1
|
Falahatpisheh S, Naghib SM, Naimi-Jamal MR, Jafari KM, Sartipzadeh O. Chitosan/agarose-encapsulated oleic acid-coated magnetite nanoparticles as a chemotherapeutic-loaded scaffold for drug delivery: Physico-chemical and in vitro biological characteristics. Int J Biol Macromol 2025; 311:143409. [PMID: 40286971 DOI: 10.1016/j.ijbiomac.2025.143409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/10/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Targeted drug delivery (TDD) offers a promising approach to address the limitations of conventional chemotherapy. This study presents a novel drug delivery system using a chitosan (CS)/agarose (AG) scaffold incorporating oleic acid-coated magnetite nanoparticles (MNPs/OA) for controlled doxorubicin release. Hydrothermally synthesized MNPs were functionalized with oleic acid, a biocompatible surfactant, to improve stability before incorporation into a chitosan-agarose (CS-AG) matrix. The formation of the composite AG-CS-MNPs/OA was characterized and verified using different methods, including Fourier-transform infrared spectroscopy (FT-IR), X-ray Diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), and vibrating-sample magnetometer (VSM). Chitosan is a valuable biomaterial due to its pH sensitivity, natural origin, biodegradability, biocompatibility, and bio adhesive properties. In-vitro drug release experiments revealed a pH-dependent behavior, with increased DOX release observed under acidic conditions (pH = 4.5), which are characteristic of tumor sites, compared to a neutral (pH = 7.4). The release dynamics, best captured by the Korsmeyer-Peppas model, indicated a Fickian diffusion mechanism. Cytotoxicity assessments on MCF-7 breast cancer cells showed enhanced drug effectiveness at acidic pH, supporting the concept of targeted delivery. These findings suggest that the chitosan/agarose-magnetite scaffold is a promising candidate for pH-sensitive, controlled drug delivery, potentially enhancing cancer treatment by minimizing adverse effects on healthy tissues.
Collapse
Affiliation(s)
- Sepehr Falahatpisheh
- Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - M Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Kaveh Mohammad Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Omid Sartipzadeh
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Centre, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Kołodziej A, Świętek M, Hlukhaniuk A, Horák D, Wesełucha-Birczyńska A. Raman spectroscopic investigation of polymer based magnetic multicomponent scaffolds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124800. [PMID: 39024784 DOI: 10.1016/j.saa.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Scaffolds acting as an artificial matrix for cell proliferation are one of the bone tissue engineering approaches to the treatment of bone tissue defects. In the presented study, novel multicomponent scaffolds composed of a poly(ε-caprolactone) (PCL), phenolic compounds such as tannic (TA) and gallic acids (GA), and nanocomponents such as silica-coated magnetic iron oxide nanoparticles (MNPs-c) and functionalized multi-walled carbon nanotubes (CNTs) have been produced as candidates for such artificial substitutes. Well-developed interconnected porous structures were observed using scanning electron microscopy (SEM). Raman spectra showed that the highly crystalline nature of PCL was reduced by the addition of nanoadditives. In the case of scaffolds containing MNPs-c and TA, the formation of a Fe-TA complex was concluded because characteristic bands of chelation of the Fe3+ ion by phenolic catechol oxygen appeared. It was found that the necessary conditions for the crystallization of the PCL/MNPs-c/TA are for the catechol groups to be able to penetrate the porous silica shell of MNPs-c, as during experiment with MNPs-c and TA without polymer, no such complexation was observed. Moreover, the number of catechol groups, the spatial structure and molecular size of this phenolic compound are also crucial for complexation process because GA does not form complexes. Therefore, the PCL/CNTs/MNPs-c/TA scaffolds are interesting candidates to consider for their possible medical applications.
Collapse
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Anna Hlukhaniuk
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | | |
Collapse
|
3
|
Shreya R, Fopase R, Sharma S, Pandey LM. Design of biphasic Fe and Zn doped hydroxyapatite: Novel strategy for combating osteomyelitis infections. CERAMICS INTERNATIONAL 2024; 50:42607-42618. [DOI: 10.1016/j.ceramint.2024.08.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
4
|
Dos Santos Jorge Sousa K, de Souza A, de Almeida Cruz M, de Lima LE, do Espirito Santo G, Amaral GO, Granito RN, Renno AC. 3D printed scaffolds of biosilica and spongin from marine sponges: analysis of genotoxicity and cytotoxicity for bone tissue repair. Bioprocess Biosyst Eng 2024; 47:1483-1498. [PMID: 38869621 DOI: 10.1007/s00449-024-03042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue® assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.
Collapse
Affiliation(s)
- Karolyne Dos Santos Jorge Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil.
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Gustavo Oliva Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Ana Claudia Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| |
Collapse
|
5
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
6
|
Benítez-Martínez JC, García-Haba B, Fernández-Carnero S, Pecos-Martin D, Sanchez Romero EA, Selva-Sarzo F, Cuenca-Zaldívar JN. Effectiveness of Transcutaneous Neuromodulation on Abductor Muscles Electrical Activity in Subjects with Chronic Low Back Pain: A Randomized, Controlled, Crossover Clinical Trial. J Pain Res 2023; 16:2553-2566. [PMID: 37497374 PMCID: PMC10368440 DOI: 10.2147/jpr.s409028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Non-specific chronic low back pain (NSCLBP) is a major cause of functional impairment, resulting in consequences like job absenteeism and reduced quality of life. Risk factors such as muscle weakness and tightness have been implicated. Electromagnetic fields have therapeutic effects on human tissue, including pain relief and muscle relaxation. This study aimed to examine the impact of a tape with magnetic particles (MPT) applied to the lumbar area on abductor muscle strength and surface electromyography (sEMG) of the Gluteus Medius and Tensor of the Fascia Lata muscles in individuals with NSCLBP. Methods It was carried out a double-blind, randomized, controlled, crossover trial and with test retest, with 41 consecutive patients younger than 65 years who previously diagnosed with NSCLBP to assess the effect of a MPT over hip abductor muscle strength and activity. sEMG and force data were obtained during the Hip Stability Isometric Test (HipSIT). The HipSIT was used to assess the abduction strength using a hand-held dynamometer and sEMG. The HipSIT uses the maximum voluntary isometric contraction (MVIC). Four trials were recorded and the mean extracted for analysis. The tape was applied with either a MPT or a sham magnetic particle tape (SMPT) bilaterally without tension on from L1 to L5 paravertebral muscles. Results The significant increase in the recruitment of fibers and the significant increase in the maximum voluntary contraction by applying MPT with respect to the SMPT, correspond to the increases in the Peak Force and the decrease in the time to reach the maximum force (peak time) of both muscles. Conclusion Application of a MPT in patients with NSCLBP suggests an increase in muscle strength of the Gluteus Medius and Tensor Fascia Lata bilaterally during the HipSIT test. Lumbar metameric neuromodulation with MPT improves muscle activation of the hip musculature.
Collapse
Affiliation(s)
| | | | - Samuel Fernández-Carnero
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de Investigación en Fisioterapia y Dolor, Alcalá de Henares, 28801, Spain
- Interdisciplinary Research Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea deMadrid, Villaviciosa de Odón, 28670, Spain
| | - Daniel Pecos-Martin
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de Investigación en Fisioterapia y Dolor, Alcalá de Henares, 28801, Spain
| | - Eleuterio A Sanchez Romero
- Interdisciplinary Research Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea deMadrid, Villaviciosa de Odón, 28670, Spain
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, 28670, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, Santa Cruz de Tenerife, 38300, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, Santa Cruz de Tenerife, 38300, Spain
- Physiotherapy and Orofacial Pain Working Group, Sociedad Española de Disfunción Craneomandibular y Dolor Orofacial (SEDCYDO), Madrid, 28009, Spain
| | - Francisco Selva-Sarzo
- Physiotherapy Faculty, University of Valencia, Valencia, 46010, Spain
- Francisco Selva Physiotherapy Clinic, Valencia, 46008, Spain
| | - Juan Nicolás Cuenca-Zaldívar
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de Investigación en Fisioterapia y Dolor, Alcalá de Henares, 28801, Spain
- Interdisciplinary Research Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea deMadrid, Villaviciosa de Odón, 28670, Spain
- Primary Health Center “El Abajón”, Las Rozas de Madrid, 28231, Spain
- Research Group in Nursing and Health Care, Puerta de Hierro Health Research Institute - Segovia de Arana (IDIPHISA), Madrid, Spain
| |
Collapse
|
7
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
8
|
Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications. Polymers (Basel) 2021; 13:polym13223870. [PMID: 34833169 PMCID: PMC8624944 DOI: 10.3390/polym13223870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Tubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid–methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.
Collapse
|
9
|
Selva-Sarzo F, Fernández-Carnero S, Sillevis R, Hernández-Garcés H, Benitez-Martinez JC, Cuenca-Zaldívar JN. The Direct Effect of Magnetic Tape ® on Pain and Lower-Extremity Blood Flow in Subjects with Low-Back Pain: A Randomized Clinical Trial. SENSORS (BASEL, SWITZERLAND) 2021; 21:6517. [PMID: 34640836 PMCID: PMC8512790 DOI: 10.3390/s21196517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Low-back pain has a high impact on the world population, and solutions are in demand. The behavior of specific physiological processes has been modified using magnetic fields, whether for pain relief, bone consolidation, or improvement of vascularization. The use of tape with magnetic properties could help in these cases. A double-blind randomized clinical trial was designed to use Magnetic Tape® versus placebo Kinesio tape. Blood flow variables were evaluated using pulsed power Doppler ultrasound. Resistance index, pulsatility index, systolic velocity, and diastolic velocity were measured. The pressure pain threshold was measured using algometry in 22 subjects. The results reveal significant differences between the groups for the pulsation index variable (8.06 [5.16, 20.16] in Magnetic Tape® versus 5.50 [4.56, 6.64] in Kinesio tape) and lower (0.98 [0.92, 1.02] for Magnetic Tape® versus 0.99 [0.95, 1.01] for Kinesio tape) in the resistance index variable. The pressure pain threshold variable presented significant differences at multiple levels. The application of Magnetic Tape® causes immediate effects on blood flow and pain and could be a technique of choice for pain modulation. Further studies would be necessary.
Collapse
Affiliation(s)
- Francisco Selva-Sarzo
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain; (F.S.-S.); (J.-C.B.-M.)
| | | | - Rob Sillevis
- Department of Rehabilitation Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA;
| | | | | | - Juan-Nicolás Cuenca-Zaldívar
- Rehabilitation Service, Guadarrama Hospital, 28440 Madrid, Spain;
- Research Group in Nursing and Health Café, Puerta de Hierro Health Research Institute-Segovia de Arana (IDIPHISA), 28222 Madrid, Spain
| |
Collapse
|
10
|
Zasońska BA, Brož A, Šlouf M, Hodan J, Petrovský E, Hlídková H, Horák D. Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:1871. [PMID: 34199994 PMCID: PMC8200184 DOI: 10.3390/polym13111871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetic maghemite (γ-Fe2O3) nanoparticles obtained by a coprecipitation of iron chlorides were dispersed in superporous poly(2-hydroxyethyl methacrylate) scaffolds containing continuous pores prepared by the polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate porogen. The scaffolds were thoroughly characterized by scanning electron microscopy (SEM), vibrating sample magnetometry, FTIR spectroscopy, and mechanical testing in terms of chemical composition, magnetization, and mechanical properties. While the SEM microscopy confirmed that the hydrogels contained communicating pores with a length of ≤2 mm and thickness of ≤400 μm, the SEM/EDX microanalysis documented the presence of γ-Fe2O3 nanoparticles in the polymer matrix. The saturation magnetization of the magnetic hydrogel reached 2.04 Am2/kg, which corresponded to 3.7 wt.% of maghemite in the scaffold; the shape of the hysteresis loop and coercivity parameters suggested the superparamagnetic nature of the hydrogel. The highest toughness and compressive modulus were observed with γ-Fe2O3-loaded PHEMA hydrogels. Finally, the cell seeding experiments with the human SAOS-2 cell line showed a rather mediocre cell colonization on the PHEMA-based hydrogel scaffolds; however, the incorporation of γ-Fe2O3 nanoparticles into the hydrogel improved the cell adhesion significantly. This could make this composite a promising material for bone tissue engineering.
Collapse
Affiliation(s)
- Beata A. Zasońska
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| | - Antonín Brož
- Institute of Physiology CAS, Vídeňská 1083, 142 20 Prague 4, Czech Republic;
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| | - Jiří Hodan
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| | - Eduard Petrovský
- Geophysical Institute CAS, Boční II 1401, 141 31 Prague 4, Czech Republic;
| | - Helena Hlídková
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| |
Collapse
|
11
|
Li X, Wu J, Li D, Zou Q, Man Y, Zou L, Li W. Pro-osteogenesis and in vivo tracking investigation of a dental implantation system comprising novel mTi implant and HYH-Fe particles. Bioact Mater 2021; 6:2658-2666. [PMID: 33665498 PMCID: PMC7890097 DOI: 10.1016/j.bioactmat.2021.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 01/30/2021] [Indexed: 02/05/2023] Open
Abstract
Insufficient early osteogenesis seriously affects the later stage osteogenic quality and osseointegration of dental implants. To promote early osteogenesis, we first designed a Ti dental implant with a built-in magnet (mTi) to produce a local static magnetic field (SMF). Then, a dental implantation system comprising the mTi implant and the superparamagnetic hydroxyapatite (HA:Yb/Ho-Fe, named HYH-Fe) particles was implanted into the alveolar bone of beagles. The results showed that the mTi + HYH-Fe group displayed better early osteogenesis and later stage osseointegration than the Ti + HA and mTi + HA groups. A combination of the local SMF (mTi) and superparamagnetic HYH-Fe particles had a positive effect on the pro-osteogenesis of Ti implants. The results also indicated that week 10 could be adopted as the key time point to evaluate the early osteogenic effect of the mTi + HYH-Fe implantation system, which would be a promising prospect for promotion of osteogenesis, in vivo tracking investigation of material-bone relationships, and clinical applications.
Collapse
Affiliation(s)
- Xiyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Juan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Danxue Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qin Zou
- Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
12
|
Saraiva AS, Ribeiro IA, Fernandes MH, Cerdeira AC, Vieira BJ, Waerenborgh JC, Pereira LC, Cláudio R, Carmezim MJ, Gomes P, Gonçalves LM, Santos CF, Bettencourt AF. 3D-printed platform multi-loaded with bioactive, magnetic nanoparticles and an antibiotic for re-growing bone tissue. Int J Pharm 2021; 593:120097. [DOI: 10.1016/j.ijpharm.2020.120097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
|
13
|
Rodrigues AFM, Torres PMC, Barros MJS, Presa R, Ribeiro N, Abrantes JCC, Belo JH, Amaral JS, Amaral VS, Bañobre-López M, Bettencourt A, Sousa A, Olhero SM. Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. ACTA ACUST UNITED AC 2020; 16:015011. [PMID: 32750692 DOI: 10.1088/1748-605x/abac4c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A calcium phosphate (CaP)-based scaffold used as synthetic bone grafts, which smartly combines precise dimensions, controlled porosity and therapeutic functions, presents benefits beyond those offered by conventional practices, although its fabrication is still a challenge. The sintering step normally required to improve the strength of the ceramic scaffolds precludes the addition of any biomolecules or functional particles before this stage. This study presents a proof of concept of multifunctional CaP-based scaffolds, fabricated by additive manufacturing from an innovative ink composition, with potential for bone regeneration, cancer treatment by local magnetic hyperthermia and drug delivery platforms. Highly loaded inks comprising iron-doped hydroxyapatite and β-tricalcium phosphate powders suspended in a chitosan-based solution, in the presence of levofloxacin (LEV) as model drug and magnetic nanoparticles (MNP), were developed. The sintering step was removed from the production process, and the integrity of the printed scaffolds was assured by the polymerization capacity of the ink composite, using genipin as a crosslinking agent. The effects of MNP and LEV on the inks' rheological properties, as well as on the mechanical and structural behaviour of non-doped and iron-doped scaffolds, were evaluated. Magnetic and magneto-thermal response, drug delivery and biological performance, such as cell proliferation in the absence and presence of an applied magnetic field, were also assessed. The addition of a constant amount of MNP in the iron-doped and non-doped CaP-based inks enhances their magnetic response and induction heating, with these effects more pronounced for the iron-doped CaP-based ink. These results suggest a synergistic effect between the iron-doped CaP-based powders and the MNP due to ferro/ferrimagnetic interactions. Furthermore, the iron presence enhances human mesenchymal stem cell metabolic activity and proliferation.
Collapse
Affiliation(s)
- A F M Rodrigues
- Department of Materials Engineering and Ceramics (DEMaC), CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Habib M, Horne DA, Hussein K, Coughlin D, Waldorff EI, Zhang N, Ryaby JT, Lotz JC. Magnetic Nanoparticles Synergize with Pulsed Magnetic Fields to Stimulate Osteogenesis In Vitro. Tissue Eng Part A 2020; 27:402-412. [PMID: 32746770 DOI: 10.1089/ten.tea.2020.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Delayed bone healing is a major challenge in orthopedic clinical practice, highlighting a need for technologies to overcome ineffective cell growth and osteogenic differentiation. The objective of this study was to investigate the synergistic effects of the PhysioStim (PEMF) signal with iron-ion doped tri-calcium phosphate bone substitute on human mesenchymal stem cell (hMSC) osteogenesis in vitro. Intrinsically magnetic nano-bone substitutes (MNBS) were developed with single particles on the order of 100 nm, saturation magnetization of 0.425 emu/g, and remanent magnetization of 0.013 emu/g. MNBS were added to hMSC culture and cell viability, alkaline phosphatase (ALP) activity, mineralization, and osteogenic gene expression in the presence and absence of PEMF were quantified for up to 10 days. MNBS attached to the surface of and were internalized by hMSCs when cultured together for 4 days and had no impact on cell viability with PEMF exposure for up to 7 days. Although total ALP activity was significantly increased with PEMF treatment alone, with a peak at day 5, PEMF combined with MNBS significantly increased ALP activity, with a peak at day 3, compared with all other groups (p < 0.01). The shift can be explained by significantly increased extracellular ALP activity beginning at day 2 (p < 0.01). PEMF combined with MNBS demonstrated continuously increasing mineralization overtime, with significantly greater Alizarin Red S concentration compared with all other groups at day 7 (p < 0.01). Increases in ALP activity and mineral content were in agreement with osteogenic gene expression that demonstrated peak ALP gene expression at day 1, and upregulated BMP-2, BGLAP, and SPP1 gene expression at day 7 (p < 0.05). The results of this study demonstrate the synergistic effects of PEMF and MNBS on osteogenesis and suggest that PEMF and MNBS may provide a method for accelerated bone healing.
Collapse
Affiliation(s)
- Mohamed Habib
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Mechanical Engineering Department, Al Azhar University, Cairo, Egypt
| | - Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, San Francisco, USA
| | - Khaled Hussein
- Mechanical Engineering Department, Al Azhar University, Cairo, Egypt
| | - Dezba Coughlin
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, San Francisco, USA
| |
Collapse
|
15
|
Hybrid Nanostructured Magnetite Nanoparticles: From Bio-Detection and Theragnostics to Regenerative Medicine. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnology offers the possibility of operating on the same scale length at which biological processes occur, allowing to interfere, manipulate or study cellular events in disease or healthy conditions. The development of hybrid nanostructured materials with a high degree of chemical control and complex engineered surface including biological targeting moieties, allows to specifically bind to a single type of molecule for specific detection, signaling or inactivation processes. Magnetite nanostructures with designed composition and properties are the ones that gather most of the designs as theragnostic agents for their versatility, biocompatibility, facile production and good magnetic performance for remote in vitro and in vivo for biomedical applications. Their superparamagnetic behavior below a critical size of 30 nm has allowed the development of magnetic resonance imaging contrast agents or magnetic hyperthermia nanoprobes approved for clinical uses, establishing an inflection point in the field of magnetite based theragnostic agents.
Collapse
|
16
|
Abstract
The “pulsed electron deposition” (PED) technique, in which a solid target material is ablated by a fast, high-energy electron beam, was initially developed two decades ago for the deposition of thin films of metal oxides for photovoltaics, spintronics, memories, and superconductivity, and dielectric polymer layers. Recently, PED has been proposed for use in the biomedical field for the fabrication of hard and soft coatings. The first biomedical application was the deposition of low wear zirconium oxide coatings on the bearing components in total joint replacement. Since then, several works have reported the manufacturing and characterization of coatings of hydroxyapatite, calcium phosphate substituted (CaP), biogenic CaP, bioglass, and antibacterial coatings on both hard (metallic or ceramic) and soft (plastic or elastomeric) substrates. Due to the growing interest in PED, the current maturity of the technology and the low cost compared to other commonly used physical vapor deposition techniques, the purpose of this work was to review the principles of operation, the main applications, and the future perspectives of PED technology in medicine.
Collapse
|
17
|
Świętek M, Brož A, Tarasiuk J, Wroński S, Tokarz W, Kozieł A, Błażewicz M, Bačáková L. Carbon nanotube/iron oxide hybrid particles and their PCL-based 3D composites for potential bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109913. [PMID: 31499964 DOI: 10.1016/j.msec.2019.109913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 01/21/2023]
Abstract
This study describes the preparation, and evaluates the biocompatibility, of hydroxylated multi-walled carbon nanotubes (fCNTs) functionalized with magnetic iron oxide nanoparticles (IONs) creating hybrid nanoparticles. These nanoparticles were used for preparing a composite porous poly(ε-caprolactone) scaffolds for potential utilization in regenerative medicine. Hybrid fCNT/ION nanoparticles were prepared in two mass ratios - 1:1 (H1) and 1:4 (H4). PCL scaffolds were prepared with various concentrations of the nanoparticles with fixed mass either of the whole nanoparticle hybrid or only of the fCNTs. The hybrid particles were evaluated in terms of morphology, composition and magnetic properties. The cytotoxicity of the hybrid nanoparticles and the pure fCNTs was assessed by exposing the SAOS-2 human cell line to colloids with a concentration range from 0.01 to 1 mg/ml. The results indicate a gradual increase in the cytotoxicity effect with increasing concentration. At low concentrations, interestingly, SAOS-2 metabolic activity was stimulated by the presence of IONs. The PCL scaffolds were characterized in terms of the scaffold architecture, the dispersion of the nanoparticles within the polymer matrix, and subsequently in terms of their thermal, mechanical and magnetic properties. A higher ION content was associated with the presence of larger agglomerates of particles. With exception of the scaffold with the highest content of the H4 nanoparticle hybrid, all composites were superparamagnetic. In vitro tests indicate that both components of the hybrid nanoparticles may have a positive impact on the behavior of SAOS-2 cells cultivated on the PCL composite scaffolds. The presence of fCNTs up to 1 wt% improved the cell attachment to the scaffolds, and a content of IONs below 1 wt% increased the cell metabolic activity.
Collapse
Affiliation(s)
- Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Krakow, Poland
| | - Antonín Brož
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Jacek Tarasiuk
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-59 Krakow, Poland
| | - Sebastian Wroński
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-59 Krakow, Poland
| | - Waldemar Tokarz
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-59 Krakow, Poland
| | - Agata Kozieł
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Błażewicz
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Krakow, Poland
| | - Lucie Bačáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
18
|
Li X, Zou Q, Man Y, Li W. Synergistic Effects of Novel Superparamagnetic/Upconversion HA Material and Ti/Magnet Implant on Biological Performance and Long-Term In Vivo Tracking. SMALL 2019; 15:e1901617. [PMID: 31187930 DOI: 10.1002/smll.201901617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Indexed: 02/05/2023]
Abstract
To solve the clinical challenges presented by the long-term tracking of implanted hydroxyapatite (HA) bone repair material and to investigate the synergistic effects of superparamagnetic HA and a static magnetic field (SMF) on the promotion of osteogenesis, herein a new type of superparamagnetic/upconversion-generating HA material (HYH-Fe) is developed via a two-step doping method, as well as a specially-designed titanium implant with a built-in magnet to provide a local static magnetic field in vivo. The results show that the prepared HYH-Fe material maintains the crystal structure of HA and exhibits good cytocompatibility. The combined use of the superparamagnetic HYH-Fe material and SMF can effectively and synergistically promote osteogenesis/osteointegration surrounding the Ti implants. In addition, the HYH-Fe material exhibits distinct advantages in terms of both long-term fluorescence tracking and microcomputed tomography (micro-CT) tracking. The new material and tracking strategy in this study provide scientific feasibility and will have important clinical value for long-term tracking and evaluation of implanted materials and the bone repair effect.
Collapse
Affiliation(s)
- Xiyu Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qin Zou
- Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yi Man
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Incorporation of collagen and PLGA in bioactive glass: in vivo biological evaluation. Int J Biol Macromol 2019; 134:869-881. [PMID: 31102678 DOI: 10.1016/j.ijbiomac.2019.05.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 01/19/2023]
Abstract
Bioactive glasses (BG) are known for their unique ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not sufficient to produce bone consolidation. The use of composite materials may constitute an optimized therapeutical intervention for bone stimulation. The aim of this study was to characterize BG/collagen/poly (d,l-lactic-co-glycolic) acid (BG/COL/PLGA) composites, in vitro biocompatibility and in vivo biological properties. MC3T3-E1 cells were evaluated by cell proliferation, ALP activity, cell adhesion and morphology. Qualitative histology and immunohistochemistry were performed in a calvarial bone defect model in rats. The in vitro study demonstrated, after 3 and 6 days of culture, a significant increase of proliferation was observed for BG/PLGA compared to BG/COL and BG/COL/PLGA. BG/COL/PLGA presented a higher value for ALP activity after 3 days of culture compared to BG/PLGA. For in vivo analysis, 6 weeks post-surgery, BG/PLGA showed a more mature neoformed bone tissue. As a conclusion, the in vitro and in vivo studies pointed out that BG/PLGA samples improved biological properties in calvarial bone defects, highlighting the potential of BG/PLGA composites to be used as a bone graft for bone regeneration applications.
Collapse
|
20
|
Biocompatible Fe3O4/chitosan scaffolds with high magnetism. Int J Biol Macromol 2019; 128:406-413. [DOI: 10.1016/j.ijbiomac.2019.01.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 11/23/2022]
|
21
|
Numerical Investigation of Bone Tumor Hyperthermia Treatment Using Magnetic Scaffolds. ACTA ACUST UNITED AC 2018. [DOI: 10.1109/jerm.2018.2866345] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29280314 DOI: 10.1002/adhm.201700845] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (NPs) are emerging as an important class of biomedical functional nanomaterials in areas such as hyperthermia, drug release, tissue engineering, theranostic, and lab-on-a-chip, due to their exclusive chemical and physical properties. Although some works can be found reviewing the main application of magnetic NPs in the area of biomedical engineering, recent and intense progress on magnetic nanoparticle research, from synthesis to surface functionalization strategies, demands for a work that includes, summarizes, and debates current directions and ongoing advancements in this research field. Thus, the present work addresses the structure, synthesis, properties, and the incorporation of magnetic NPs in nanocomposites, highlighting the most relevant effects of the synthesis on the magnetic and structural properties of the magnetic NPs and how these effects limit their utilization in the biomedical area. Furthermore, this review next focuses on the application of magnetic NPs on the biomedical field. Finally, a discussion of the main challenges and an outlook of the future developments in the use of magnetic NPs for advanced biomedical applications are critically provided.
Collapse
Affiliation(s)
- Vanessa Fernandes Cardoso
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- MEMS-Microelectromechanical Systems Research Unit; Universidade do Minho; 4800-058 Guimarães Portugal
| | | | - Clarisse Ribeiro
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- CEB-Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | | | - Pedro Martins
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials; Parque Científico y Tecnológico de Bizkaia; 48160 Derio Spain
- IKERBASQUE; Basque Foundation for Science; 48013 Bilbao Spain
| |
Collapse
|
23
|
Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov KK, Bazaka K. Metallic Biomaterials: Current Challenges and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E884. [PMID: 28773240 PMCID: PMC5578250 DOI: 10.3390/ma10080884] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW 2070, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Olha Bazaka
- College of Science and Engineering, Technology and Engineering, James Cook University, Townsville, QLD 4810, Australia.
| | - Ming Chua
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Madison Rochford
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Liam Fedrick
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Jordan Spoor
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Richard Symes
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Marcus Tieppo
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Cameron Collins
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Alex Cao
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - David Markwell
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Kostya Ken Ostrikov
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW 2070, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Kateryna Bazaka
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW 2070, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- College of Science and Engineering, Technology and Engineering, James Cook University, Townsville, QLD 4810, Australia.
| |
Collapse
|