1
|
Roy K, Zhou X, Otani R, Yuan PC, Ioka S, Vogt KE, Kondo T, Farag NHT, Ijiri H, Wu Z, Chitose Y, Amezawa M, Uygun DS, Cherasse Y, Nagase H, Li Y, Yanagisawa M, Abe M, Basheer R, Wang YQ, Saitoh T, Lazarus M. Optochemical control of slow-wave sleep in the nucleus accumbens of male mice by a photoactivatable allosteric modulator of adenosine A 2A receptors. Nat Commun 2024; 15:3661. [PMID: 38688901 PMCID: PMC11061178 DOI: 10.1038/s41467-024-47964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.
Collapse
Affiliation(s)
- Koustav Roy
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Xuzhao Zhou
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rintaro Otani
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ping-Chuan Yuan
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuji Ioka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tamae Kondo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nouran H T Farag
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruto Ijiri
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- PhD Program in Humanics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Youhei Chitose
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mao Amezawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - David S Uygun
- Department of Psychiatry, Veterans Administration Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yulong Li
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Radhika Basheer
- Department of Psychiatry, Veterans Administration Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China.
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Matsumoto A, Yonehara K. Emerging computational motifs: Lessons from the retina. Neurosci Res 2023; 196:11-22. [PMID: 37352934 DOI: 10.1016/j.neures.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The retinal neuronal circuit is the first stage of visual processing in the central nervous system. The efforts of scientists over the last few decades indicate that the retina is not merely an array of photosensitive cells, but also a processor that performs various computations. Within a thickness of only ∼200 µm, the retina consists of diverse forms of neuronal circuits, each of which encodes different visual features. Since the discovery of direction-selective cells by Horace Barlow and Richard Hill, the mechanisms that generate direction selectivity in the retina have remained a fascinating research topic. This review provides an overview of recent advances in our understanding of direction-selectivity circuits. Beyond the conventional wisdom of direction selectivity, emerging findings indicate that the retina utilizes complicated and sophisticated mechanisms in which excitatory and inhibitory pathways are involved in the efficient encoding of motion information. As will become evident, the discovery of computational motifs in the retina facilitates an understanding of how sensory systems establish feature selectivity.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
3
|
Ma C, Chen H, Yengel E, Faber H, Khan JI, Tang MC, Li R, Loganathan K, Lin Y, Zhang W, Laquai F, McCulloch I, Anthopoulos TD. Printed Memtransistor Utilizing a Hybrid Perovskite/Organic Heterojunction Channel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51592-51601. [PMID: 34696578 DOI: 10.1021/acsami.1c08583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neuromorphic computing has the potential to address the inherent limitations of conventional integrated circuit technology, ranging from perception, pattern recognition, to memory and decision-making ( Acc. Chem. Res. 2019, 52 (4), 964-974) ( Nature 2004, 431 (7010), 796-803) ( Nat. Nanotechnol. 2013, 8 (1), 13-24). Despite their low power consumption ( Nano Lett. 2016, 16 (11), 6724-6732), traditional two-terminal memristors can perform only a single function while lacking heterosynaptic plasticity ( Nanotechnology 2013, 24 (38), 382001). Inspired by the unconditioned reflex, multiterminal memristive transistors (memtransistor) were developed to realize complex functions, such as multiterminal modulation and heterosynaptic plasticity ( Nature 2018, 554, (7693), 500-504). Here we combine a hybrid metal halide perovskite with an organic conjugated polymer to form heterojunction transistors that are responsive to both electrical and optical stimuli. We show that the synergistic effects of photoinduced ion migration in the perovskite and electronic transport in the polymer layers can be exploited to realize memristive functions. The device combines reversible, nonvolatile conductance modulation with large switching current ratios, high endurance, and long retention times. Using in situ scanning Kelvin probe microscopy and variable-temperature charge transport measurement, we correlate the collective effects of bias-induced and photoinduced ion migration with the heterosynaptic behavior observed in this hybrid memtransistor. The hybrid heterojunction channel concept is expected to be applicable to other material combinations making it a promising platform for deployment in innovative neuromorphic devices of the future.
Collapse
Affiliation(s)
- Chun Ma
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Hu Chen
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Emre Yengel
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Jafar I Khan
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Ming-Chun Tang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kalaivanan Loganathan
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Yuanbao Lin
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Weimin Zhang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Hirasawa H, Miwa N, Watanabe SI. GABAergic and glycinergic systems regulate ON-OFF electroretinogram by cooperatively modulating cone pathways in the amphibian retina. Eur J Neurosci 2020; 53:1428-1440. [PMID: 33222336 DOI: 10.1111/ejn.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
The network mechanisms underlying how inhibitory circuits regulate ON- and OFF-responses (the b- and d-waves) in the electroretinogram (ERG) remain unclear. The purpose of this study was to investigate the contribution of inhibitory circuits to the emergence of the b- and d-waves in the full-field ERG in the newt retina. To this end, we investigated the effects of several synaptic transmission blockers on the amplitudes of the b- and d-waves in the ERG obtained from newt eyecup preparations. Our results demonstrated that (a) L-APB blocked the b-wave, indicating that the b-wave arises from the activity of ON-bipolar cells (BCs) expressing type six metabotropic glutamate receptors; (b) the combined administration of UBP310/GYKI 53655 blocked the d-wave, indicating that the d-wave arises from the activity of OFF-BCs expressing kainate-/AMPA-receptors; (c) SR 95531 augmented both the b- and the d-wave, indicating that GABAergic lateral inhibitory circuits inhibit both ON- and OFF-BC pathways; (d) the administration of strychnine in the presence of SR 95531 attenuated the d-wave, and this attenuation was prevented by blocking ON-pathways with L-APB, which indicated that the glycinergic inhibition of OFF-BC pathway is downstream of the GABAergic inhibition of the ON-system; and (e) the glycinergic inhibition from the ON- to the OFF-system widens the response range of OFF-BC pathways, specifically in the absence of GABAergic lateral inhibition. Based on these results, we proposed a circuitry mechanism for the regulation of the d-wave and offered a tentative explanation of the circuitry mechanisms underlying ERG formation.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Naofumi Miwa
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Shu-Ichi Watanabe
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
5
|
Caruso G, Gurevich VV, Klaus C, Hamm H, Makino CL, DiBenedetto E. Local, nonlinear effects of cGMP and Ca2+ reduce single photon response variability in retinal rods. PLoS One 2019; 14:e0225948. [PMID: 31805112 PMCID: PMC6894879 DOI: 10.1371/journal.pone.0225948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022] Open
Abstract
The single photon response (SPR) in vertebrate photoreceptors is inherently variable due to several stochastic events in the phototransduction cascade, the main one being the shutoff of photoactivated rhodopsin. Deactivation is driven by a random number of steps, each of random duration with final quenching occurring after a random delay. Nevertheless, variability of the SPR is relatively low, making the signal highly reliable. Several biophysical and mathematical mechanisms contributing to variability suppression have been examined by the authors. Here we investigate the contribution of local depletion of cGMP by PDE*, the non linear dependence of the photocurrent on cGMP, Ca2+ feedback by making use of a fully space resolved (FSR) mathematical model, applied to two species (mouse and salamander), by varying the cGMP diffusion rate severalfold and rod outer segment diameter by an order of magnitude, and by introducing new, more refined, and time dependent variability functionals. Globally well stirred (GWS) models, and to a lesser extent transversally well stirred models (TWS), underestimate the role of nonlinearities and local cGMP depletion in quenching the variability of the circulating current with respect to fully space resolved models (FSR). These distortions minimize the true extent to which SPR is stabilized by locality in cGMP depletion, nonlinear effects linking cGMP to current, and Ca2+ feedback arising from the physical separation of E* from the ion channels located on the outer shell, and the diffusion of these second messengers in the cytoplasm.
Collapse
Affiliation(s)
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, Unites States of America
| | - Colin Klaus
- The Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, Unites States of America
| | - Clint L. Makino
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
6
|
Matsumoto A, Tachibana M. Global Jitter Motion of the Retinal Image Dynamically Alters the Receptive Field Properties of Retinal Ganglion Cells. Front Neurosci 2019; 13:979. [PMID: 31572123 PMCID: PMC6753181 DOI: 10.3389/fnins.2019.00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/30/2019] [Indexed: 11/25/2022] Open
Abstract
Fixational eye movements induce aperiodic motion of the retinal image. However, it is not yet fully understood how fixational eye movements affect retinal information processing. Here we show that global jitter motion, simulating the image motion during fixation, alters the spatiotemporal receptive field properties of retinal ganglion cells. Using multi-electrode and whole-cell recording techniques, we investigated light-evoked responses from ganglion cells in the isolated goldfish retina. Ganglion cells were classified into six groups based on the filtering property of light stimulus, the membrane properties, and the cell morphology. The spatiotemporal receptive field profiles of retinal ganglion cells were estimated by the reverse correlation method, where the dense noise stimulus was applied on the dark or random-dot background. We found that the jitter motion of the random-dot background elongated the receptive filed along the rostral-caudal axis and temporally sensitized in a specific group of ganglion cells: Fast-transient ganglion cells. At the newly emerged regions of the receptive field local light stimulation evoked excitatory postsynaptic currents with large amplitude and fast kinetics without changing the properties of inhibitory postsynaptic currents. Pharmacological experiments suggested two presynaptic mechanisms underlying the receptive field alteration: (i) electrical coupling between bipolar cells, which expands the receptive field in all directions; (ii) GABAergic presynaptic inhibition from amacrine cells, which reduces the dorsal and ventral regions of the expanded receptive field, resulting in elongation along the rostral-caudal axis. Our study demonstrates that the receptive field of Fast-transient ganglion cells is not static but dynamically altered depending on the visual inputs. The receptive field elongation during fixational eye movements may contribute to prompt firing to a target in the succeeding saccade.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Kusatsu, Japan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Masao Tachibana
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
7
|
Walters DC, Arning E, Bottiglieri T, Jansen EEW, Salomons GS, Brown MN, Schmidt MA, Ainslie GR, Roullet JB, Gibson KM. Metabolomic analyses of vigabatrin (VGB)-treated mice: GABA-transaminase inhibition significantly alters amino acid profiles in murine neural and non-neural tissues. Neurochem Int 2019; 125:151-162. [PMID: 30822440 DOI: 10.1016/j.neuint.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/18/2022]
Abstract
The anticonvulsant vigabatrin (VGB; SabrilR) irreversibly inhibits GABA transaminase to increase neural GABA, yet its mechanism of retinal toxicity remains unclear. VGB is suggested to alter several amino acids, including homocarnosine, β-alanine, ornithine, glycine, taurine, and 2-aminoadipic acid (AADA), the latter a homologue of glutamic acid. Here, we evaluate the effect of VGB on amino acid concentrations in mice, employing a continuous VGB infusion (subcutaneously implanted osmotic minipumps), dose-escalation paradigm (35-140 mg/kg/d, 12 days), and amino acid quantitation in eye, visual and prefrontal cortex, total brain, liver and plasma. We hypothesized that continuous VGB dosing would reveal numerous hitherto undescribed amino acid disturbances. Consistent amino acid elevations across tissues included GABA, β-alanine, carnosine, ornithine and AADA, as well as neuroactive aspartic and glutamic acids, serine and glycine. Maximal increase of AADA in eye occurred at 35 mg/kg/d (41 ± 2 nmol/g (n = 21, vehicle) to 60 ± 8.5 (n = 8)), and at 70 mg/kg/d for brain (97 ± 6 (n = 21) to 145 ± 6 (n = 6)), visual cortex (128 ± 6 to 215 ± 19) and prefrontal cortex (124 ± 11 to 200 ± 13; mean ± SEM; p < 0.05), the first demonstration of tissue AADA accumulation with VGB in mammal. VGB effects on basic amino acids, including guanidino-species, suggested the capacity of VGB to alter urea cycle function and nitrogen disposal. The known toxicity of AADA in retinal glial cells highlights new avenues for assessing VGB retinal toxicity and other off-target effects.
Collapse
Affiliation(s)
- Dana C Walters
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Erland Arning
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Erwin E W Jansen
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, the Netherlands
| | - Gajja S Salomons
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, the Netherlands
| | - Madalyn N Brown
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Michelle A Schmidt
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Garrett R Ainslie
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
8
|
Lipin MY, Vigh J. Quantifying the effect of light activated outer and inner retinal inhibitory pathways on glutamate release from mixed bipolar cells. Synapse 2018; 72:e22028. [PMID: 29360185 DOI: 10.1002/syn.22028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/12/2022]
Abstract
Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔVm ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca2+ influx (QCa ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔCm ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔVm /QCa ratio equally at a given light intensity and inhibition did not alter the overall relation between QCa and ΔCm . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔCm unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between QCa and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities.
Collapse
Affiliation(s)
- Mikhail Y Lipin
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado, 80523-1617
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado, 80523-1617
| |
Collapse
|
9
|
Franke K, Baden T. General features of inhibition in the inner retina. J Physiol 2017; 595:5507-5515. [PMID: 28332227 PMCID: PMC5556161 DOI: 10.1113/jp273648] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/08/2017] [Indexed: 11/08/2022] Open
Abstract
Visual processing starts in the retina. Within only two synaptic layers, a large number of parallel information channels emerge, each encoding a highly processed feature like edges or the direction of motion. Much of this functional diversity arises in the inner plexiform layer, where inhibitory amacrine cells modulate the excitatory signal of bipolar and ganglion cells. Studies investigating individual amacrine cell circuits like the starburst or A17 circuit have demonstrated that single types can possess specific morphological and functional adaptations to convey a particular function in one or a small number of inner retinal circuits. However, the interconnected and often stereotypical network formed by different types of amacrine cells across the inner plexiform layer prompts that they should be also involved in more general computations. In line with this notion, different recent studies systematically analysing inner retinal signalling at a population level provide evidence that general functions of the ensemble of amacrine cells across types are critical for establishing universal principles of retinal computation like parallel processing or motion anticipation. Combining recent advances in the development of indicators for imaging inhibition with large-scale morphological and genetic classifications will help to further our understanding of how single amacrine cell circuits act together to help decompose the visual scene into parallel information channels. In this review, we aim to summarise the current state-of-the-art in our understanding of how general features of amacrine cell inhibition lead to general features of computation.
Collapse
Affiliation(s)
- Katrin Franke
- Centre for Integrative NeuroscienceUniversity of TübingenGermany
- Institute for Ophthalmic ResearchTübingenGermany
- Bernstein Centre for Computational NeuroscienceTübingenGermany
| | - Tom Baden
- Institute for Ophthalmic ResearchTübingenGermany
- School of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
10
|
MATSUMOTO A, TACHIBANA M. Rapid and coordinated processing of global motion images by local clusters of retinal ganglion cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:234-249. [PMID: 28413199 PMCID: PMC5489431 DOI: 10.2183/pjab.93.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/14/2016] [Indexed: 06/07/2023]
Abstract
Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.
Collapse
Affiliation(s)
- Akihiro MATSUMOTO
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Masao TACHIBANA
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
11
|
Mazade RE, Eggers ED. Light adaptation alters inner retinal inhibition to shape OFF retinal pathway signaling. J Neurophysiol 2016; 115:2761-78. [PMID: 26912599 DOI: 10.1152/jn.00948.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/20/2016] [Indexed: 12/18/2022] Open
Abstract
The retina adjusts its signaling gain over a wide range of light levels. A functional result of this is increased visual acuity at brighter luminance levels (light adaptation) due to shifts in the excitatory center-inhibitory surround receptive field parameters of ganglion cells that increases their sensitivity to smaller light stimuli. Recent work supports the idea that changes in ganglion cell spatial sensitivity with background luminance are due in part to inner retinal mechanisms, possibly including modulation of inhibition onto bipolar cells. To determine how the receptive fields of OFF cone bipolar cells may contribute to changes in ganglion cell resolution, the spatial extent and magnitude of inhibitory and excitatory inputs were measured from OFF bipolar cells under dark- and light-adapted conditions. There was no change in the OFF bipolar cell excitatory input with light adaptation; however, the spatial distributions of inhibitory inputs, including both glycinergic and GABAergic sources, became significantly narrower, smaller, and more transient. The magnitude and size of the OFF bipolar cell center-surround receptive fields as well as light-adapted changes in resting membrane potential were incorporated into a spatial model of OFF bipolar cell output to the downstream ganglion cells, which predicted an increase in signal output strength with light adaptation. We show a prominent role for inner retinal spatial signals in modulating the modeled strength of bipolar cell output to potentially play a role in ganglion cell visual sensitivity and acuity.
Collapse
Affiliation(s)
- Reece E Mazade
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|
12
|
Johnston J, Lagnado L. General features of the retinal connectome determine the computation of motion anticipation. eLife 2015; 4. [PMID: 25786068 PMCID: PMC4391023 DOI: 10.7554/elife.06250] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/17/2015] [Indexed: 12/26/2022] Open
Abstract
Motion anticipation allows the visual system to compensate for the slow speed of phototransduction so that a moving object can be accurately located. This correction is already present in the signal that ganglion cells send from the retina but the biophysical mechanisms underlying this computation are not known. Here we demonstrate that motion anticipation is computed autonomously within the dendritic tree of each ganglion cell and relies on feedforward inhibition. The passive and non-linear interaction of excitatory and inhibitory synapses enables the somatic voltage to encode the actual position of a moving object instead of its delayed representation. General rather than specific features of the retinal connectome govern this computation: an excess of inhibitory inputs over excitatory, with both being randomly distributed, allows tracking of all directions of motion, while the average distance between inputs determines the object velocities that can be compensated for. DOI:http://dx.doi.org/10.7554/eLife.06250.001 The retina is a structure at the back of the eye that converts light into nerve impulses, which are then processed in the brain to produce the images that we see. It normally takes about one-tenth of a second for the retina to send a signal to the brain after an object first moves into view. This is about the same time it takes a tennis ball to travel several meters during a tennis match, yet we are still able to see where the moving tennis ball is in real time. This is because a process called ‘motion anticipation’ is able to compensate for the delay in processing the position of a moving object. However, it was not known precisely how motion anticipation occurs. Inside the retina, cells called photoreceptors detect light and ultimately send signals (via some intermediate cell types) to nerve cells known as retinal ganglion cells. These signals can either excite a retinal ganglion cell to cause it to send an electrical signal to the brain, or inhibit it, which temporarily prevents electrical activity. Each cell receives signals from several photoreceptors, which each connect to a different site along branch-like structures called dendrites that project out of the retinal ganglion cells. Johnston and Lagnado have now investigated how motion anticipation occurs in the retina by using electrical recordings of the activity in the retinas of goldfish combined with computer simulations of this activity. This revealed inhibitory signals, sent from photoreceptors to retinal ganglion cells via a type of intermediate cell (called amacrine cells), play a key role in motion anticipation. The ability to track motion effectively in all directions requires more inhibitory signals to be sent to the dendrites of a retinal ganglion cell than excitatory signals. These two types of input must also be randomly distributed across the cell. Furthermore, it is the density of these input sites on a dendrite that determines how well the retina can compensate for the motion of a fast-moving object. The building blocks required for motion anticipation in the retina are also found in visual areas higher in the brain. Therefore, further work may reveal that higher visual areas also use this mechanism to predict the future location of moving objects. DOI:http://dx.doi.org/10.7554/eLife.06250.002
Collapse
Affiliation(s)
- Jamie Johnston
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|