1
|
Ibañez AM, Godoy Coto J, Martínez VR, Del Milagro Yeves A, Dolcetti FJC, Cervellini S, Echavarría L, Velez-Rueda JO, Lofeudo JM, Portiansky EL, Bellini MJ, Aiello EA, Ennis IL, De Giusti VC. Cardioprotection and neurobehavioral impact of swimming training in ovariectomized rats. GeroScience 2025; 47:2317-2334. [PMID: 39527177 PMCID: PMC11979057 DOI: 10.1007/s11357-024-01422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular (CV) disease is the major cause of mortality. Estrogens (E) exert multiple CV and neuroprotective effects. During menopause, CV and cognitive pathologies increase dramatically. At present, it is known that E exert many of their beneficial effects through the G protein-coupled estrogen receptor (GPER). Exercise reduces the risk of developing CV diseases. Sodium/proton exchanger (NHE-1) is overexpressed in ovariectomized (OVX) rats, probably due to the increase in reactive oxidative species (ROS). Insulin-like growth factor 1 (IGF-1), the main humoral mediator of exercise, inhibits the NHE-1. We aim to explore the subcellular mechanisms involved in the heart and brain impact of physiological exercise in OVX rats. We speculate that physical training, via IGF-1, prevents the increase in ROS, improving heart and brain physiological functions during menopause. Exercise diminished cardiac ROS production and increased catalase (CAT) activity in OVX rats. In concordance, IGF-1 treatment reduces brain ROS, surely contributing to the improvement in brain behavior. Moreover, the aerobic routine was able to prevent, and IGF-1 therapy to revert, NHE-1 hyperactivity in OVX rats. Finally, our results confirm the proposed signaling pathway as IGF-1/PI3K-AKT/NO. Surprisingly, GPER inhibitor (G36) was able to abolish the IGF-1 effect, suggesting that directly or indirectly GPER is part of the IGF-1 pathway. We propose that IGF-1 is the main responsible for the protective effect of aerobic training both in the heart and brain in OVX rats. Moreover, we showed that not only it is possible to prevent but also to revert the menopause-induced NHE-1 hyperactivity by exercise/IGF-1 cascade.
Collapse
Affiliation(s)
- Alejandro Martín Ibañez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Valeria Romina Martínez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandra Del Milagro Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Sofía Cervellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Lucía Echavarría
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Jorge Omar Velez-Rueda
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Juan Manuel Lofeudo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Enrique Leo Portiansky
- Cátedra de Patología General- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata- CONICET, La Plata, Argentina
| | - María José Bellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica Celeste De Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
2
|
Milano G, Reinero M, Puyal J, Tozzi P, Samaja M, Porte-Thomé F, Beghetti M. Inhibition of Sodium/Hydrogen Exchanger-1 in the Right Ventricle and Lung Dysfunction Induced by Experimental Pulmonary Arterial Hypertension in Rats. J Am Heart Assoc 2025; 14:e036859. [PMID: 40055146 DOI: 10.1161/jaha.124.036859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Life-threatening pulmonary arterial hypertension (PAH) still lacks a direct therapeutic approach targeted to the molecular defects associated with the disease. Here, we focus on the impaired regulation of intracellular acidity and sodium/calcium overload by testing the hypothesis that inhibiting NHE-1 (sodium/hydrogen exchanger isoform 1) with rimeporide enables the recovery of pulmonary and right ventricular dysfunctions in the Sugen5416/hypoxia PAH model in rats. METHODS AND RESULTS Adult Sprague-Dawley male rats (n=44) rats were divided into 2 broad groups: control and Sugen5416/hypoxia. After verifying PAH insurgence in the Sugen5416/hypoxia group by transthoracic echocardiography and pulse-wave Doppler analysis, rats were treated with either 100 mg/kg per day rimeporide or placebo in drinking water for 3 weeks. The functional, morphological (fibrosis and hypertrophy), and biochemical (inflammation, signaling pathways) dysfunctions caused by PAH were partially reverted by rimeporide in both the lungs and myocardium, where the most striking effects were observed in the right ventricle. Rimeporide improved hemodynamics in the pulmonary circulation and in the right ventricle, with decrease in right ventricle hypertrophy, pulmonary vascular remodeling, inflammation, and fibrosis. No effect of rimeporide was detected in control rats. The protective effect of rimeporide was accompanied by decreased p-Akt/Akt (phosphorylated protein kinase B/protein kinase B) ratio and increased autophagy flux mainly in the right ventricle. CONCLUSIONS By specifically inhibiting NHE-1, rimeporide at the selected dosage revealed remarkable anti-PAH effects by preventing the functional, morphological, and biochemical deleterious effects of PAH on the right ventricle and lungs. Rimeporide should be considered as a potential treatment for PAH.
Collapse
MESH Headings
- Animals
- Rats, Sprague-Dawley
- Male
- Disease Models, Animal
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/prevention & control
- Sodium-Hydrogen Exchanger 1/antagonists & inhibitors
- Sodium-Hydrogen Exchanger 1/metabolism
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/complications
- Ventricular Function, Right/drug effects
- Rats
- Lung/drug effects
- Lung/metabolism
- Lung/physiopathology
- Pyrroles
- Indoles
- Heart Ventricles/metabolism
- Heart Ventricles/drug effects
- Heart Ventricles/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/physiopathology
- Guanidines/pharmacology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/prevention & control
- Hypertrophy, Right Ventricular/etiology
Collapse
Affiliation(s)
- Giuseppina Milano
- Department Cœur-Vaisseaux, Cardiac Surgery Center University Hospital of Lausanne Switzerland
| | - Melanie Reinero
- Department Cœur-Vaisseaux, Cardiac Surgery Center University Hospital of Lausanne Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences University of Lausanne Switzerland
- CURML, University Center of Legal Medicine, Lausanne University Hospital Lausanne Switzerland
| | - Piergiorgio Tozzi
- Department Cœur-Vaisseaux, Cardiac Surgery Center University Hospital of Lausanne Switzerland
| | | | | | - Maurice Beghetti
- Unité de Cardiologie Pédiatrique University Hospital of Geneva, University of Geneva Switzerland
| |
Collapse
|
3
|
Neitzel LR, Silver M, Wasserman AH, Rea S, Hong CC, Williams CH. A novel transgenic reporter of extracellular acidification in zebrafish elucidates skeletal muscle T-tubule pH regulation. Dev Dyn 2025. [PMID: 39840753 DOI: 10.1002/dvdy.770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/23/2025] Open
Abstract
Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development. These included acidification of the notochord intercalations, transient acidification of the otic placode, and persistent acidification of the extracellular space of the myotome at distinctly different pH from that within the T-tubules. Knockdown of centronuclear myopathy genes Bin1b (OMIM: 255200) and MTM1 (OMIM: 310400), which disrupt T-tubule formation, also disrupted myotome acidification. In this study we visualize extracellular acidic microdomains in the tissues of whole live animals. This real-time reporter line for directly measuring changes in extracellular pH can be used to illuminate the role of extracellular pH in normal physiological development and disease states.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, Michigan, USA
| | - Maya Silver
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron H Wasserman
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, Michigan, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, Michigan, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, Michigan, USA
| |
Collapse
|
4
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
5
|
Di Mattia RA, Diaz-Zegarra LA, Blanco PG, Valverde CA, Gonano LA, Jaquenod De Giusti C, Portiansky EL, Vila-Petroff MG, Aiello EA, Orlowski A. The specific inhibition of the cardiac electrogenic sodium/bicarbonate cotransporter leads to cardiac hypertrophy. Life Sci 2022; 312:121219. [PMID: 36435222 DOI: 10.1016/j.lfs.2022.121219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Two alkalinizing mechanisms coexist in cardiac myocytes to maintain intracellular pH: sodium/bicarbonate cotransporter (electroneutral isoform NBCn1 and electrogenic isoform NBCe1) and sodium/proton exchanger (NHE1). Dysfunction of these transporters has previously been reported to be responsible for the development of cardiovascular diseases. The aim of this study was to evaluate the contribution of the downregulation of the NBCe1 to the development of cardiac hypertrophy. To specifically reduce NBCe1 expression, we cloned shRNA into a cardiotropic adeno-associated vector (AAV9-shNBCe1). After 28 days of being injected with AAV9-shNBCe1, the expression and the activity of NBCe1 in the rat heart were reduced. Strikingly, downregulation of NBCe1 causes significant hypertrophic heart growth, lengthening of the action potential in isolated myocytes, an increase in the duration of the QT interval and an increase in the frequency of Ca2+ waves without any significant changes in Ca2+ transients. An increased compensatory expression of NBCn1 and NHE1 was also observed. We conclude that reduction of NBCe1 is sufficient to induce cardiac hypertrophy and modify the electrical features of the rat heart.
Collapse
Affiliation(s)
- R A Di Mattia
- Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - L A Diaz-Zegarra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - P G Blanco
- Centro de Fisiología Reproductiva & Métodos Complementarios de Diagnóstico (CEFIRE & MECODIAG), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - C A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - L A Gonano
- Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - C Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - E L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - M G Vila-Petroff
- Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - E A Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| | - A Orlowski
- Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
6
|
Wang J, Zahra A, Wang Y, Wu J. Understanding the Physiological Role of Electroneutral Na+-Coupled HCO3− Cotransporter and Its Therapeutic Implications. Pharmaceuticals (Basel) 2022; 15:ph15091082. [PMID: 36145304 PMCID: PMC9505461 DOI: 10.3390/ph15091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Acid–base homeostasis is critical for proper physiological function and pathology. The SLC4 family of HCO3− transmembrane cotransporters is one of the HCO3− transmembrane transport carriers responsible for cellular pH regulation and the uptake or secretion of HCO3− in epithelial cells. NBCn1 (SLC4A7), an electroneutral Na+/HCO3− cotransporter, is extensively expressed in several tissues and functions as a cotransporter for net acid extrusion after cellular acidification. However, the expression and activity level of NBCn1 remain elusive. In addition, NBCn1 has been involved in numerous other cellular processes such as cell volume, cell death/survival balance, transepithelial transport, as well as regulation of cell viability. This review aims to give an inclusive overview of the most recent advances in the research of NBCn1, emphasizing the basic features, regulation, and tissue-specific physiology as well as the development and application of potent inhibitors of NBCn1 transporter in cancer therapy. Research and development of targeted therapies should be carried out for NBCn1 and its associated pathways.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - YunFu Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Correspondence:
| |
Collapse
|
7
|
Ma J, Gao X, Li Y, DeCoursey TE, Shull GE, Wang HS. The HVCN1 voltage-gated proton channel contributes to pH regulation in canine ventricular myocytes. J Physiol 2022; 600:2089-2103. [PMID: 35244217 PMCID: PMC9058222 DOI: 10.1113/jp282126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
KEY POINTS Intracellular pH (pHi ) regulation is crucial for cardiac function, as acidification depresses contractility and causes arrhythmias. H+ ions are generated in cardiomyocytes from metabolic processes and particularly from CO2 hydration, which has been shown to facilitate CO2 -venting from mitochondria. Currently, the NHE1 Na+ /H+ exchanger is viewed as the dominant H+ -extrusion mechanism in cardiac muscle. We show that the HVCN1 voltage-gated proton channel is present and functional in canine ventricular myocytes, and that HVCN1 and NHE1 both contribute to pHi regulation. HVCN1 provides an energetically-efficient mechanism of H+ -extrusion that would not cause Na+ -loading, which can cause pathology, and that could contribute to transport-mediated CO2 disposal. These results provide a major advance in our understanding of pHi regulation in cardiac muscle. ABSTRACT Regulation of intracellular pH (pHi ) in cardiomyocytes is crucial for cardiac function; however, currently known mechanisms for direct or indirect extrusion of acid from cardiomyocytes seem insufficient for energetically-efficient extrusion of the massive H+ loads generated under in vivo conditions. In cardiomyocytes, voltage-sensitive H+ channel activity mediated by the HVCN1 proton channel would be a highly efficient means of disposing of H+ , while avoiding Na+ -loading, as occurs during direct acid extrusion via Na+ /H+ exchange or indirect acid extrusion via Na+ -HCO3 - cotransport. PCR and immunoblotting demonstrated expression of HVCN1 mRNA and protein in canine heart. Patch clamp analysis of canine ventricular myocytes revealed a voltage-gated H+ current that was highly H+ -selective. The current was blocked by external Zn2+ and the HVCN1 blocker 5-chloro-2-guanidinobenzimidazole (ClGBI). Both the gating and Zn2+ blockade of the current were strongly influenced by the pH gradient across the membrane. All characteristics of the observed current were consistent with the known hallmarks of HVCN1-mediated H+ current. Inhibition of HVCN1 and the NHE1 Na+ /H+ exchanger, singly and in combination, showed that either mechanism is largely sufficient to maintain pHi in beating cardiomyocytes, but that inhibition of both activities causes rapid acidification. These results show that HVCN1 is expressed in canine ventricular myocytes and provides a major H+ -extrusion activity, with a capacity similar to that of NHE1. In the beating heart in vivo, this activity would allow Na+ -independent extrusion of H+ during each action potential and, when functionally coupled with anion transport mechanisms, could facilitate transport-mediated CO2 disposal. Abstract figure legend The HVCN1 proton channel is expressed in canine ventricular myocytes and contributes to H+ extrusion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Xiaoqian Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois, 60612, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| |
Collapse
|
8
|
Ciocci Pardo A, González Arbeláez LF, Fantinelli JC, Álvarez BV, Mosca SM, Swenson ER. Myocardial and mitochondrial effects of the anhydrase carbonic inhibitor ethoxzolamide in ischemia-reperfusion. Physiol Rep 2021; 9:e15093. [PMID: 34806317 PMCID: PMC8606860 DOI: 10.14814/phy2.15093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that inhibition of extracellularly oriented carbonic anhydrase (CA) isoforms protects the myocardium against ischemia-reperfusion injury. In this study, our aim was to assess the possible further contribution of CA intracellular isoforms examining the actions of the highly diffusible cell membrane permeant inhibitor of CA, ethoxzolamide (ETZ). Isolated rat hearts, after 20 min of stabilization, were assigned to the following groups: (1) Nonischemic control: 90 min of perfusion; (2) Ischemic control: 30 min of global ischemia and 60 min of reperfusion (R); and (3) ETZ: ETZ at a concentration of 100 μM was administered for 10 min before the onset of ischemia and then during the first 10 min of reperfusion. In additional groups, ETZ was administered in the presence of SB202190 (SB, a p38MAPK inhibitor) or chelerythrine (Chel, a protein kinase C [PKC] inhibitor). Infarct size, myocardial function, and the expression of phosphorylated forms of p38MAPK, PKCε, HSP27, and Drp1, and calcineurin Aβ content were assessed. In isolated mitochondria, the Ca2+ response, Ca2+ retention capacity, and membrane potential were measured. ETZ decreased infarct size by 60%, improved postischemic recovery of myocardial contractile and diastolic relaxation increased P-p38MAPK, P-PKCε, P-HSP27, and P-Drp1 expression, decreased calcineurin content, and normalized calcium and membrane potential parameters measured in isolated mitochondria. These effects were significantly attenuated when ETZ was administered in the presence of SB or Chel. These data show that ETZ protects the myocardium and mitochondria against ischemia-reperfusion injury through p38MAPK- and PKCε-dependent pathways and reinforces the role of CA as a possible target in the management of acute cardiac ischemic diseases.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Luisa F. González Arbeláez
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Juliana C. Fantinelli
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Bernardo V. Álvarez
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
- Present address:
Department of BiochemistryMembrane Protein Disease Research GroupUniversity of AlbertaEdmontonAlbertaT6G 2H7Canada
| | - Susana M. Mosca
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Erik R. Swenson
- Department of Medicine, Pulmonary and Critical Care MedicineVA Puget Sound Health Care SystemUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
9
|
Olsen JSM, Svendsen S, Berg P, Dam VS, Sorensen MV, Matchkov VV, Leipziger J, Boedtkjer E. NBCn1 Increases NH 4 + Reabsorption Across Thick Ascending Limbs, the Capacity for Urinary NH 4 + Excretion, and Early Recovery from Metabolic Acidosis. J Am Soc Nephrol 2021; 32:852-865. [PMID: 33414245 PMCID: PMC8017549 DOI: 10.1681/asn.2019060613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/23/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The electroneutral Na+/HCO3 - cotransporter NBCn1 (Slc4a7) is expressed in basolateral membranes of renal medullary thick ascending limbs (mTALs). However, direct evidence that NBCn1 contributes to acid-base handling in mTALs, urinary net acid excretion, and systemic acid-base homeostasis has been lacking. METHODS Metabolic acidosis was induced in wild-type and NBCn1 knockout mice. Fluorescence-based intracellular pH recordings were performed and NH4 + transport measured in isolated perfused mTALs. Quantitative RT-PCR and immunoblotting were used to evaluate NBCn1 expression. Tissue [NH4 +] was measured in renal biopsies, NH4 + excretion and titratable acid quantified in spot urine, and arterial blood gasses evaluated in normoventilated mice. RESULTS Basolateral Na+/HCO3 - cotransport activity was similar in isolated perfused mTALs from wild-type and NBCn1 knockout mice under control conditions. During metabolic acidosis, basolateral Na+/HCO3 - cotransport activity increased four-fold in mTALs from wild-type mice, but remained unchanged in mTALs from NBCn1 knockout mice. Correspondingly, NBCn1 protein expression in wild-type mice increased ten-fold in the inner stripe of renal outer medulla during metabolic acidosis. During systemic acid loading, knockout of NBCn1 inhibited the net NH4 + reabsorption across mTALs by approximately 60%, abolished the renal corticomedullary NH4 + gradient, reduced the capacity for urinary NH4 + excretion by approximately 50%, and delayed recovery of arterial blood pH and standard [HCO3 -] from their initial decline. CONCLUSIONS During metabolic acidosis, NBCn1 is required for the upregulated basolateral HCO3 - uptake and transepithelial NH4 + reabsorption in mTALs, renal medullary NH4 + accumulation, urinary NH4 + excretion, and early recovery of arterial blood pH and standard [HCO3 -]. These findings support that NBCn1 facilitates urinary net acid excretion by neutralizing intracellular H+ released during NH4 + reabsorption across mTALs.
Collapse
Affiliation(s)
| | - Samuel Svendsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peder Berg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S. Dam
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Kreitmeier KG, Tarnowski D, Nanadikar MS, Baier MJ, Wagner S, Katschinski DM, Maier LS, Sag CM. CaMKII δ Met281/282 oxidation is not required for recovery of calcium transients during acidosis. Am J Physiol Heart Circ Physiol 2021; 320:H1199-H1212. [PMID: 33449853 DOI: 10.1152/ajpheart.00040.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
CaMKII is needed for the recovery of Ca2+ transients during acidosis but also mediates postacidic arrhythmias. CaMKIIδ can sustain its activity following Met281/282 oxidation. Increasing cytosolic Na+ during acidosis as well as postacidic pH normalization should result in prooxidant conditions within the cell favoring oxidative CaMKIIδ activation. We tested whether CaMKIIδ activation through Met281/282 oxidation is involved in recovery of Ca2+ transients during acidosis and promotes cellular arrhythmias post-acidosis. Single cardiac myocytes were isolated from a well-established mouse model in which CaMKIIδ was made resistant to oxidative activation by knock-in replacement of two oxidant-sensitive methionines (Met281/282) with valines (MM-VV). MM-VV myocytes were exposed to extracellular acidosis (pHo 6.5) and compared to wild type (WT) control cells. Full recovery of Ca2+ transients was observed in both WT and MM-VV cardiac myocytes during late-phase acidosis. This was associated with comparably enhanced sarcoplasmic reticulum Ca2+ load and preserved CaMKII specific phosphorylation of phospholamban at Thr17 in MM-VV myocytes. CaMKII was phosphorylated at Thr287, but not Met281/282 oxidized. In line with this, postacidic cellular arrhythmias occurred to a similar extent in WT and MM-VV cells, whereas inhibition of CaMKII using AIP completely prevented recovery of Ca2+ transients during acidosis and attenuated postacidic arrhythmias in MM-VV cells. Using genetically altered cardiomyocytes with cytosolic expression of redox-sensitive green fluorescent protein-2 coupled to glutaredoxin 1, we found that acidosis has a reductive effect within the cytosol of cardiac myocytes despite a significant acidosis-related increase in cytosolic Na+. Our study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for recovery of Ca2+ transients during acidosis nor relevant for postacidic arrhythmogenesis in isolated cardiac myocytes. Acidosis reduces the cytosolic glutathione redox state of isolated cardiac myocytes despite a significant increase in cytosolic Na+. Pharmacological inhibition of global CaMKII activity completely prevents recovery of Ca2+ transients and protects from postacidic arrhythmias in MM-VV myocytes, which confirms the relevance of CaMKII in the context of acidosis.NEW & NOTEWORTHY The current study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for CaMKII-dependent recovery of Ca2+ transients during acidosis nor relevant for the occurrence of postacidic cellular arrhythmias. Despite a usually prooxidant increase in cytosolic Na+, acidosis reduces the cytosolic glutathione redox state within cardiac myocytes. This novel finding suggests that oxidation of cytosolic proteins is less likely to occur during acidosis.
Collapse
Affiliation(s)
- K G Kreitmeier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
- Department of Internal Medicine III, University Medical Center Regensburg, Germany
| | - D Tarnowski
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - M S Nanadikar
- Institute for Cardiovascular Physiology, Georg August University, Göttingen, Germany
| | - M J Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - S Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - D M Katschinski
- Institute for Cardiovascular Physiology, Georg August University, Göttingen, Germany
| | - L S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - C M Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| |
Collapse
|
11
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
12
|
Kandilci HB, Richards MA, Fournier M, Şimşek G, Chung YJ, Lakhal-Littleton S, Swietach P. Cardiomyocyte Na +/H + Exchanger-1 Activity Is Reduced in Hypoxia. Front Cardiovasc Med 2021; 7:617038. [PMID: 33585583 PMCID: PMC7873356 DOI: 10.3389/fcvm.2020.617038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
Fully-activated Na+/H+ exchanger-1 (NHE1) generates the cardiomyocyte's largest trans-membrane extrusion of H+ ions for an equimolar influx of Na+ ions. This has the desirable effect of clearing excess intracellular acidity, but comes at a large energetic premium because the exchanged Na+ ions must ultimately be extruded by the sodium pump, a process that consumes the majority of the heart's non-contractile ATP. We hypothesize that the state of NHE1 activation depends on metabolic resources, which become limiting in periods of myocardial hypoxia. To test this functionally, NHE1 activity was measured in response to in vitro and in vivo hypoxic treatments. NHE1 flux was interrogated as a function of intracellular pH by fluorescence imaging of rodent ventricular myocytes loaded with pH-sensitive dyes BCECF or cSNARF1. Anoxic superfusates promptly inhibited NHE1, tracking the time-course of mitochondrial depolarization. Mass spectrometry of NHE1 immuno-precipitated from Langendorff-perfused anoxic hearts identified Tyr-581 dephosphorylation and Tyr-561 phosphorylation. The latter residue is part of the domain that interacts with phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane lipid that becomes depleted under metabolic inhibition. Tyr-561 phosphorylation is expected to electrostatically weaken this activatory interaction. To test if a period of hypoxia produces a persistent inhibition of NHE1, measurements under normoxia were performed on myocytes that had been incubated in 2% O2 for 4 h. NHE1 activity remained inhibited, but the effect was ablated in the presence of Dasatinib, an inhibitor of Abl/Src-family tyrosine kinases. Chronic tissue hypoxia in vivo, attained in a mouse model of anemic hypoxia, also resulted in persistently slower NHE1. In summary, we show that NHE1 responds to oxygen, a physiologically-relevant metabolic regulator, ostensibly to divert ATP for contraction. We describe a novel mechanism of NHE1 inhibition that may be relevant in cardiac disorders featuring altered oxygen metabolism, such as myocardial ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Hilmi Burak Kandilci
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mark A Richards
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gül Şimşek
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yu Jin Chung
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Kopylova GV, Matyushenko AM, Berg VY, Levitsky DI, Bershitsky SY, Shchepkin DV. Acidosis modifies effects of phosphorylated tropomyosin on the actin-myosin interaction in the myocardium. J Muscle Res Cell Motil 2021; 42:343-353. [PMID: 33389411 DOI: 10.1007/s10974-020-09593-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Phosphorylation of α-tropomyosin (Tpm1.1), a predominant Tpm isoform in the myocardium, is one of the regulatory mechanisms of the heart contractility. The Tpm 1.1 molecule has one site of phosphorylation, Ser283. The degree of the Tpm phosphorylation decreases with age and also changes in heart pathologies. Myocardial pathologies, in particular ischemia, are usually accompanied by pH lowering in the cardiomyocyte cytosol. We studied the effects of acidosis on the structural and functional properties of the pseudo-phosphorylated form of Tpm1.1 with the S283D substitution. We found that in acidosis, the interaction of the N- and C-ends of the S283D Tpm molecules decreases, whereas that of WT Tpm does not change. The pH lowering increased thermostability of the complex of F-actin with S283D Tpm to a greater extent than with WT Tpm. Using an in vitro motility assay with NEM- modified myosin as a load, we assessed the effect of the Tpm pseudo-phosphorylation on the force of the actin-myosin interaction. In acidosis, the force generated by myosin in the interaction with thin filaments containing S283D Tpm was higher than with those containing WT Tpm. Also, the pseudo-phosphorylation increased the myosin ability to resist a load. We conclude that ischemia changes the effect of the phosphorylated Tpm on the contractile function of the myocardium.
Collapse
Affiliation(s)
- Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Yekaterinburg, Russia.
| | - Alexander M Matyushenko
- Research Center of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Valentina Y Berg
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Yekaterinburg, Russia
| | - Dmitrii I Levitsky
- Research Center of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Yekaterinburg, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Yekaterinburg, Russia
| |
Collapse
|
14
|
Moss FJ, Boron WF. Carbonic anhydrases enhance activity of endogenous Na-H exchangers and not the electrogenic Na/HCO 3 cotransporter NBCe1-A, expressed in Xenopus oocytes. J Physiol 2020; 598:5821-5856. [PMID: 32969493 PMCID: PMC7747792 DOI: 10.1113/jp280143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS According to the HCO 3 - metabolon hypothesis, direct association of cytosolic carbonic anhydrases (CAs) with the electrogenic Na/HCO3 cotransporter NBCe1-A speeds transport by regenerating/consuming HCO 3 - . The present work addresses published discrepancies as to whether cytosolic CAs stimulate NBCe1-A, heterologously expressed in Xenopus oocytes. We confirm the essential elements of the previous experimental observations, taken as support for the HCO 3 - metabolon hypothesis. However, using our own experimental protocols or those of others, we find that NBCe1-A function is unaffected by cytosolic CAs. Previous conclusions that cytosolic CAs do stimulate NBCe1-A can be explained by an unanticipated stimulatory effect of the CAs on an endogenous Na-H exchanger. Theoretical analyses show that, although CAs could stimulate non- HCO 3 - transporters (e.g. Na-H exchangers) by accelerating CO2 / HCO 3 - -mediated buffering of acid-base equivalents, they could not appreciably affect transport rates of NBCe1 or other transporters carrying HCO 3 - , CO 3 = , or NaCO 3 - ion pairs. ABSTRACT The HCO 3 - metabolon hypothesis predicts that cytosolic carbonic anhydrase (CA) binds to NBCe1-A, promotes HCO 3 - replenishment/consumption, and enhances transport. Using a short step-duration current-voltage (I-V) protocol with Xenopus oocytes expressing eGFP-tagged NBCe1-A, our group reported that neither injecting human CA II (hCA II) nor fusing hCA II to the NBCe1-A carboxy terminus affects background-subtracted NBCe1 slope conductance (GNBC ), which is a direct measure of NBCe1-A activity. Others - using bovine CA (bCA), untagged NBCe1-A, and protocols keeping holding potential (Vh ) far from NBCe1-A's reversal potential (Erev ) for prolonged periods - found that bCA increases total membrane current (ΔIm ), which apparently supports the metabolon hypothesis. We systematically investigated differences in the two protocols. In oocytes expressing untagged NBCe1-A, injected with bCA and clamped to -40 mV, CO2 / HCO 3 - exposures markedly decrease Erev , producing large transient outward currents persisting for >10 min and rapid increases in [Na+ ]i . Although the CA inhibitor ethoxzolamide (EZA) reduces both ΔIm and d[Na+ ]i /dt, it does not reduce GNBC . In oocytes not expressing NBCe1-A, CO2 / HCO 3 - triggers rapid increases in [Na+ ]i that both hCA II and bCA enhance in concentration-dependent manners. These d[Na+ ]i /dt increases are inhibited by EZA and blocked by EIPA, a Na-H exchanger (NHE) inhibitor. In oocytes expressing untagged NBCe1-A and injected with bCA, EIPA abolishes the EZA-dependent decreases in ΔIm and d[Na+ ]i /dt. Thus, CAs/EZA produce their ΔIm and d[Na+ ]i /dt effects not through NBCe1-A, but endogenous NHEs. Theoretical considerations argue against a CA stimulation of HCO 3 - transport, supporting the conclusion that an NBCe1-A- HCO 3 - metabolon does not exist in oocytes.
Collapse
Affiliation(s)
- Fraser J. Moss
- Department of Physiology and Biophysics, Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine and Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Christé G, Bonvallet R, Chouabe C. Accounting for cardiac t-tubule increase with age and myocyte volume to improve measurements of its membrane area and ionic current densities. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:40-53. [DOI: 10.1016/j.pbiomolbio.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023]
|
16
|
Power A, Kaur S, Dyer C, Ward ML. Disruption of Transverse-Tubules Eliminates the Slow Force Response to Stretch in Isolated Rat Trabeculae. Front Physiol 2020; 11:193. [PMID: 32210837 PMCID: PMC7069251 DOI: 10.3389/fphys.2020.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Ventricular muscle has a biphasic response to stretch. There is an immediate increase in force that coincides with the stretch which is followed by a second phase that takes several minutes for force to develop to a new steady state. The initial increase in force is due to changes in myofilament properties, whereas the second, slower component of the stretch response (known as the “slow force response” or SFR) is accompanied by a steady increase in Ca2+ transient amplitude. Evidence shows stretch-dependent Ca2+ influx during the SFR occurs through some mechanism that is continuously active for several minutes following stretch. Many of the candidate ion channels are located primarily in the t-tubules, which are consequently lost in heart disease. Our aim, therefore, was to investigate the impact of t-tubule loss on the SFR in non-failing cardiac trabeculae in which expression of the different Ca2+ handling proteins was not altered by any disease process. For comparison, we also investigated the effect of formamide detubulation of trabeculae on β-adrenergic activation (1 μM isoproterenol), since this is another key regulator of cardiac force. Measurement of intracellular calcium ([Ca2+]i) and isometric stress were made in RV trabeculae from rat hearts before, during and after formamide treatment (1.5 M for 5 min), which on washout seals the surface sarcolemmal t-tubule openings. Results showed detubulation slowed the time course of Ca2+ transients and twitch force, with time-to-peak, maximum rate-of-rise, and relaxation prolonged in trabeculae at optimal length (Lo). Formamide treatment also prevented development of the SFR following a step change in length from 90 to 100% Lo, and blunted the response to β-adrenergic activation (1 μM isoproterenol).
Collapse
Affiliation(s)
- Amelia Power
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sarbjot Kaur
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Cameron Dyer
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
17
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
18
|
Espejo MS, Orlowski A, Ibañez AM, Di Mattía RA, Velásquez FC, Rossetti NS, Ciancio MC, De Giusti VC, Aiello EA. The functional association between the sodium/bicarbonate cotransporter (NBC) and the soluble adenylyl cyclase (sAC) modulates cardiac contractility. Pflugers Arch 2019; 472:103-115. [PMID: 31754830 DOI: 10.1007/s00424-019-02331-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
Abstract
The soluble adenylyl cyclase (sAC) was identified in the heart as another source of cyclic AMP (cAMP). However, its cardiac physiological function is unknown. On the other hand, the cardiac Na+/HCO3- cotransporter (NBC) promotes the cellular co-influx of HCO3- and Na+. Since sAC activity is regulated by HCO3-, our purpose was to investigate the potential functional relationship between NBC and sAC in the cardiomyocyte. Rat ventricular myocytes were loaded with Fura-2, Fluo-3, or BCECF to measure Ca2+ transient (Ca2+i) by epifluorescence, Ca2+ sparks frequency (CaSF) by confocal microscopy, or intracellular pH (pHi) by epifluorescence, respectively. Sarcomere or cell shortening was measured with a video camera as an index of contractility. The NBC blocker S0859 (10 μM), the selective inhibitor of sAC KH7 (1 μM), and the PKA inhibitor H89 (0.1 μM) induced a negative inotropic effect which was associated with a decrease in Ca2+i. Since PKA increases Ca2+ release through sarcoplasmic reticulum RyR channels, CaSF was measured as an index of RyR open probability. The generation of CaSF was prevented by KH7. Finally, we investigated the potential role of sAC activation on NBC activity. NBC-mediated recovery from acidosis was faster in the presence of KH7 or H89, suggesting that the pathway sAC-PKA is negatively regulating NBC function, consistent with a negative feedback modulation of the HCO3- influx that activates sAC. In summary, the results demonstrated that the complex NBC-sAC-PKA plays a relevant role in Ca2+ handling and basal cardiac contractility.
Collapse
Affiliation(s)
- María S Espejo
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandro M Ibañez
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Romina A Di Mattía
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Fernanda Carrizo Velásquez
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Noelia S Rossetti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - María C Ciancio
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
19
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
20
|
Jaquenod De Giusti C, Blanco PG, Lamas PA, Carrizo Velasquez F, Lofeudo JM, Portiansky EL, Alvarez BV. Carbonic anhydrase II/sodium-proton exchanger 1 metabolon complex in cardiomyopathy of ob -/- type 2 diabetic mice. J Mol Cell Cardiol 2019; 136:53-63. [PMID: 31518570 DOI: 10.1016/j.yjmcc.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Heart failure is the leading cause of death among diabetic people. Cellular and molecular entities leading to diabetic cardiomyopathy are, however, poorly understood. Coupling of cardiac carbonic anhydrase II (CAII) and Na+/H+ exchanger 1 (NHE1) to form a transport metabolon was analyzed in obese type 2 diabetic mice (ob-/-) and control heterozygous littermates (ob+/-). Echocardiography showed elevated systolic interventricular septum thickness and systolic posterior wall thickness in ob-/- mice at 9 and 16 weeks. ob-/- mice showed increased left ventricular (LV) weight/tibia length ratio and increased cardiomyocyte cross sectional area as compared to controls, indicating cardiac hypertrophy. Immunoblot analysis showed increased CAII expression in LV samples of ob-/-vs. ob+/- mice, and augmented Ser703 phosphorylation on NHE1 in ob-/- hearts. Reciprocal co-immunoprecipitation analysis showed strong association of CAII and NHE1 in LV samples of ob-/- mice. NHE1-dependent rate of intracellular pH (pHi) normalization after transient acid loading of isolated cardiomyocytes was higher in ob-/- mice vs. ob+/-. NHE transport activity was also augmented in cultured H9C2 rat cardiomyoblasts treated with high glucose/high palmitate, and it was normalized after CA inhibition. We conclude that the NHE1/CAII metabolon complex is exacerbated in diabetic cardiomyopathy of ob-/- mice, which may lead to perturbation of pHi and [Na+] and [Ca2+] handling in these diseased hearts.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina; Established Investigators of CONICET, Argentina
| | - Paula G Blanco
- Servicio de Cardiología, Facultad de Ciencias Veterinarias, UNLP, Argentina; Established Investigators of CONICET, Argentina
| | - Paula A Lamas
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Fernanda Carrizo Velasquez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Juan M Lofeudo
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, UNLP, Argentina; Established Investigators of CONICET, Argentina
| | - Bernardo V Alvarez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina; Established Investigators of CONICET, Argentina.
| |
Collapse
|
21
|
Sato D, Hernández-Hernández G, Matsumoto C, Tajada S, Moreno CM, Dixon RE, O'Dwyer S, Navedo MF, Trimmer JS, Clancy CE, Binder MD, Santana LF. A stochastic model of ion channel cluster formation in the plasma membrane. J Gen Physiol 2019; 151:1116-1134. [PMID: 31371391 PMCID: PMC6719406 DOI: 10.1085/jgp.201912327] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Ion channels are often found arranged into dense clusters in the plasma membranes of excitable cells, but the mechanisms underlying the formation and maintenance of these functional aggregates are unknown. Here, we tested the hypothesis that channel clustering is the consequence of a stochastic self-assembly process and propose a model by which channel clusters are formed and regulated in size. Our hypothesis is based on statistical analyses of the size distributions of the channel clusters we measured in neurons, ventricular myocytes, arterial smooth muscle, and heterologous cells, which in all cases were described by exponential functions, indicative of a Poisson process (i.e., clusters form in a continuous, independent, and memory-less fashion). We were able to reproduce the observed cluster distributions of five different types of channels in the membrane of excitable and tsA-201 cells in simulations using a computer model in which channels are "delivered" to the membrane at randomly assigned locations. The model's three parameters represent channel cluster nucleation, growth, and removal probabilities, the values of which were estimated based on our experimental measurements. We also determined the time course of cluster formation and membrane dwell time for CaV1.2 and TRPV4 channels expressed in tsA-201 cells to constrain our model. In addition, we elaborated a more complex version of our model that incorporated a self-regulating feedback mechanism to shape channel cluster formation. The strong inference we make from our results is that CaV1.2, CaV1.3, BK, and TRPV4 proteins are all randomly inserted into the plasma membranes of excitable cells and that they form homogeneous clusters that increase in size until they reach a steady state. Further, it appears likely that cluster size for a diverse set of membrane-bound proteins and a wide range of cell types is regulated by a common feedback mechanism.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, University of California School of Medicine, Davis, CA
| | | | - Collin Matsumoto
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Sendoa Tajada
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Claudia M Moreno
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Samantha O'Dwyer
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Manuel F Navedo
- Department of Pharmacology, University of California School of Medicine, Davis, CA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| |
Collapse
|
22
|
Loonat AA, Curtis MK, Richards MA, Nunez-Alonso G, Michl J, Swietach P. A high-throughput ratiometric method for imaging hypertrophic growth in cultured primary cardiac myocytes. J Mol Cell Cardiol 2019; 130:184-196. [PMID: 30986378 PMCID: PMC6520438 DOI: 10.1016/j.yjmcc.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
Maladaptive hypertrophy of cardiac myocytes increases the risk of heart failure. The underlying signaling can be triggered and interrogated in cultured neonatal ventricular myocytes (NRVMs) using sophisticated pharmacological and genetic techniques. However, the methods for quantifying cell growth are, by comparison, inadequate. The lack of quantitative, calibratable and computationally-inexpensive high-throughput technology has limited the scope for using cultured myocytes in large-scale analyses. We present a ratiometric method for quantifying the hypertrophic growth of cultured myocytes, compatible with high-throughput imaging platforms. Protein biomass was assayed from sulforhodamine B (SRB) fluorescence, and image analysis calculated the quotient of signal from extra-nuclear and nuclear regions. The former readout relates to hypertrophic growth, whereas the latter is a reference for correcting protein-independent (e.g. equipment-related) variables. This ratiometric measure, when normalized to the number of cells, provides a robust quantification of cellular hypertrophy. The method was tested by comparing the efficacy of various chemical agonists to evoke hypertrophy, and verified using independent assays (myocyte area, transcripts of markers). The method's high resolving power and wide dynamic range were confirmed by the ability to generate concentration-response curves, track the time-course of hypertrophic responses with fine temporal resolution, describe drug/agonist interactions, and screen for novel anti-hypertrophic agents. The method can be implemented as an end-point in protocols investigating hypertrophy, and is compatible with automated plate-reader platforms for generating high-throughput data, thereby reducing investigator-bias. Finally, the computationally-minimal workflow required for obtaining measurements makes the method simple to implement in most laboratories. Maladaptive hypertrophy of myocytes can lead to heart failure. Common methods for tracking growth in cultured myocytes are inadequate. We design and test a method for tracking myocyte hypertrophy in vitro. The method provides a ratiometric index of growth for high throughput analyses. Using the method, we characterize further details of (anti)hypertrophic responses.
Collapse
Affiliation(s)
- Aminah A Loonat
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - M Kate Curtis
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Mark A Richards
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Graciela Nunez-Alonso
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Johanna Michl
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Pawel Swietach
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
23
|
Ibañez AM, Espejo MS, Zavala MR, Villa-Abrille MC, Lofeudo JM, Aiello EA, De Giusti VC. Regulation of Intracellular pH is Altered in Cardiac Myocytes of Ovariectomized Rats. J Am Heart Assoc 2019; 8:e011066. [PMID: 30917747 PMCID: PMC6509710 DOI: 10.1161/jaha.118.011066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background It is well known that after menopause women are exposed to a greater cardiovascular risk, but the intracellular modifications are not properly described. The sodium/proton exchanger (NHE) and the sodium/bicarbonate cotransporter (NBC) regulate the intracellular pH and, indirectly, the intracellular sodium concentration ([Na+]). There are 2 isoforms of NBC in the heart: the electrogenic (1Na+/2[Formula: see text]; NBCe1) and the electroneutral (1Na+/1[Formula: see text]; NBCn1). Because NHE and NBCn1 hyperactivity as well as the NBCe1 decreased activity have been associated with several cardiovascular pathologies, the aim of this study was to investigate the potential alterations of the alkalinizing transporters during the postmenopausal period. Methods and Results Three-month ovariectomized rats (OVX) were used. The NHE activity and protein expression are significantly increased in OVX. The NBCe1 activity is diminished, and the NBCn1 activity becomes predominant in OVX rats. p-Akt levels showed a significant diminution in OVX. Finally, NHE activity in platelets from OVX rats is also higher in comparison to sham rats, resulting in a potential biomarker of cardiovascular diseases. Conclusions Our results demonstrated for the first time that in the cardiac ventricular myocytes of OVX rats NHE and NBC isoforms are altered, probably because of the decreased level of p-Akt, compromising the ionic intracellular homeostasis.
Collapse
Affiliation(s)
- Alejandro Martín Ibañez
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - María Sofía Espejo
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - Maite Raquel Zavala
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - María Celeste Villa-Abrille
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - Juan Manuel Lofeudo
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - Ernesto Alejandro Aiello
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| | - Verónica Celeste De Giusti
- 1 Centro de Investigaciones Cardiovasculares Facultad de Ciencias Médicas Universidad Nacional de La Plata-CONICET La Plata Argentina
| |
Collapse
|
24
|
Vairamani K, Prasad V, Wang Y, Huang W, Chen Y, Medvedovic M, Lorenz JN, Shull GE. NBCe1 Na +-HCO3 - cotransporter ablation causes reduced apoptosis following cardiac ischemia-reperfusion injury in vivo. World J Cardiol 2018; 10:97-109. [PMID: 30344957 PMCID: PMC6189072 DOI: 10.4330/wjc.v10.i9.97] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hypothesis that cardiomyocyte-specific loss of the electrogenic NBCe1 Na+-HCO3- cotransporter is cardioprotective during in vivo ischemia-reperfusion (IR) injury.
METHODS An NBCe1 (Slc4a4 gene) conditional knockout mouse (KO) model was prepared by gene targeting. Cardiovascular performance of wildtype (WT) and cardiac-specific NBCe1 KO mice was analyzed by intraventricular pressure measurements, and changes in cardiac gene expression were determined by RNA Seq analysis. Response to in vivo IR injury was analyzed after 30 min occlusion of the left anterior descending artery followed by 3 h of reperfusion.
RESULTS Loss of NBCe1 in cardiac myocytes did not impair cardiac contractility or relaxation under basal conditions or in response to β-adrenergic stimulation, and caused only limited changes in gene expression patterns, such as those for electrical excitability. However, following ischemia and reperfusion, KO heart sections exhibited significantly fewer apoptotic nuclei than WT sections.
CONCLUSION These studies indicate that cardiac-specific loss of NBCe1 does not impair cardiovascular performance, causes only minimal changes in gene expression patterns, and protects against IR injury in vivo .
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3026, United States
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, United States
| | - Yigang Wang
- Department of Pathology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0529, United States
| | - Wei Huang
- Department of Pathology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0529, United States
| | - Yinhua Chen
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, United States
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, United States
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0575, United States
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0524, United States
| |
Collapse
|
25
|
Ford KL, Moorhouse EL, Bortolozzi M, Richards MA, Swietach P, Vaughan-Jones RD. Regional acidosis locally inhibits but remotely stimulates Ca2+ waves in ventricular myocytes. Cardiovasc Res 2018; 113:984-995. [PMID: 28339694 PMCID: PMC5852542 DOI: 10.1093/cvr/cvx033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/17/2017] [Indexed: 11/30/2022] Open
Abstract
Aims Spontaneous Ca2+ waves in cardiomyocytes are potentially arrhythmogenic. A
powerful controller of Ca2+ waves is the cytoplasmic H+
concentration ([H+]i), which fluctuates spatially and temporally
in conditions such as myocardial ischaemia/reperfusion. H+-control of
Ca2+ waves is poorly understood. We have therefore investigated how
[H+]i co-ordinates their initiation and frequency. Methods and results Spontaneous Ca2+ waves were imaged (fluo-3) in rat isolated ventricular
myocytes, subjected to modest Ca2+-overload. Whole-cell intracellular
acidosis (induced by acetate-superfusion) stimulated wave frequency. Pharmacologically
blocking sarcolemmal Na+/H+ exchange (NHE1) prevented this
stimulation, unveiling inhibition by H+. Acidosis also increased
Ca2+ wave velocity. Restricting acidosis to one end of a myocyte, using a
microfluidic device, inhibited Ca2+ waves in the acidic zone (consistent with
ryanodine receptor inhibition), but stimulated wave emergence elsewhere in the cell.
This remote stimulation was absent when NHE1 was selectively inhibited in the acidic
zone. Remote stimulation depended on a locally evoked, NHE1-driven rise of
[Na+]i that spread rapidly downstream. Conclusion Acidosis influences Ca2+ waves via inhibitory Hi+ and stimulatory Nai+ signals (the latter facilitating intracellular
Ca2+-loading through modulation of sarcolemmal
Na+/Ca2+ exchange activity). During spatial
[H+]i-heterogeneity, Hi+-inhibition dominates in acidic regions, while rapid
Nai+ diffusion stimulates waves in downstream, non-acidic
regions. Local acidosis thus simultaneously inhibits and stimulates arrhythmogenic
Ca2+-signalling in the same myocyte. If the principle of remote
H+-stimulation of Ca2+ waves also applies in multicellular
myocardium, it raises the possibility of electrical disturbances being driven remotely
by adjacent ischaemic areas, which are known to be intensely acidic.
Collapse
Affiliation(s)
- Kerrie L Ford
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Emma L Moorhouse
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Mario Bortolozzi
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK.,Department of Physics and Astronomy "G. Galilei", University of Padua, 35121 Padua, Italy
| | - Mark A Richards
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| |
Collapse
|
26
|
Aalkjær C, Nielsen OB. The ins and outs of acid-base transport in skeletal muscle. J Gen Physiol 2018; 150:3-6. [PMID: 29237754 PMCID: PMC5749118 DOI: 10.1085/jgp.201711955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aalkjær and Nielsen discuss new data revealing the basis of acid–base transport in t-tubules of skeletal muscle.
Collapse
|
27
|
Launikonis BS, Cully TR, Csernoch L, Stephenson DG. NHE- and diffusion-dependent proton fluxes across the tubular system membranes of fast-twitch muscle fibers of the rat. J Gen Physiol 2017; 150:95-110. [PMID: 29229646 PMCID: PMC5749115 DOI: 10.1085/jgp.201711891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022] Open
Abstract
The regulation of pH across the t-system membrane of skeletal muscle fibers is poorly understood. Using a sealed tubule preparation, Launikonis et al. reveal Na+/H+ exchange activity and characterize the properties of the diffusional and NHE proton fluxes across the t-system. The complex membrane structure of the tubular system (t-system) in skeletal muscle fibers is open to the extracellular environment, which prevents measurements of H+ movement across its interface with the cytoplasm by conventional methods. Consequently, little is known about the t-system’s role in the regulation of cytoplasmic pH, which is different from extracellular pH. Here we describe a novel approach to measure H+-flux measurements across the t-system of fast-twitch fibers under different conditions. The approach involves loading the t-system of intact rat fast-twitch fibers with a strong pH buffer (20 mM HEPES) and pH-sensitive fluorescent probe (10 mM HPTS) before the t-system is sealed off. The pH changes in the t-system are then tracked by confocal microscopy after rapid changes in cytoplasmic ionic conditions. T-system sealing is achieved by removing the sarcolemma by microdissection (mechanical skinning), which causes the tubules to pinch off and seal tight. After this procedure, the t-system repolarizes to physiological levels and can be electrically stimulated when placed in K+-based solutions of cytosolic-like ionic composition. Using this approach, we show that the t-system of fast-twitch skeletal fibers displays amiloride-sensitive Na+/H+ exchange (NHE), which decreases markedly at alkaline cytosolic pH and has properties similar to that in mammalian cardiac myocytes. We observed mean values for NHE density and proton permeability coefficient of 339 pmol/m2 of t-system membrane and 158 µm/s, respectively. We conclude that the cytosolic pH in intact resting muscle can be quantitatively explained with respect to extracellular pH by assuming that these values apply to the t-system membrane and the sarcolemma.
Collapse
Affiliation(s)
- Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tanya R Cully
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Laszlo Csernoch
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
28
|
Danes VR, Anthony J, Rayani K, Spitzer KW, Tibbits GF. pH recovery from a proton load in rat cardiomyocytes: effects of chronic exercise. Am J Physiol Heart Circ Physiol 2017; 314:H285-H292. [PMID: 29101173 DOI: 10.1152/ajpheart.00405.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of cardiomyocytes to recover from a proton load was examined in the hearts of exercise-trained and sedentary control rats in CO2/[Formula: see text]-free media. Acidosis was created by the NH4Cl prepulse technique, and intracellular pH (pHi) was determined using fluorescence microscopy on carboxy-SNARF-1 AM-loaded isolated cardiomyocytes. CO2-independent pHi buffering capacity (βi) was measured by incrementally reducing the extracellular NH4Cl concentration in steps of 50% from 20 to 1.25 mM. βi increased as pHi decreased in both exercise-trained and sedentary control groups. However, the magnitude of increase in βi as a function of pHi was found to be significantly ( P < 0.001) greater in the exercise-trained group compared with the sedentary control group. The rate of pHi recovery from an imposed proton load was found to not be different between the exercise-trained and control groups. The Na+/H+ exchanger-dependent H+ extrusion rate during the recovery from an imposed proton load, however, was found to be significantly greater in the exercise-trained group compared with the control group. By increasing βi and subsequently the Na+/H+ exchanger-dependent H+ extrusion rate, exercise training may provide cardiomyocytes with the ability to better handle an intracellular excess of H+ generated during hypoxia/ischemic insults and may serve in a cardioprotective role. These data may be predictive of two positive outcomes: 1) increased exercise tolerance by the heart and 2) a protective mechanism that limits the degree of myocardial acidosis and subsequent damage that accompanies ischemia-reperfusion stress. NEW & NOTEWORTHY The enhanced ability to deal with acidosis conferred by exercise training is likely to improve exercise tolerance and outcomes in response to myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Vennetia R Danes
- Molecular Cardiac Physiology Group, Simon Fraser University , Burnaby, British Columbia , Canada
| | - Josephine Anthony
- Molecular Cardiac Physiology Group, Simon Fraser University , Burnaby, British Columbia , Canada
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Simon Fraser University , Burnaby, British Columbia , Canada
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Simon Fraser University , Burnaby, British Columbia , Canada.,Cardiovascular Sciences, BC Research Institute for Children's and Women's Health , Vancouver, British Columbia , Canada
| |
Collapse
|
29
|
Aiello EA, Casey JR, Alvarez BV. Cl -/HCO 3- Exchanger slc26a6: A pH Regulator Shapes the Cardiac Action Potential. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005812. [PMID: 29025770 DOI: 10.1161/circep.117.005812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Ernesto A Aiello
- From the Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada (J.R.C.); and Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina (E.A.A., B.V.A.)
| | - Joseph R Casey
- From the Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada (J.R.C.); and Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina (E.A.A., B.V.A.).
| | - Bernardo V Alvarez
- From the Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada (J.R.C.); and Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina (E.A.A., B.V.A.)
| |
Collapse
|
30
|
Bonde L, Boedtkjer E. Extracellular acidosis and very low [Na + ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells. Acta Physiol (Oxf) 2017; 221:129-141. [PMID: 28319329 DOI: 10.1111/apha.12877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/20/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
Abstract
AIM The electroneutral Na+ , HCO3- cotransporter NBCn1 and Na+ /H+ exchanger NHE1 regulate acid-base balance in vascular smooth muscle cells (VSMCs) and modify artery function and structure. Pathological conditions - notably ischaemia - can dramatically perturb intracellular (i) and extracellular (o) pH and [Na+ ]. We examined effects of low [Na+ ]o and pHo on NBCn1 and NHE1 activity in VSMCs of small arteries. METHODS We measured pHi by 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-based fluorescence microscopy of mouse mesenteric arteries and induced intracellular acidification by NH4+ prepulse technique. RESULTS NBCn1 activity - defined as Na+ -dependent, amiloride-insensitive net base uptake with CO2 /HCO3- present - was inhibited equally when pHo decreased from 7.4 (22 mm HCO3-/5% CO2 ) by metabolic (pHo 7.1/11 mm HCO3-: 22 ± 8%; pHo 6.8/5.5 mm HCO3-: 61 ± 7%) or respiratory (pHo 7.1/10% CO2 : 35 ± 11%; pHo 6.8/20% CO2 : 56 ± 7%) acidosis. Extracellular acidosis more prominently inhibited NHE1 activity - defined as Na+ -dependent net acid extrusion without CO2 /HCO3- present - at both pHo 7.1 (45 ± 9%) and 6.8 (85 ± 5%). Independently of pHo , lowering [Na+ ]o from 140 to 70 mm reduced NBCn1 and NHE1 activity <20% whereas transport activities declined markedly (25-50%) when [Na+ ]o was reduced to 35 mm. Steady-state pHi decreased more during respiratory (ΔpHi /ΔpHo = 71 ± 4%) than metabolic (ΔpHi /ΔpHo = 30 ± 7%) acidosis. CONCLUSION Extracellular acidification inhibits NBCn1 and NHE1 activity in VSMCs. NBCn1 is equivalently inhibited when pCO2 is raised or [HCO3-]o decreased. Lowering [Na+ ]o inhibits NBCn1 and NHE1 markedly only below the typical physiological and pathophysiological range. We propose that inhibition of Na+ -dependent net acid extrusion at low pHo protects against cellular Na+ overload at the cost of intracellular acidification.
Collapse
Affiliation(s)
- L. Bonde
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - E. Boedtkjer
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
31
|
Vairamani K, Wang HS, Medvedovic M, Lorenz JN, Shull GE. RNA SEQ Analysis Indicates that the AE3 Cl -/HCO 3- Exchanger Contributes to Active Transport-Mediated CO 2 Disposal in Heart. Sci Rep 2017; 7:7264. [PMID: 28779178 PMCID: PMC5544674 DOI: 10.1038/s41598-017-07585-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Loss of the AE3 Cl−/HCO3− exchanger (Slc4a3) in mice causes an impaired cardiac force-frequency response and heart failure under some conditions but the mechanisms are not known. To better understand the functions of AE3, we performed RNA Seq analysis of AE3-null and wild-type mouse hearts and evaluated the data with respect to three hypotheses (CO2 disposal, facilitation of Na+-loading, and recovery from an alkaline load) that have been proposed for its physiological functions. Gene Ontology and PubMatrix analyses of differentially expressed genes revealed a hypoxia response and changes in vasodilation and angiogenesis genes that strongly support the CO2 disposal hypothesis. Differential expression of energy metabolism genes, which indicated increased glucose utilization and decreased fatty acid utilization, were consistent with adaptive responses to perturbations of O2/CO2 balance in AE3-null myocytes. Given that the myocardium is an obligate aerobic tissue and consumes large amounts of O2, the data suggest that loss of AE3, which has the potential to extrude CO2 in the form of HCO3−, impairs O2/CO2 balance in cardiac myocytes. These results support a model in which the AE3 Cl−/HCO3− exchanger, coupled with parallel Cl− and H+-extrusion mechanisms and extracellular carbonic anhydrase, is responsible for active transport-mediated disposal of CO2.
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - John N Lorenz
- Department of Cellular and Molecular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.
| |
Collapse
|
32
|
Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA. Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stine F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Frauke Alves
- Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute for Diagnostic and Interventional Radiology; University Medical Center; Göttingen Germany
- Department of Hematology and Medical Oncology; University Medical Center; Göttingen Germany
| | - Albrecht Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| | - Luis A. Pardo
- Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
33
|
Vargas LA, Velasquez FC, Alvarez BV. RETRACTED ARTICLE: Compensatory role of the NBCn1 sodium/bicarbonate cotransporter on Ca2+-induced mitochondrial swelling in hypertrophic hearts. Basic Res Cardiol 2017; 112:14. [DOI: 10.1007/s00395-017-0604-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/20/2017] [Indexed: 11/28/2022]
|
34
|
Park HJ, Lee S, Ju E, Jones JA, Choi I. Alternative transcription of sodium/bicarbonate transporter SLC4A7 gene enhanced by single nucleotide polymorphisms. Physiol Genomics 2017; 49:167-176. [PMID: 28087757 PMCID: PMC5374452 DOI: 10.1152/physiolgenomics.00112.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies have identified the single nucleotide polymorphism (SNP) rs3278 in the human SLC4A7 gene as one of the marker loci for addiction vulnerability. This marker is located in an intron of the gene, and its genomic role has been unknown. In this study, we examined rs3278 and three adjacent SNPs prevalent in alcoholics for their effects on an alternative promoter that would lead to the production of the NH2-terminally truncated protein NBCn1ΔN450, missing the first 450 amino acids. Analysis of the transcription start site database and a promoter prediction algorithm identified a cluster of three promoters in intron 7 and two short CpG-rich sites in intron 6. The promoter closest to rs3278 showed strong transcription activity in luciferase reporter gene assays. Major-to-minor allele substitution at rs3278 resulted in increased transcription activity. Equivalent substitutions at adjacent rs3772723 (intron 7) and rs13077400 (exon 8) had negligible effect; however, the substitution at nonsynonymous rs3755652 (exon 8) increased the activity by more than twofold. The concomitant substitution at rs3278/rs3755652 produced an additive effect. The rs3755652 had more profound effects on the promoter than the upstream regulatory CpG sites. The amino acid change E326K caused by rs3755652 had negligible effect on transporter function. In HEK 293 cells, NBCn1ΔN450 was expressed in plasma membranes, but at significantly lower levels than the nontruncated NBCn1-E. The pH change mediated by NBCn1ΔN450 was also low. We conclude that rs3278 and rs3755652 stimulate an alternative transcription of the SLC4A7 gene, increasing the production of a defective transporter.
Collapse
Affiliation(s)
- Hae Jeong Park
- Department of Pharmacology, Kyung Hee University School of Medicine, Seoul, South Korea; and
| | - Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Eunji Ju
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Jayre A Jones
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Inyeong Choi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
Orlowski A, De Giusti VC, Ciancio MC, Espejo MS, Aiello EA. The cardiac electrogenic sodium/bicarbonate cotransporter (NBCe1) is activated by aldosterone through the G protein-coupled receptor 30 (GPR 30). Channels (Austin) 2016; 10:428-434. [PMID: 27249584 DOI: 10.1080/19336950.2016.1195533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sodium/bicarbonate cotransporter (NBC) transports extracellular Na+ and HCO3- into the cytoplasm upon intracellular acidosis, restoring the acidic pHi to near neutral values. Two different NBC isoforms have been described in the heart, the electroneutral NBCn1 (1Na+:1HCO3-) and the electrogenic NBCe1 (1Na+:2HCO3-). Certain non-genomic effects of aldosterone (Ald) were due to an orphan G protein-couple receptor 30 (GPR30). We have recently demonstrated that Ald activates GPR30 in adult rat ventricular myocytes, which transactivates the epidermal growth factor receptor (EGFR) and in turn triggers a reactive oxygen species (ROS)- and PI3K/AKT-dependent pathway, leading to the stimulation of NBC. The aim of this study was to investigate the NBC isoform involved in the Ald/GPR30-induced NBC activation. Using specific NBCe1 inhibitory antibodies (a-L3) we demonstrated that Ald does not affect NBCn1 activity. Ald was able to increase NBCe1 activity recorded in isolation. Using immunofluorescence and confocal microscopy analysis we showed in this work that both NBCe1 and GPR30 are localized in t-tubules. In conclusion, we have demonstrated that NBCe1 is the NBC isoform activated by Ald in the heart.
Collapse
Affiliation(s)
- Alejandro Orlowski
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| | - Verónica C De Giusti
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| | - María C Ciancio
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| | - María S Espejo
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| | - Ernesto A Aiello
- a Centro de Investigaciones Cardiovasculares "Dr. Horacio Cingolani" , Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET , La Plata , Buenos Aires , Argentina
| |
Collapse
|
36
|
Ryan AJ, Brougham CM, Garciarena CD, Kerrigan SW, O'Brien FJ. Towards 3D in vitro models for the study of cardiovascular tissues and disease. Drug Discov Today 2016; 21:1437-1445. [PMID: 27117348 DOI: 10.1016/j.drudis.2016.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 01/15/2023]
Abstract
The field of tissue engineering is developing biomimetic biomaterial scaffolds that are showing increasing therapeutic potential for the repair of cardiovascular tissues. However, a major opportunity exists to use them as 3D in vitro models for the study of cardiovascular tissues and disease in addition to drug development and testing. These in vitro models can span the gap between 2D culture and in vivo testing, thus reducing the cost, time, and ethical burden of current approaches. Here, we outline the progress to date and the requirements for the development of ideal in vitro 3D models for blood vessels, heart valves, and myocardial tissue.
Collapse
Affiliation(s)
- Alan J Ryan
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Claire M Brougham
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; School of Mechanical and Design Engineering, Dublin Institute of Technology, Bolton Street, Dublin 1, Ireland
| | - Carolina D Garciarena
- Cardiovascular Infection Research Group, School of Pharmacy & Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Steven W Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy & Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
37
|
De Giusti VC, Orlowski A, Ciancio MC, Espejo MS, Gonano LA, Caldiz CI, Vila Petroff MG, Villa-Abrille MC, Aiello EA. Aldosterone stimulates the cardiac sodium/bicarbonate cotransporter via activation of the g protein-coupled receptor gpr30. J Mol Cell Cardiol 2015; 89:260-7. [PMID: 26497404 DOI: 10.1016/j.yjmcc.2015.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect. NBC activity was evaluated in rat cardiomyocytes perfused with HCO3(-)/CO2 solution in the continuous presence of HOE642 (sodium/hydrogen exchanger blocker) during recovery from acidosis using intracellular fluorescence measurements. Ald enhanced NBC activity (% of ΔJHCO3(-); control: 100±5.82%, n=7 vs Ald: 151.88±11.02%, n=5; P<0.05), which was prevented by G15 (GPR30 blocker, 90.53±7.81%, n=7). Further evidence for the involvement of GPR30 was provided by G1 (GPR30 agonist), which stimulated NBC (185.13±18.28%, n=6; P<0.05) and this effect was abrogated by G15 (124.19±10.96%, n=5). Ald- and G1-induced NBC stimulation was abolished by the reactive oxygen species (ROS) scavenger MPG and by the NADPH oxidase inhibitor apocynin. In addition, G15 prevented Ald- and G1-induced ROS production. Pre-incubation of myocytes with wortmannin (PI3K-AKT pathway blocker) prevented Ald- or G1-induced NBC stimulation. In summary, Ald stimulates NBC by GPR30 activation, ROS production and AKT stimulation.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María C Ciancio
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María S Espejo
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Luis A Gonano
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Martín G Vila Petroff
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María C Villa-Abrille
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
38
|
Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 2015; 72:2061-74. [PMID: 25680790 DOI: 10.1007/s00018-015-1848-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/17/2023]
Abstract
The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.
Collapse
|
39
|
Swietach P, Spitzer KW, Vaughan-Jones RD. Na⁺ ions as spatial intracellular messengers for co-ordinating Ca²⁺ signals during pH heterogeneity in cardiomyocytes. Cardiovasc Res 2014; 105:171-81. [PMID: 25514933 PMCID: PMC4297422 DOI: 10.1093/cvr/cvu251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aims Contraction of the heart is regulated by electrically evoked Ca2+ transients (CaTs). H+ ions, the end products of metabolism, modulate CaTs through direct interactions with Ca2+-handling proteins and via Na+-mediated coupling between acid-extruding proteins (e.g. Na+/H+ exchange, NHE1) and Na+/Ca2+ exchange. Restricted H+ diffusivity in cytoplasm predisposes pH-sensitive Ca2+ signalling to becoming non-uniform, but the involvement of readily diffusible intracellular Na+ ions may provide a means for combatting this. Methods and results CaTs were imaged in fluo3-loaded rat ventricular myocytes paced at 2 Hz. Cytoplasmic [Na+] ([Na+]i) was imaged using SBFI. Intracellular acidification by acetate exposure raised diastolic and systolic [Ca2+] (also observed with acid-loading by ammonium prepulse or CO2 exposure). The systolic [Ca2+] response correlated with a rise in [Na+]i and sarcoplasmic reticulum Ca2+ load, and was blocked by the NHE1 inhibitor cariporide (CO2/HCO3−-free media). Exposure of one half of a myocyte to acetate using dual microperfusion (CO2/HCO3−-free media) raised diastolic [Ca2+] locally in the acidified region. Systolic [Ca2+] and CaT amplitude increased more uniformly along the length of the cell, but only when NHE1 was functional. Cytoplasmic Na+ diffusivity (DNa) was measured in quiescent cells, with strophanthidin present to inhibit the Na+/K+ pump. With regional acetate exposure to activate a local NHE-driven Na+-influx, DNa was found to be sufficiently fast (680 µm2/s) for transmitting the pH–systolic Ca2+ interaction over long distances. Conclusions Na+ ions are rapidly diffusible messengers that expand the spatial scale of cytoplasmic pH–CaT interactions, helping to co-ordinate global Ca2+ signalling during conditions of intracellular pH non-uniformity.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, UK
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, USA
| | - Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, UK
| |
Collapse
|
40
|
Wang HS, Chen Y, Vairamani K, Shull GE. Critical role of bicarbonate and bicarbonate transporters in cardiac function. World J Biol Chem 2014; 5:334-345. [PMID: 25225601 PMCID: PMC4160527 DOI: 10.4331/wjbc.v5.i3.334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/06/2014] [Accepted: 05/19/2014] [Indexed: 02/05/2023] Open
Abstract
Bicarbonate is one of the major anions in mammalian tissues and extracellular fluids. Along with accompanying H+, HCO3- is generated from CO2 and H2O, either spontaneously or via the catalytic activity of carbonic anhydrase. It serves as a component of the major buffer system, thereby playing a critical role in pH homeostasis. Bicarbonate can also be utilized by a variety of ion transporters, often working in coupled systems, to transport other ions and organic substrates across cell membranes. The functions of HCO3- and HCO3--transporters in epithelial tissues have been studied extensively, but their functions in heart are less well understood. Here we review studies of the identities and physiological functions of Cl-/HCO3- exchangers and Na+/HCO3- cotransporters of the SLC4A and SLC26A families in heart. We also present RNA Seq analysis of their cardiac mRNA expression levels. These studies indicate that slc4a3 (AE3) is the major Cl-/HCO3- exchanger and plays a protective role in heart failure, and that Slc4a4 (NBCe1) is the major Na+/HCO3- cotransporter and affects action potential duration. In addition, previous studies show that HCO3- has a positive inotropic effect in the perfused heart that is largely independent of effects on intracellular Ca2+. The importance of HCO3- in the regulation of contractility is supported by experiments showing that isolated cardiomyocytes exhibit sharply enhanced contractility, with no change in Ca2+ transients, when switched from Hepes-buffered to HCO3-- buffered solutions. These studies demonstrate that HCO3- and HCO3--handling proteins play important roles in the regulation of cardiac function.
Collapse
|
41
|
Peetz J, Barros LF, San Martín A, Becker HM. Functional interaction between bicarbonate transporters and carbonic anhydrase modulates lactate uptake into mouse cardiomyocytes. Pflugers Arch 2014; 467:1469-1480. [PMID: 25118990 DOI: 10.1007/s00424-014-1594-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022]
Abstract
Blood-derived lactate is a precious energy substrate for the heart muscle. Lactate is transported into cardiomyocytes via monocarboxylate transporters (MCTs) together with H(+), which couples lactate uptake to cellular pH regulation. In this study, we have investigated how the interplay between different acid/base transporters and carbonic anhydrases (CA), which catalyze the reversible hydration of CO2, modulates the uptake of lactate into isolated mouse cardiomyocytes. Lactate transport was estimated both as lactate-induced acidification and as changes in intracellular lactate levels measured with a newly developed Förster resonance energy transfer (FRET) nanosensor. Recordings of intracellular pH showed an increase in the rate of lactate-induced acidification when CA was inhibited by 6-ethoxy-2-benzothiazolesulfonamide (EZA), while direct measurements of lactate flux demonstrated a decrease in MCT transport activity, when CA was inhibited. The data indicate that catalytic activity of extracellular CA increases lactate uptake and counteracts intracellular lactate-induced acidification. We propose a hypothetical model, in which HCO3 (-), formed from cell-derived CO2 at the outer surface of the cardiomyocyte plasma membrane by membrane-anchored, extracellular CA, is transported into the cell via Na(+)/HCO3 (-) cotransport to counteract intracellular acidification, while the remaining H(+) stabilizes extracellular pH at the surface of the plasma membrane during MCT activity to enhance lactate influx into cardiomyocytes.
Collapse
Affiliation(s)
- Jan Peetz
- Division of Zoology/Membrane Transport, FB Biologie, TU Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany
| | | | | | - Holger M Becker
- Division of Zoology/Membrane Transport, FB Biologie, TU Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany.
| |
Collapse
|
42
|
Fantinelli JC, Orlowski A, Aiello EA, Mosca SM. The electrogenic cardiac sodium bicarbonate co-transporter (NBCe1) contributes to the reperfusion injury. Cardiovasc Pathol 2014; 23:224-30. [PMID: 24721237 DOI: 10.1016/j.carpath.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although the participation of the electrogenic sodium/bicarbonate cotransporter (NBCe1) in the recovery from an intracellular acid load is recognized, its role in ischemia-reperfusion is still unclear. METHODS AND RESULTS Our objective was to assess the role of NBCe1 in reperfusion injury. We use selective functional antibodies against extracellular loop 3 (a-L3) and loop 4 (a-L4) of NBCe1. a-L3 inhibits and a-L4 stimulates NBCe1 activity. Isolated rat hearts were submitted to 40 min of coronary occlusion and 1 h of reperfusion. a-L3, a-L4 or S0859--selective Na(+)-HCO3(-) co-transport inhibitor--were administered during the initial 10 min of reperfusion. The infarct size (IS) was measured by triphenyltetrazolium chloride staining technique. Postischemic systolic and diastolic functions were also assessed. a-L3 and S0859 treatments decreased significantly (P < .05) the IS (16 ± 3% for a-L3 vs. 32 ± 5% in hearts treated with control nonimmune serum and 19 ± 3% for S0859 vs. 39 ± 2% in untreated hearts). Myocardial function during reperfusion improved after a-L3 treatment, but it was not modified by S0859. The infusion of a-L4 did not modify neither the IS nor myocardial function. CONCLUSIONS The NBCe1 hyperactivity during reperfusion leads to Na(+) and Ca(2+) loading, conducing to Ca(2+) overload and myocardial damage. Consistently, we have shown herein that the selective NBCe1 blockade with a-L3 exerted cardioprotection. This beneficial action strongly suggests that NBCe1 could be a potential target for the treatment of coronary disease.
Collapse
Affiliation(s)
- Juliana C Fantinelli
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alejandro Orlowski
- Fellowship of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Ernesto A Aiello
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana M Mosca
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
43
|
Kurtz I. NBCe1 as a model carrier for understanding the structure-function properties of Na⁺ -coupled SLC4 transporters in health and disease. Pflugers Arch 2014; 466:1501-16. [PMID: 24515290 DOI: 10.1007/s00424-014-1448-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/17/2023]
Abstract
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na(+) and/or Cl(-), in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na(+) and/or Cl(-), and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na(+)-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl(-)-HCO3 (-) exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA, USA,
| |
Collapse
|
44
|
De Giusti VC, Ciancio MC, Orlowski A, Aiello EA. Modulation of the cardiac sodium/bicarbonate cotransporter by the renin angiotensin aldosterone system: pathophysiological consequences. Front Physiol 2014; 4:411. [PMID: 24478712 PMCID: PMC3894460 DOI: 10.3389/fphys.2013.00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022] Open
Abstract
The sodium/bicarbonate cotransporter (NBC) is one of the major alkalinizing mechanisms in the cardiomyocytes. It has been demonstrated the existence of at least two functional isoforms, one that promotes the co-influx of 1 molecule of Na+ per 1 molecule of HCO−3 (electroneutral isoform; NBCn1) and the other one that generates the co-influx of 1 molecule of Na+ per 2 molecules of HCO−3 (electrogenic isoform; NBCe1). Both isoforms are important to maintain intracellular pH (pHi) and sodium concentration ([Na+]i). In addition, NBCe1 generates an anionic repolarizing current that modulates the action potential duration (APD). The renin-angiotensin-aldosterone system (RAAS) is implicated in the modulation of almost all physiological cardiac functions and is also involved in the development and progression of cardiac diseases. It was reported that angiotensin II (Ang II) exhibits an opposite effect on NBC isoforms: it activates NBCn1 and inhibits NBCe1. The activation of NBCn1 leads to an increase in pHi and [Na+]i, which indirectly, due to the stimulation of reverse mode of the Na+/Ca2+ exchanger (NCX), conduces to an increase in the intracellular Ca2+ concentration. On the other hand, the inhibition of NBCe1 generates an APD prolongation, potentially representing a risk of arrhythmias. In the last years, the potentially altered NBC function in pathological scenarios, as cardiac hypertrophy and ischemia-reperfusion, has raised increasing interest among investigators. This review attempts to draw the attention on the relevant regulation of NBC activity by RAAS, since it modulates pHi and [Na+]i, which are involved in the development of cardiac hypertrophy, the damage produced by ischemia-reperfusion and the generation of arrhythmic events, suggesting a potential role of NBC in cardiac diseases.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - María C Ciancio
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - Alejandro Orlowski
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - Ernesto A Aiello
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| |
Collapse
|
45
|
Prasad V, Lorenz JN, Lasko VM, Nieman ML, Al Moamen NJ, Shull GE. Loss of the AE3 Cl(-)/HCO(-) 3 exchanger in mice affects rate-dependent inotropy and stress-related AKT signaling in heart. Front Physiol 2013; 4:399. [PMID: 24427143 PMCID: PMC3875869 DOI: 10.3389/fphys.2013.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023] Open
Abstract
Cl(-)/HCO(-) 3 exchangers are expressed abundantly in cardiac muscle, suggesting that HCO(-) 3 extrusion serves an important function in heart. Mice lacking Anion Exchanger Isoform 3 (AE3), a major cardiac Cl(-)/HCO(-) 3 exchanger, appear healthy, but loss of AE3 causes decompensation in a hypertrophic cardiomyopathy (HCM) model. Using intra-ventricular pressure analysis, in vivo pacing, and molecular studies we identified physiological and biochemical changes caused by loss of AE3 that may contribute to decompensation in HCM. AE3-null mice had normal cardiac contractility under basal conditions and after β-adrenergic stimulation, but pacing of hearts revealed that frequency-dependent inotropy was blunted, suggesting that AE3-mediated HCO(-) 3 extrusion is required for a robust force-frequency response (FFR) during acute biomechanical stress in vivo. Modest changes in expression of proteins that affect Ca(2+)-handling were observed, but Ca(2+)-transient analysis of AE3-null myocytes showed normal twitch-amplitude and Ca(2+)-clearance. Phosphorylation and expression of several proteins implicated in HCM and FFR, including phospholamban (PLN), myosin binding protein C, and troponin I were not altered in hearts of paced AE3-null mice; however, phosphorylation of Akt, which plays a central role in mechanosensory signaling, was significantly higher in paced AE3-null hearts than in wild-type controls and phosphorylation of AMPK, which is affected by Akt and is involved in energy metabolism and some cases of HCM, was reduced. These data show loss of AE3 leads to impaired rate-dependent inotropy, appears to affect mechanical stress-responsive signaling, and reduces activation of AMPK, which may contribute to decompensation in heart failure.
Collapse
Affiliation(s)
- Vikram Prasad
- Departments of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - John N Lorenz
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Valerie M Lasko
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Michelle L Nieman
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Nabeel J Al Moamen
- Genetic Laboratory, Department of Pathology, Salmaniya Medical Complex Manama, Bahrain
| | - Gary E Shull
- Departments of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| |
Collapse
|
46
|
Villafuerte FC, Swietach P, Youm JB, Ford K, Cardenas R, Supuran CT, Cobden PM, Rohling M, Vaughan-Jones RD. Facilitation by intracellular carbonic anhydrase of Na+ -HCO3- co-transport but not Na+ / H+ exchange activity in the mammalian ventricular myocyte. J Physiol 2013; 592:991-1007. [PMID: 24297849 PMCID: PMC3948559 DOI: 10.1113/jphysiol.2013.265439] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbonic anhydrase enzymes (CAs) catalyse the reversible hydration of CO2 to H+ and HCO3- ions. This catalysis is proposed to be harnessed by acid/base transporters, to facilitate their transmembrane flux activity, either through direct protein-protein binding (a 'transport metabolon') or local functional interaction. Flux facilitation has previously been investigated by heterologous co-expression of relevant proteins in host cell lines/oocytes. Here, we examine the influence of intrinsic CA activity on membrane HCO3- or H+ transport via the native acid-extruding proteins, Na+ -HCO3- cotransport (NBC) and Na+ / H+ exchange (NHE), expressed in enzymically isolated mammalian ventricular myocytes. Effects of intracellular and extracellular (exofacial) CA (CAi and CAe) are distinguished using membrane-permeant and -impermeant pharmacological CA inhibitors, while measuring transporter activity in the intact cell using pH and Na+ fluorophores. We find that NBC, but not NHE flux is enhanced by catalytic CA activity, with facilitation being confined to CAi activity alone. Results are quantitatively consistent with a model where CAi catalyses local H+ ion delivery to the NBC protein, assisting the subsequent (uncatalysed) protonation and removal of imported HCO3- ions. In well-superfused myocytes, exofacial CA activity is superfluous, most likely because extracellular CO2/HCO3- buffer is clamped at equilibrium. The CAi insensitivity of NHE flux suggests that, in the native cell, intrinsic mobile buffer-shuttles supply sufficient intracellular H+ ions to this transporter, while intrinsic buffer access to NBC proteins is restricted. Our results demonstrate a selective CA facilitation of acid/base transporters in the ventricular myocyte, implying a specific role for the intracellular enzyme in HCO3- transport, and hence pHi regulation in the heart.
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling. Proc Natl Acad Sci U S A 2013; 110:E2064-73. [PMID: 23676270 DOI: 10.1073/pnas.1222433110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ca(2+) signaling regulates cell function. This is subject to modulation by H(+) ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca(2+)] ([Ca(2+)]i) or [H(+)] ([H(+)]i) can become compartmentalized, leading potentially to complex spatial Ca(2+)/H(+) coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H(+)]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca(2+)]i rise, independent of sarcolemmal Ca(2+) influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H(+) uncaging from 2-nitrobenzaldehyde also raised [Ca(2+)]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H(+) uncaging into buffer mixtures in vitro demonstrated that Ca(2+) unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H(+)-evoked [Ca(2+)]i rise. Raising [H(+)]i tonically at one end of a myocyte evoked a local [Ca(2+)]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca(2+) transport into the acidic zone via Ca(2+)/H(+) exchange on diffusible HDPs and ATP molecules, energized by the [H(+)]i gradient. Ca(2+) recruitment to a localized acid microdomain was greatly reduced during intracellular Mg(2+) overload or by ATP depletion, maneuvers that reduce the Ca(2+)-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca(2+)/H(+) coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca(2+)/H(+) coupling is likely to be of general importance in cell signaling.
Collapse
|
48
|
Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH. J Mol Cell Cardiol 2013; 61:51-9. [PMID: 23602948 DOI: 10.1016/j.yjmcc.2013.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
Abstract
Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHi<7.2, greatly exceeding Na(+)-efflux on the Na(+)/K(+) ATPase. It is spatially heterogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60μm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Carolina D Garciarena
- Burdon Sanderson Cardiac Science Centre, Department of Physiology Anatomy & Genetics, Oxford, UK
| | | | | | | |
Collapse
|