmic reticulum (SR). They are closely apposed to plasma membrane invaginations, the T-tubules, with which they form structures called triads. In triads, the physical interaction between the T-tubule-anchored voltage-sensing channel DHPR and the SR calcium channel RyR1 is essential because it allows the depolarization-induced calcium release that triggers muscle contraction. This interaction between DHPR and RyR1 is based on the peculiar membrane structures of both T-tubules and SR terminal cisternae. However, little is known about the molecular mechanisms governing the formation of SR terminal cisternae. We have previously shown that ablation of triadins, a family of SR transmembrane proteins that interact with RyR1, induced skeletal muscle weakness in knockout mice as well as a modification of the shape of triads. Here we explore the intrinsic molecular properties of the longest triadin isoform Trisk 95. We show that when ectopically expressed, Trisk 95 can modulate reticulum membrane morphology. The membrane deformations induced by Trisk 95 are accompanied by modifications of the microtubule network organization. We show that multimerization of Trisk 95 by disulfide bridges, together with interaction with microtubules, are responsible for the ability of Trisk 95 to structure reticulum membrane. When domains responsible for these molecular properties are deleted, anchoring of Trisk 95 to the triads in muscle cells is strongly decreased, suggesting that oligomers of Trisk 95 and microtubules contribute to the organization of the SR terminal cisternae in a triad.
Collapse
Affiliation(s)
- Anne Fourest-Lieuvin
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble 38042, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee YK, Ng KM, Lai WH, Chan YC, Lau YM, Lian Q, Tse HF, Siu CW. Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev Rep 2012; 7:976-86. [PMID: 21614516 PMCID: PMC3226695 DOI: 10.1007/s12015-011-9273-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RATIONALE Cardiomyocytes generated from human induced pluripotent stem cells (hiPSCs) are suggested as the most promising candidate to replenish cardiomyocyte loss in regenerative medicine. Little is known about their calcium homeostasis, the key process underlying excitation-contraction coupling. OBJECTIVE We investigated the calcium handling properties of hiPSC-derived cardiomyocytes and compared with those from human embryonic stem cells (hESCs). METHODS AND RESULTS We differentiated cardiomyocytes from hiPSCs (IMR90 and KS1) and hESCs (H7 and HES3) with established protocols. Beating outgrowths from embryoid bodies were typically observed 2 weeks after induction. Cells in these outgrowths were stained positively for tropomyosin and sarcomeric alpha-actinin. Reverse-transcription polymerase chain reaction studies demonstrated the expressions of cardiac-specific markers in both hiPSC- and hESC-derived cardiomyocytes. Calcium handling properties of 20-day-old hiPSC- and hESC-derived cardiomyocytes were investigated using fluorescence confocal microscopy. Compared with hESC-derived cardiomyocytes, spontaneous calcium transients from both lines of hiPSC-derived cardiomyocytes were of significantly smaller amplitude and with slower maximal upstroke velocity. Better caffeine-induced calcium handling kinetics in hESC-CMs indicates a higher sacroplasmic recticulum calcium store. Furthermore, in contrast with hESC-derived cardiomyocytes, ryanodine did not reduce the amplitudes, maximal upstroke and decay velocity of calcium transients of hiPSC-derived cardiomyocytes. In addition, spatial inhomogeneity in temporal properties of calcium transients across the width of cardiomyocytes was more pronounced in hiPSC-derived cardiomyocytes than their hESC counterpart as revealed line-scan calcium imaging. Expressions of the key calcium-handling proteins including ryanodine recptor-2 (RyR2), sacroplasmic recticulum calcium-ATPase (SERCA), junction (Jun) and triadin (TRDN), were significantly lower in hiPSC than in hESCs. CONCLUSIONS The results indicate the calcium handling properties of hiPSC-derived cardiomyocytes are relatively immature to hESC counterparts.
Collapse
Affiliation(s)
- Yee-Ki Lee
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, Durand P, Guicheney P, Kyndt F, Leenhardt A, Le Marec H, Lucet V, Mabo P, Probst V, Monnier N, Ray PF, Santoni E, Trémeaux P, Lacampagne A, Fauré J, Lunardi J, Marty I. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet 2012; 21:2759-67. [PMID: 22422768 PMCID: PMC3363337 DOI: 10.1093/hmg/dds104] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease so far related to mutations in the cardiac ryanodine receptor (RYR2) or the cardiac calsequestrin (CASQ2) genes. Because mutations in RYR2 or in CASQ2 are not retrieved in all CPVT cases, we searched for mutations in the physiological protein partners of RyR2 and CSQ2 in a large cohort of CPVT patients with no detected mutation in these two genes. Based on a candidate gene approach, we focused our investigations on triadin and junctin, two proteins that link RyR2 and CSQ2. Mutations in the triadin (TRDN) and in the junctin (ASPH) genes were searched in a cohort of 97 CPVT patients. We identified three mutations in triadin which cosegregated with the disease on a recessive mode of transmission in two families, but no mutation was found in junctin. Two TRDN mutations, a 4 bp deletion and a nonsense mutation, resulted in premature stop codons; the third mutation, a p.T59R missense mutation, was further studied. Expression of the p.T59R mutant in COS-7 cells resulted in intracellular retention and degradation of the mutant protein. This was confirmed after in vivo expression of the mutant triadin in triadin knock-out mice by viral transduction. In this work, we identified TRDN as a new gene responsible for an autosomal recessive form of CPVT. The mutations identified in the two families lead to the absence of the protein, thereby demonstrating the importance of triadin for the normal function of the cardiac calcium release complex in humans.
Collapse
Affiliation(s)
- Nathalie Roux-Buisson
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Perez CF. On the footsteps of Triadin and its role in skeletal muscle. World J Biol Chem 2011; 2:177-83. [PMID: 21909459 PMCID: PMC3165967 DOI: 10.4331/wjbc.v2.i8.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 02/05/2023] Open
Abstract
Calcium is a crucial element for striated muscle function. As such, myoplasmic free Ca2+ concentration is delicately regulated through the concerted action of multiple Ca2+ pathways that relay excitation of the plasma membrane to the intracellular contractile machinery. In skeletal muscle, one of these major Ca2+ pathways is Ca2+ release from intracellular Ca2+ stores through type-1 ryanodine receptor/Ca2+ release channels (RyR1), which positions RyR1 in a strategic cross point to regulate Ca2+ homeostasis. This major Ca2+ traffic point appears to be highly sensitive to the intracellular environment, which senses through a plethora of chemical and protein-protein interactions. Among these modulators, perhaps one of the most elusive is Triadin, a muscle-specific protein that is involved in many crucial aspect of muscle function. This family of proteins mediates complex interactions with various Ca2+ modulators and seems poised to be a relevant modulator of Ca2+ signaling in cardiac and skeletal muscles. The purpose of this review is to examine the most recent evidence and current understanding of the role of Triadin in muscle function, in general, with particular emphasis on its contribution to Ca2+ homeostasis.
Collapse
Affiliation(s)
- Claudio F Perez
- Claudio F Perez, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
25
|
Al-Qusairi L, Laporte J. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle 2011; 1:26. [PMID: 21797990 PMCID: PMC3156648 DOI: 10.1186/2044-5040-1-26] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/13/2011] [Indexed: 12/25/2022] Open
Abstract
In skeletal muscle, the excitation-contraction (EC) coupling machinery mediates the translation of the action potential transmitted by the nerve into intracellular calcium release and muscle contraction. EC coupling requires a highly specialized membranous structure, the triad, composed of a central T-tubule surrounded by two terminal cisternae from the sarcoplasmic reticulum. While several proteins located on these structures have been identified, mechanisms governing T-tubule biogenesis and triad formation remain largely unknown. Here, we provide a description of triad structure and plasticity and review the role of proteins that have been linked to T-tubule biogenesis and triad formation and/or maintenance specifically in skeletal muscle: caveolin 3, amphiphysin 2, dysferlin, mitsugumins, junctophilins, myotubularin, ryanodine receptor, and dihydhropyridine Receptor. The importance of these proteins in triad biogenesis and subsequently in muscle contraction is sustained by studies on animal models and by the direct implication of most of these proteins in human myopathies.
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Department of Translational Medecine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 rue Laurent Fries, 67404 Illkirch, France.
| | | |
Collapse
|
26
|
Song DW, Lee JG, Youn HS, Eom SH, Kim DH. Ryanodine receptor assembly: A novel systems biology approach to 3D mapping. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:145-61. [DOI: 10.1016/j.pbiomolbio.2010.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
27
|
Excitation-contraction coupling and minor triadic proteins in low-frequency fatigue. Exerc Sport Sci Rev 2010; 38:135-42. [PMID: 20577062 DOI: 10.1097/jes.0b013e3181e3734d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Low-frequency fatigue (LFF) is characterized by a proportionally greater loss of force at low compared with high activation frequencies and a prolonged recovery. Recent work suggests a calcium-induced uncoupling of excitation-contraction coupling underlies LFF. Here, newly characterized triadic proteins are described, and possible mechanisms by which they may contribute to LFF are suggested.
Collapse
|
28
|
Eltit JM, Feng W, Lopez JR, Padilla IT, Pessah IN, Molinski TF, Fruen BR, Allen PD, Perez CF. Ablation of skeletal muscle triadin impairs FKBP12/RyR1 channel interactions essential for maintaining resting cytoplasmic Ca2+. J Biol Chem 2010; 285:38453-62. [PMID: 20926377 DOI: 10.1074/jbc.m110.164525] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we have shown that lack of expression of triadins in skeletal muscle cells results in significant increase of myoplasmic resting free Ca(2+) ([Ca(2+)](rest)), suggesting a role for triadins in modulating global intracellular Ca(2+) homeostasis. To understand this mechanism, we study here how triadin alters [Ca(2+)](rest), Ca(2+) release, and Ca(2+) entry pathways using a combination of Ca(2+) microelectrodes, channels reconstituted in bilayer lipid membranes (BLM), Ca(2+), and Mn(2+) imaging analyses of myotubes and RyR1 channels obtained from triadin-null mice. Unlike WT cells, triadin-null myotubes had chronically elevated [Ca(2+)](rest) that was sensitive to inhibition with ryanodine, suggesting that triadin-null cells have increased basal RyR1 activity. Consistently, BLM studies indicate that, unlike WT-RyR1, triadin-null channels more frequently display atypical gating behavior with multiple and stable subconductance states. Accordingly, pulldown analysis and fluorescent FKBP12 binding studies in triadin-null muscles revealed a significant impairment of the FKBP12/RyR1 interaction. Mn(2+) quench rates under resting conditions indicate that triadin-null cells also have higher Ca(2+) entry rates and lower sarcoplasmic reticulum Ca(2+) load than WT cells. Overexpression of FKBP12.6 reverted the null phenotype, reducing resting Ca(2+) entry, recovering sarcoplasmic reticulum Ca(2+) content levels, and restoring near normal [Ca(2+)](rest). Exogenous FKBP12.6 also reduced the RyR1 channel P(o) but did not rescue subconductance behavior. In contrast, FKBP12 neither reduced P(o) nor recovered multiple subconductance gating. These data suggest that elevated [Ca(2+)](rest) in triadin-null myotubes is primarily driven by dysregulated RyR1 channel activity that results in part from impaired FKBP12/RyR1 functional interactions and a secondary increased Ca(2+) entry at rest.
Collapse
Affiliation(s)
- Jose M Eltit
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vassilopoulos S, Oddoux S, Groh S, Cacheux M, Fauré J, Brocard J, Campbell KP, Marty I. Caveolin 3 is associated with the calcium release complex and is modified via in vivo triadin modification. Biochemistry 2010; 49:6130-5. [PMID: 20565104 PMCID: PMC2907096 DOI: 10.1021/bi100796v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The triadin isoforms Trisk 95 and Trisk 51 are both components of the skeletal muscle calcium release complex. To investigate the specific role of Trisk 95 and Trisk 51 isoforms in muscle physiology, we overexpressed Trisk 95 or Trisk 51 using adenovirus-mediated gene transfer in skeletal muscle of newborn mice. Overexpression of either Trisk 95 or Trisk 51 alters the muscle fiber morphology, while leaving unchanged the expression of the ryanodine receptor, the dihydropyridine receptor, and calsequestrin. We also observe an aberrant expression of caveolin 3 in both Trisk 95- and Trisk 51-overexpressing skeletal muscles. Using a biochemical approach, we demonstrate that caveolin 3 is associated with the calcium release complex in skeletal muscle. Taking advantage of muscle and non-muscle cell culture models and triadin null mouse skeletal muscle, we further dissect the molecular organization of the caveolin 3-containing calcium release complex. Our data demonstrate that the association of caveolin 3 with the calcium release complex occurs via a direct interaction with the transmembrane domain of the ryanodine receptor. Taken together, these data suggest that caveolin 3-containing membrane domains and the calcium release complex are functionally linked and that Trisk 95 and Trisk 51 are instrumental to the regulation of this interaction, the integrity of which may be crucial for muscle physiology.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Oddoux S, Brocard J, Schweitzer A, Szentesi P, Giannesini B, Brocard J, Fauré J, Pernet-Gallay K, Bendahan D, Lunardi J, Csernoch L, Marty I. Triadin deletion induces impaired skeletal muscle function. J Biol Chem 2009; 284:34918-29. [PMID: 19843516 PMCID: PMC2787354 DOI: 10.1074/jbc.m109.022442] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/14/2009] [Indexed: 01/27/2023] Open
Abstract
Triadin is a multiple proteins family, some isoforms being involved in muscle excitation-contraction coupling, and some having still unknown functions. To obtain clues on triadin functions, we engineered a triadin knock-out mouse line and characterized the physiological effect of triadin ablation on skeletal muscle function. These mice presented a reduced muscle strength, which seemed not to alter their survival and has been characterized in the present work. We first checked in these mice the expression level of the different proteins involved in calcium homeostasis and observed in fast muscles an increase in expression of dihydropyridine receptor, with a large reduction in calsequestrin expression. Electron microscopy analysis of KO muscles morphology demonstrated the presence of triads in abnormal orientation and a reduction in the sarcoplasmic reticulum terminal cisternae volume. Using calcium imaging on cultured myotubes, we observed a reduction in the total amount of calcium stored in the sarcoplasmic reticulum. Physiological studies have been performed to evaluate the influence of triadin deletion on skeletal muscle function. Muscle strength has been measured both on the whole animal model, using hang test or electrical stimulation combined with NMR analysis and strength measurement, or on isolated muscle using electrical stimulation. All the results obtained demonstrate an important reduction in muscle strength, indicating that triadin plays an essential role in skeletal muscle function and in skeletal muscle structure. These results indicate that triadin alteration leads to the development of a myopathy, which could be studied using this new animal model.
Collapse
Affiliation(s)
- Sarah Oddoux
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| | - Julie Brocard
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| | - Annie Schweitzer
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - Peter Szentesi
- the Department of Physiology, Medical School and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | - Benoit Giannesini
- the Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, Marseille 13000, France, and
| | - Jacques Brocard
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - Julien Fauré
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
- Centre Hospitalier Regional Universitaire de Grenoble, Hopital Michallon, Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Karine Pernet-Gallay
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - David Bendahan
- the Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, Marseille 13000, France, and
| | - Joël Lunardi
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
- Centre Hospitalier Regional Universitaire de Grenoble, Hopital Michallon, Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Laszlo Csernoch
- the Department of Physiology, Medical School and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | - Isabelle Marty
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| |
Collapse
|
31
|
Affiliation(s)
- Angela Dulhunty
- John Curtin School of Medical Research, Canberra City, ACT, Australia.
| | | | | |
Collapse
|
32
|
Ríos E, Györke S. Calsequestrin, triadin and more: the molecules that modulate calcium release in cardiac and skeletal muscle. J Physiol 2009; 587:3069-70. [PMID: 19567746 DOI: 10.1113/jphysiol.2009.175083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
33
|
Meissner G, Wang Y, Xu L, Eu JP. Silencing genes of sarcoplasmic reticulum proteins clarifies their roles in excitation-contraction coupling. J Physiol 2009; 587:3089-90. [PMID: 19567747 DOI: 10.1113/jphysiol.2009.171835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry, University of North Carolina, Chapel Hill, 27599-7260, USA.
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Paul D Allen
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|