1
|
Muse ME, Armstrong DA, Hoen AG, Gilbert-Diamond D, Gui J, Palys TJ, Kolling FW, Christensen BC, Karagas MR, Howe CG. Maternal-Infant Factors in Relation to Extracellular Vesicle and Particle miRNA in Prenatal Plasma and in Postpartum Human Milk. Int J Mol Sci 2024; 25:1538. [PMID: 38338815 PMCID: PMC10855220 DOI: 10.3390/ijms25031538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNA) in extracellular vesicles and particles (EVPs) in maternal circulation during pregnancy and in human milk postpartum are hypothesized to facilitate maternal-offspring communication via epigenetic regulation. However, factors influencing maternal EVP miRNA profiles during these two critical developmental windows remain largely unknown. In a pilot study of 54 mother-child dyads in the New Hampshire Birth Cohort Study, we profiled 798 EVP miRNAs, using the NanoString nCounter platform, in paired maternal second-trimester plasma and mature (6-week) milk samples. In adjusted models, total EVP miRNA counts were lower for plasma samples collected in the afternoon compared with the morning (p = 0.024). Infant age at sample collection was inversely associated with total miRNA counts in human milk EVPs (p = 0.040). Milk EVP miRNA counts were also lower among participants who were multiparous after delivery (p = 0.047), had a pre-pregnancy BMI > 25 kg/m2 (p = 0.037), or delivered their baby via cesarean section (p = 0.021). In post hoc analyses, we also identified 22 specific EVP miRNA that were lower among participants who delivered their baby via cesarean section (Q < 0.05). Target genes of delivery mode-associated miRNAs were over-represented in pathways related to satiety signaling in infants (e.g., CCKR signaling) and mammary gland development and lactation (e.g., FGF signaling, EGF receptor signaling). In conclusion, we identified several key factors that may influence maternal EVP miRNA composition during two critical developmental windows, which should be considered in future studies investigating EVP miRNA roles in maternal and child health.
Collapse
Affiliation(s)
- Meghan E. Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - David A. Armstrong
- Research Service, V.A. Medical Center, Hartford, VT 05009, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH 03756, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Frederick W. Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| |
Collapse
|
2
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Li Y, Cui ZJ. Photodynamic Activation of Cholecystokinin 1 Receptor with Different Genetically Encoded Protein Photosensitizers and from Varied Subcellular Sites. Biomolecules 2020; 10:1423. [PMID: 33050050 PMCID: PMC7601527 DOI: 10.3390/biom10101423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated by singlet oxygen (1O2) generated in photodynamic action with sulphonated aluminum phthalocyanine (SALPC) or genetically encoded protein photosensitizer (GEPP) KillerRed or mini singlet oxygen generator (miniSOG). A large number of GEPP with varied 1O2 quantum yields have appeared recently; therefore, in the present work, the efficacy of different GEPP to photodynamically activate CCK1R was examined, as monitored by Fura-2 calcium imaging. KillerRed, miniSOG, miniSOG2, singlet oxygen protein photosensitizer (SOPP), flavin-binding fluorescent protein from Methylobacterium radiotolerans with point mutation C71G (Mr4511C71G), and flavin-binding fluorescent protein from Dinoroseobacter shibae (DsFbFP) were expressed at the plasma membrane (PM) in AR4-2J cells, which express endogenous CCK1R. Light irradiation (KillerRed: white light 85.3 mW‧cm-2, 4' and all others: LED 450 nm, 85 mW·cm-2, 1.5') of GEPPPM-expressing AR4-2J was found to all trigger persistent calcium oscillations, a hallmark of permanent photodynamic CCK1R activation; DsFbFP was the least effective, due to poor expression. miniSOG was targeted to PM, mitochondria (MT) or lysosomes (LS) in AR4-2J in parallel experiments; LED light irradiation was found to all induce persistent calcium oscillations. In miniSOGPM-AR4-2J cells, light emitting diode (LED) light irradiation-induced calcium oscillations were readily inhibited by CCK1R antagonist devazepide 2 nM; miniSOGMT-AR4-2J cells were less susceptible, but miniSOGLS-AR4-2J cells were not inhibited. In conclusion, different GEPPPM could all photodynamically activate CCK1R. Intracellular GEPP photodynamic action may prove particularly suited to study intracellular GPCR.
Collapse
Affiliation(s)
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
4
|
Intracellular interplay between cholecystokinin and leptin signalling for satiety control in rats. Sci Rep 2020; 10:12000. [PMID: 32686770 PMCID: PMC7371863 DOI: 10.1038/s41598-020-69035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
Cholecystokinin (CCK) and leptin are satiety-controlling peptides, yet their interactive roles remain unclear. Here, we addressed this issue using in vitro and in vivo models. In rat C6 glioma cells, leptin pre-treatment enhanced Ca2+ mobilization by a CCK agonist (CCK-8s). This leptin action was reduced by Janus kinase inhibitor (AG490) or PI3-kinase inhibitor (LY294002). Meanwhile, leptin stimulation alone failed to mobilize Ca2+ even in cells overexpressing leptin receptors (C6-ObRb). Leptin increased nuclear immunoreactivity against phosphorylated STAT3 (pSTAT3) whereas CCK-8s reduced leptin-induced nuclear pSTAT3 accumulation in these cells. In the rat ventromedial hypothalamus (VMH), leptin-induced action potential firing was enhanced, whereas nuclear pSTAT3 was reduced by co-stimulation with CCK-8s. To further analyse in vivo signalling interplay, a CCK-1 antagonist (lorglumide) was intraperitoneally injected in rats following 1-h restricted feeding. Food access was increased 3-h after lorglumide injection. At this timepoint, nuclear pSTAT3 was increased whereas c-Fos was decreased in the VMH. Taken together, these results suggest that leptin and CCK receptors may both contribute to short-term satiety, and leptin could positively modulate CCK signalling. Notably, nuclear pSTAT3 levels in this experimental paradigm were negatively correlated with satiety levels, contrary to the generally described transcriptional regulation for long-term satiety via leptin receptors.
Collapse
|
5
|
Wang R, Lu Y, Cicha MZ, Singh MV, Benson CJ, Madden CJ, Chapleau MW, Abboud FM. TMEM16B determines cholecystokinin sensitivity of intestinal vagal afferents of nodose neurons. JCI Insight 2019; 4:122058. [PMID: 30843875 DOI: 10.1172/jci.insight.122058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
The satiety effects and metabolic actions of cholecystokinin (CCK) have been recognized as potential therapeutic targets in obesity for decades. We identified a potentially novel Ca2+-activated chloride (Cl-) current (CaCC) that is induced by CCK in intestinal vagal afferents of nodose neurons. The CaCC subunit Anoctamin 2 (Ano2/TMEM16B) is the dominant contributor to this current. Its expression is reduced, as is CCK current activity in obese mice on a high-fat diet (HFD). Reduced expression of TMEM16B in the heterozygote KO of the channel in sensory neurons results in an obese phenotype with a loss of CCK sensitivity in intestinal nodose neurons, a loss of CCK-induced satiety, and metabolic changes, including decreased energy expenditure. The effect on energy expenditure is further supported by evidence in rats showing that CCK enhances sympathetic nerve activity and thermogenesis in brown adipose tissue, and these effects are abrogated by a HFD and vagotomy. Our findings reveal that Ano2/TMEM16B is a Ca2+-activated chloride channel in vagal afferents of nodose neurons and a major determinant of CCK-induced satiety, body weight control, and energy expenditure, making it a potential therapeutic target in obesity.
Collapse
Affiliation(s)
- Runping Wang
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and
| | - Yongjun Lu
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and
| | - Michael Z Cicha
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and
| | - Madhu V Singh
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and
| | - Christopher J Benson
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark W Chapleau
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - François M Abboud
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Jiang WY, Li Y, Li ZY, Cui ZJ. Permanent Photodynamic Cholecystokinin 1 Receptor Activation: Dimer-to-Monomer Conversion. Cell Mol Neurobiol 2018; 38:1283-1292. [PMID: 29869099 PMCID: PMC11482018 DOI: 10.1007/s10571-018-0596-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
The G protein-coupled cholecystokinin 1 receptor (CCK1R) is activated permanently by type II photodynamic action (i.e., by singlet oxygen) in the freshly isolated rat pancreatic acini, in contrast to reversible activation by CCK. But how CCK1R is photodynamically activated is not known. Therefore, in the present work, we subjected membrane proteins extracted from isolated rat pancreatic acini to photodynamic action with photosensitiser sulphonated aluminium phthalocyanine (SALPC), and used reducing gel electrophoresis and Western blot to detect possible changes in CCK1R oligomerization status. Photodynamic action (SALPC 1 µM, light 36.7 mW cm- 2 × 10 min) was found to convert dimeric CCK1R nearly quantitatively to monomers. Such conversion was dependent on both irradiance (8.51-36.7 mW cm- 2) and irradiation time (1-20 min). Minimum effective irradiance was found to be 11.1 mW cm- 2 (× 10 min, with SALPC 1 µM), and brief photodynamic action (SALPC 1 µM, 36.7 mW cm- 2 × 1 min) was effective. Whilst CCK stimulation of purified membrane proteins alone had no effect on CCK1R dimer/monomer balance, sub-threshold photodynamic action (SALPC 100 nM, 36.7 mW cm- 2 × 10 min) plus CCK revealed a bell-shaped CCK dose response curve for CCK1R monomerization, which was remarkably similar to the dose response curve for CCK-stimulated amylase secretion in isolated rat pancreatic acini. These two lines of evidence together suggest that during photodynamic CCK1R activation, CCK1R is permanently monomerized, thus providing a unique approach for permanent G protein-coupled receptor (GPCR) activation which has not been achieved before.
Collapse
Affiliation(s)
- Wen Yi Jiang
- Institute of Cell Biology, Beijing Normal University, Beijing, 100875, China
| | - Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing, 100875, China
| | - Zhi Ying Li
- Institute of Cell Biology, Beijing Normal University, Beijing, 100875, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
7
|
Jiang HN, Li Y, Jiang WY, Cui ZJ. Cholecystokinin 1 Receptor - A Unique G Protein- Coupled Receptor Activated by Singlet Oxygen ( GPCR-ABSO). Front Physiol 2018; 9:497. [PMID: 29867546 PMCID: PMC5953346 DOI: 10.3389/fphys.2018.00497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/18/2018] [Indexed: 02/05/2023] Open
Abstract
Plasma membrane-delimited generation of singlet oxygen by photodynamic action with photosensitizer sulfonated aluminum phthalocyanine (SALPC) activates cholecystokinin 1 receptor (CCK1R) in pancreatic acini. Whether CCK1R retains such photooxidative singlet oxygen activation properties in other environments is not known. Genetically encoded protein photosensitizers KillerRed or mini singlet oxygen generator (miniSOG) were expressed in pancreatic acinar tumor cell line AR4-2J, CCK1R, KillerRed or miniSOG were expressed in HEK293 or CHO-K1 cells. Cold light irradiation (87 mW⋅cm-2) was applied to photosensitizer-expressing cells to examine photodynamic activation of CCK1R by Fura-2 fluorescent calcium imaging. When CCK1R was transduced into HEK293 cells which lack endogenous CCK1R, photodynamic action with SALPC was found to activate CCK1R in CCK1R-HEK293 cells. When KillerRed or miniSOG were transduced into AR4-2J which expresses endogenous CCK1R, KillerRed or miniSOG photodynamic action at the plasma membrane also activated CCK1R. When fused KillerRed-CCK1R was transduced into CHO-K1 cells, light irradiation activated the fused CCK1R leading to calcium oscillations. Therefore KillerRed either expressed independently, or fused with CCK1R can both activate CCK1R photodynamically. It is concluded that photodynamic singlet oxygen activation is an intrinsic property of CCK1R, independent of photosensitizer used, or CCK1R-expressing cell types. Photodynamic singlet oxygen CCK1R activation after transduction of genetically encoded photosensitizer in situ may provide a convenient way to verify intrinsic physiological functions of CCK1R in multiple CCK1R-expressing cells and tissues, or to actuate CCK1R function in CCK1R-expressing and non-expressing cell types after transduction with fused KillerRed-CCK1R.
Collapse
Affiliation(s)
| | | | | | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Takahashi-Iwanaga H, Kimura S, Konno K, Watanabe M, Iwanaga T. Intrarenal signaling mediated by CCK plays a role in salt intake-induced natriuresis. Am J Physiol Renal Physiol 2017; 313:F20-F29. [DOI: 10.1152/ajprenal.00539.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/22/2022] Open
Abstract
The natriuretic hormone CCK exhibits its gene transcripts in total kidney extracts. To test the possibility of CCK acting as an intrarenal mediator of sodium excretion, we examined mouse kidneys by 1) an in situ hybridization technique for CCK mRNA in animals fed a normal- or a high-sodium diet; 2) immuno-electron microscopy for the CCK peptide, 3) an in situ hybridization method and immunohistochemistry for the CCK-specific receptor CCKAR; 4) confocal image analysis of receptor-mediated Ca2+ responses in isolated renal tubules; and 5) metabolic cage experiments for the measurement of urinary sodium excretion in high-salt-fed mice either treated or untreated with the CCKAR antagonist lorglumide. Results showed the CCK gene to be expressed intensely in the inner medulla and moderately in the inner stripe of the outer medulla, with the expression in the latter being enhanced by high sodium intake. Immunoreactivity for the CCK peptide was localized to the rough endoplasmic reticulum of the medullary interstitial cells in corresponding renal regions, confirming it to be a secretory protein. Gene transcripts, protein products, and the functional activity for CCKAR were consistently localized to the late proximal tubule segments (S2 and S3) in the medullary rays, and the outer stripe of the outer medulla. Lorglumide significantly diminished natriuretic responses of mice to a dietary sodium load without altering the glomerular filtration rate. These findings suggest that the medullary interstitial cells respond to body fluid expansion by CCK release for feedback regulation of the late proximal tubular reabsorption.
Collapse
Affiliation(s)
| | - Shunsuke Kimura
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshihiko Iwanaga
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
Argente-Arizón P, Freire-Regatillo A, Argente J, Chowen JA. Role of non-neuronal cells in body weight and appetite control. Front Endocrinol (Lausanne) 2015; 6:42. [PMID: 25859240 PMCID: PMC4374626 DOI: 10.3389/fendo.2015.00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Julie A. Chowen, Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65, Madrid E-28009, Spain e-mail: ;
| |
Collapse
|
10
|
Turlova E, Bae CYJ, Deurloo M, Chen W, Barszczyk A, Horgen FD, Fleig A, Feng ZP, Sun HS. TRPM7 Regulates Axonal Outgrowth and Maturation of Primary Hippocampal Neurons. Mol Neurobiol 2014; 53:595-610. [PMID: 25502295 DOI: 10.1007/s12035-014-9032-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 11/25/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a calcium-permeable divalent cation channel and mediates neuronal cell death under ischemic stresses. In this study, we investigated the contribution of TRPM7 to neuronal development in mouse primary hippocampal neurons. We demonstrated that TRPM7 channels are highly expressed in the tips of the growth cone. Either knockdown of TRPM7 with target-specific shRNA or blocking channel conductance by a specific blocker waixenicin A enhanced axonal outgrowth in culture. Blocking TRPM7 activity by waixenicin A reduced calcium influx and accelerated the polarization of the hippocampal neurons as characterized by the development of distinct axons and dendrites. Furthermore, TRPM7 coprecipitated and colocalized with F-actin and α-actinin-1 at the growth cone. We conclude that calcium influx through TRPM7 inhibits axonal outgrowth and maturation by regulating the F-actin and α-actinin-1 protein complex. Inhibition of TRPM7 channel promotes axonal outgrowth, suggesting its therapeutic potential in neurodegenerative disorders.
Collapse
Affiliation(s)
- Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Christine Y J Bae
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Marielle Deurloo
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Wenliang Chen
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Andrew Barszczyk
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - F David Horgen
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI, 96720, USA
- University of Hawaii Cancer Center and John A. Burns School of Medicine, Honolulu, HI, 96720, USA
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|