1
|
Du Z, Li Z, Wang P, Wang X, Zhang J, Zhuang Z, Liu Z. Revealing the Effect of Skull Deformation on Intracranial Pressure Variation During the Direct Interaction Between Blast Wave and Surrogate Head. Ann Biomed Eng 2022; 50:1038-1052. [PMID: 35668281 DOI: 10.1007/s10439-022-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022]
Abstract
Intracranial pressure (ICP) during the interaction between blast wave and the head is a crucial evaluation criterion for blast-induced traumatic brain injury (bTBI). ICP variation is mainly induced by the blast wave transmission and skull deformation. However, how the skull deformation influences the ICP remains unclear, which is meaningful for mitigating bTBI. In this study, both experimental and numerical models are developed to elucidate the effect of skull deformation on ICP variation. Firstly, we performed the shock tube experiment of the high-fidelity surrogate head to measure the ICP, the blast overpressure, and the skull surface strain of specific positions. The results show that the ICP profiles of all measured points show oscillations with positive and negative change, and the variation is consistent with the skull surface strain. Further numerical analysis reveals that when the blast wave reaches the measured point, the peak overpressure transmits directly through the skull to the brain, forming the local positive ICP peak, and the impulse induces the local inward deformation of the skull. As the peak overpressure passes through, the blast impulse impacts the nearby skull supported by the soft and incompressible brain tissue and extrudes the skull outward in the initial position. The inward and outward skull deformation leads to the oscillation of ICP. These numerical analyses agree with experimental results, which explain the appearance of negative and positive ICP peaks and the synchronization of negative ICP with surface strain. The study has implications for medical injury diagnosis and protective equipment design.
Collapse
Affiliation(s)
- Zhibo Du
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhijie Li
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Peng Wang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xinghao Wang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiarui Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhuo Zhuang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhanli Liu
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| |
Collapse
|
2
|
Sutar S, Ganpule S. Evaluation of Blast Simulation Methods for Modeling Blast Wave Interaction with Human Head. J Biomech Eng 2021; 144:1128656. [PMID: 34791052 DOI: 10.1115/1.4053059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/08/2022]
Abstract
Blast induced traumatic brain injury (bTBI) research is crucial in asymmetric warfare. The finite element analysis is an attractive option to simulate the blast wave interaction with the head. The popular blast simulation methods are ConWep based pure Lagrangian, Arbitrary-Lagrangian-Eulerian, and Coupling method. This study examines the accuracy and efficiency of ConWep and Coupling methods in predicting the biomechanical response of the head. The simplified cylindrical, spherical surrogates and biofidelic human head models are subjected to field-relevant blast loads using these methods. The reflected overpressures at the surface and pressures inside the brain from the head models are qualitatively and quantitatively evaluated against the available experiments. Both methods capture the overall trends of experiments. Our results suggest that the accuracy of the ConWep method is mainly governed by the radius of curvature of the surrogate head. For the relatively smaller radius of curvature, such as cylindrical or spherical head surrogate, ConWep does not accurately capture decay of reflected blast overpressures and brain pressures. For the larger radius of curvature, such as the biofidelic human head, the predictions from ConWep match reasonably well with the experiment. For all the head surrogates considered, the reflected overpressure-time histories predicted by the Coupling method match reasonably well with the experiment. Coupling method uniquely captures the shadowing and union of shock waves governed by the geometry driven flow dynamics around the head. Overall, these findings will assist the bTBI modeling community to judiciously select an objective-driven modeling methodology.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India -247667
| | - Shailesh Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India -247667
| |
Collapse
|
3
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Zhang L, Jackson WJ, Bentil SA. Deformation of an airfoil-shaped brain surrogate under shock wave loading. J Mech Behav Biomed Mater 2021; 120:104513. [PMID: 34010798 DOI: 10.1016/j.jmbbm.2021.104513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Improvised explosive devices (IEDs), during military operations, has increased the incidence of blast-induced traumatic brain injuries (bTBI). The shock wave is created following detonation of the IED. This shock wave propagates through the atmosphere and may cause bTBI. As a result, bTBI research has gained increased attention since this injury's mechanism is not thoroughly understood. To develop better protection and treatment against bTBI, further studies of soft material (e.g. brain and brain surrogate) deformation due to shock wave exposure are essential. However, the dynamic mechanical behavior of soft materials, subjected to high strain rates from shock wave exposure, remains unknown. Thus, an experimental approach was applied to study the interaction between the shock wave and an unconfined brain surrogate fabricated from a biomaterial (i.e. polydimethylsiloxane (PDMS)). The 1:70 ratio of curing agent-to-base determined the stiffness of the PDMS (Sylgard 184, Dow Corning Corporation). A stretched NACA 2414 (upper airfoil surface) geometry was utilized to resemble the shape of a porcine brain. Digital image correlation (DIC) technique was applied to measure the deformation on the brain surrogate's surface following shock wave exposure. A shock tube was utilized to create the shock wave and pressure transducers measured the pressure in the vicinity of the brain surrogate. A transient structural analysis using ANSYS Workbench was performed to predict the elastic modulus of 1:70 airfoil-shaped PDMS, at a strain rate on the order of 6 × 103 s-1. Both compression and protrusion of the PDMS surface were found due to the shock wave exposure. Negative pressure was found in a semi-ring area, which was the cause of protrusion. Oscillation of the brain surrogate, due to the shock wave loading, was found. The frequency of oscillation does not depend on the geometry. This work will add to the limited data describing the dynamic behavior of soft materials due to shock wave loading.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - William J Jackson
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - Sarah A Bentil
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Alay E, Skotak M, Chandrasekeran S, Ziner J, Chandra N. Variations in Constitutive Properties of the Fluid Elicit Divergent Vibrational and Pressure Response Under Shock Wave Loading. J Biomech Eng 2021; 143:011003. [PMID: 32685978 DOI: 10.1115/1.4047841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 07/25/2024]
Abstract
We performed a characterization of the shock wave loading on the response of the specimen representing a simplified head model. A polycarbonate cylinder (2-in. outer diameter, wall thickness: 0.06 or 0.12 in.) was filled with two fluids: pure de-ionized water and 40% glycerol in water, which differ only slightly in their constitutive material properties. These two fluids were selected to represent the cerebrospinal fluid and cerebral blood, using their high strain rate viscosity as a primary selection criterion. The model specimen was exposed to a single shock wave with two nominal intensities: 70 and 130 kPa overpressure. The response of the model was measured using three strain gauges and three pressure sensors, one mounted on the front face of the cylinder and two embedded in the cylinder to measure the pressure inside of the fluid. We noted several discriminant characteristics in the collected data, which indicate that the type of fluid is strongly influencing the response. The vibrations of the cylinder walls are strongly correlated with the fluid kind. The similarity analysis via the Pearson coefficient indicated that the pressure waveforms in the fluid are only moderately correlated, and these results were further corroborated by Euclidean distance analysis. Continuous wavelet transform of pressure waveforms revealed that the frequency response is strongly correlated with the properties of the fluid. The observed differences in strain and pressure modalities stem from relatively small differences in the properties of the fluids used in this study.
Collapse
Affiliation(s)
- Eren Alay
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982
| | - Maciej Skotak
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982
| | | | - Jonathan Ziner
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982
| |
Collapse
|
6
|
Sutar S, Ganpule S. Investigation of wave propagation through head layers with focus on understanding blast wave transmission. Biomech Model Mechanobiol 2019; 19:875-892. [PMID: 31745681 DOI: 10.1007/s10237-019-01256-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a critical health concern. This issue is being addressed in terms of identifying a cause-effect relationship between the mechanical insult in the form of a blast and resulting injury to the brain. Understanding wave propagation through the head is an important aspect in this regard. The objective of this work was to study the blast wave propagation through the layered architecture of the head with an emphasis on understanding the wave transmission mechanism. Toward this end, one-dimensional (1D) finite element head model is built for a simplified surrogate, human, and rat. Motivated from experimental investigations, four different head layer configurations have been considered. These configurations are: (A) Skull-Brain, (B) Skin-Skull-Brain, (C) Skin-Skull-Dura-Arachnoid-CSF-Pia-Brain, (D) Skin-Skull-Dura-Arachnoid-AT-Pia-Brain. The validated head model is subjected to flattop and Friedlander loading implied in the blast, and the resulting response is evaluated in terms of brain pressures. Our results suggest that wave propagation through head parenchyma plays an important role in blast wave transmission. The thickness, material properties of head layers, and rise time of an input pulse govern the temporal evolution of pressure in the brain. The key findings of this work are: (a) Skin and meninges amplify the applied input pressure, whereas air sinus has an attenuation effect. (b) Model is able to describe experimentally recorded peak pressures and rise times in the brain, including variations within the aforementioned experimental head models of TBI. This reinforces that the wave transmission is an important loading pathway to the brain. (c) Equivalent layer theory for modeling meningeal layers as a single layer has been proposed, and it gives reasonable agreement with each meningeal layer modeled explicitly. This modeling approach has a great utility in 3D head models. The potential applications of 1D head model in evaluation of new helmet materials, brain sensor calibration, and brain pressure estimation for a given explosive strength have also been demonstrated. Overall, these results provide important insights into the understanding of mechanics of blast wave transmission in the head.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - S Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
7
|
Swietek B, Skotak M, Chandra N, Pfister BJ. Characterization of a controlled shock wave delivered by a pneumatic table-top gas driven shock tube. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:075116. [PMID: 31370428 DOI: 10.1063/1.5099633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Blast simulators facilitate the creation of shock waves and measurement of pressure morphology in a controlled laboratory setting and are currently a vital model for replicating blast-induced neurotrauma. Due to the maintenance and operation cost of conventional blast simulators, we developed a pneumatic, table-top, gas-driven shock tube to test an alternative method of shock wave generation using a membrane-less driver section. Its unique operational mechanism based on air gun technology does not rely on a plastic membrane rupture for the generation of pressure pulses, allowing the simulator to be quickly reset and thus decreasing the experimental turnaround time. The focus of this study is to demonstrate that this proof-of-concept device can generate shock waves with diverse characteristics based on the selection of driver gas, driver pressurization, and driven section material. Pressure waves were generated using compressed nitrogen or helium at 15 psig and 80 psig and were analyzed based on their velocity and profile shape characteristics. At 15 psig, independent of the type of driver gas, driver pressurization, and driven section material, pressure pulses travelled at sonic velocities. At 80 psig, generation of shock waves was observed in all conditions. The choice of the driver gas affected the velocities of the resulting pressure waves and the shape of pressure waveforms, particularly the peak overpressure and rise time values. Our results demonstrate that depending on the selection of driver gas and magnitude of driver pressurization, the shock wave signatures can be controlled and altered using a piston-based driver section.
Collapse
Affiliation(s)
- Bogumila Swietek
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Fenster Hall, Newark, New Jersey 07103, USA
| | - Maciej Skotak
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Fenster Hall, Newark, New Jersey 07103, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Fenster Hall, Newark, New Jersey 07103, USA
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Fenster Hall, Newark, New Jersey 07103, USA
| |
Collapse
|
8
|
Zhang L, Jackson WJ, Bentil SA. The mechanical behavior of brain surrogates manufactured from silicone elastomers. J Mech Behav Biomed Mater 2019; 95:180-190. [PMID: 31009902 DOI: 10.1016/j.jmbbm.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/03/2019] [Accepted: 04/05/2019] [Indexed: 01/05/2023]
Abstract
The ongoing conflict against terrorism has resulted in an escalation of blast-induced traumatic brain injuries (bTBI) caused by improvised explosive devices (IEDs). The destructive IEDs create a blast wave that travels through the atmosphere. Blast-induced traumatic brain injuries, attributed to the blast wave, can cause life-threatening injuries and fatalities. This study aims to find a surrogate brain material for assessing the effectiveness of head protection systems designed to mitigate bTBI. Polydimethylsiloxane (PDMS) is considered as the surrogate brain material. The stiffness of PDMS (Sylgard 184, Dow Corning Corp.) can be controlled by varying the ratio of base and curing agent. Cylindrical PDMS specimen with ratios of 1:10, 1:70, and 1:80 were subjected to unconfined compression experiments at linear rates of 5 mm/min, 50 mm/min, and 500 mm/min. A ramp-hold strain profile was used to simulate a stress relaxation experiment. The fractional Zener viscoelastic model was used to describe the stress relaxation response, after optimization of the material constants for the brain surrogate and shock wave exposure brain tissue. The results show that the low cost PDMS can be used as a surrogate brain material to study the dynamic brain response to blast wave exposure.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - William J Jackson
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - Sarah A Bentil
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Abstract
Blast injuries affect millions of lives across the globe due to its traumatic after effects on the brain and the whole body. To date, military grade armour materials are designed to mitigate ballistic and shrapnel attacks but are less effective in resisting blast impacts. In order to improve blast absorption characteristics of armours, the first key step is thoroughly understands the effects of blasts on the human body itself. In the last decade, a plethora of experimental and computational work has been carried out to investigate the mechanics and pathophysiology of Traumatic Brain Injury (TBI). However, very few attempts have been made so far to study the effect of blasts on the various other parts of the body such as the sensory organs (eyes and ears), nervous system, thorax, extremities, internal organs (such as the lungs) and the skeletal system. While an experimental evaluation of blast effects on such physiological systems is difficult, developing finite element (FE) models could allow the recreation of realistic blast scenarios on full scale human models and simulate the effects. The current article reviews the state-of-the-art in computational research in blast induced whole-body injury modelling, which would not only help in identifying the areas in which further research is required, but would also be indispensable for understanding body location specific armour design criteria for improved blast injury mitigation.
Collapse
Affiliation(s)
- Arnab Chanda
- a Department of Aerospace Engineering and Mechanics , University of Alabama , Tuscaloosa , AL , USA
| | - Christian Callaway
- b Department of Mechanical Engineering , University of Alabama , Tuscaloosa , AL , USA
| |
Collapse
|
10
|
Fievisohn E, Bailey Z, Guettler A, VandeVord P. Primary Blast Brain Injury Mechanisms: Current Knowledge, Limitations, and Future Directions. J Biomech Eng 2018; 140:2666247. [DOI: 10.1115/1.4038710] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Indexed: 12/18/2022]
Abstract
Mild blast traumatic brain injury (bTBI) accounts for the majority of brain injury in United States service members and other military personnel worldwide. The mechanisms of primary blast brain injury continue to be disputed with little evidence to support one or a combination of theories. The main hypotheses addressed in this review are blast wave transmission through the skull orifices, direct cranial transmission, skull flexure dynamics, thoracic surge, acceleration, and cavitation. Each possible mechanism is discussed using available literature with the goal of focusing research efforts to address the limitations and challenges that exist in blast injury research. Multiple mechanisms may contribute to the pathology of bTBI and could be dependent on magnitudes and orientation to blast exposure. Further focused biomechanical investigation with cadaver, in vivo, and finite element models would advance our knowledge of bTBI mechanisms. In addition, this understanding could guide future research and contribute to the greater goal of developing relevant injury criteria and mandates to protect our soldiers on the battlefield.
Collapse
Affiliation(s)
- Elizabeth Fievisohn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Zachary Bailey
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Allison Guettler
- Department of Mechanical Engineering, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 317 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061; Salem Veterans Affairs Medical Center, Salam, VA 24153 e-mail:
| |
Collapse
|
11
|
Sarvghad-Moghaddam H, Rezaei A, Ziejewski M, Karami G. Evaluation of brain tissue responses because of the underwash overpressure of helmet and faceshield under blast loading. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 26968860 DOI: 10.1002/cnm.2782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/06/2016] [Accepted: 03/06/2016] [Indexed: 05/16/2023]
Abstract
Head protective tools such as helmets and faceshields can induce a localized high pressure region on the skull because of the underwash of the blast waves. Whether this underwash overpressure can affect the brain tissue response is still unknown. Accordingly, a computational approach was taken to confirm the incidence of underwash with regards to blast direction, as well as examine the influence of this effect on the mechanical responses of the brain. The variation of intracranial pressure (ICP) as one of the major injury predictors, as well as the maximum shear stress were mainly addressed in this study. Using a nonlinear finite element (FE) approach, generation and interaction of blast waves with the unprotected, helmeted, and fully protected (helmet and faceshield protected) FE head models were modeled using a multi-material arbitrary Lagrangian-Eulerian (ALE) method and a fluid-structure interaction (FSI) coupling algorithm. The underwash incidence overpressure was found to greatly change with the blast direction. Moreover, while underwash induced ICP (U-ICP) did not exceed the peak ICP of the unprotected head, it was comparable and even more than the peak ICP imposed on the protected heads by the primary shockwaves (Coup-ICP). It was concluded that while both helmet and faceshield protected the head against blast waves, the underwash overpressure affected the brain tissue response and altered the dynamic load experienced by the brain as it led to increased ICP levels at the countercoup site, imparted elevated skull flexure, and induced high negative pressure regions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hesam Sarvghad-Moghaddam
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Asghar Rezaei
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Mariusz Ziejewski
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Ghodrat Karami
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| |
Collapse
|
12
|
Mishra V, Skotak M, Schuetz H, Heller A, Haorah J, Chandra N. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. Sci Rep 2016; 6:26992. [PMID: 27270403 PMCID: PMC4895217 DOI: 10.1038/srep26992] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa.
Collapse
Affiliation(s)
- Vikas Mishra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Maciej Skotak
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Heather Schuetz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - Abi Heller
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - James Haorah
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| |
Collapse
|
13
|
Agrawal A, Subrahmanyan B, Malleswara Rao G. Blast injury causing extensive brain injury and elevated skull fracture. INDIAN JOURNAL OF NEUROTRAUMA 2014. [DOI: 10.1016/j.ijnt.2013.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhu F, Chou CC, Yang KH, King AI. A theoretical analysis of stress wave propagation in the head under primary blast loading. Proc Inst Mech Eng H 2014; 228:439-445. [PMID: 24718865 DOI: 10.1177/0954411914530882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury due to primary blast loading has become a signature injury in recent military conflicts. Efforts have been made to study the stress wave propagation in the head. However, the relationship of incident pressure, reflected pressure and intracranial pressure is still not clear, and the experimental findings reported in the literature are contradictory. In this article, an analytical model is developed to calculate the stress wave transfer through a multiple-layered structure which is used to mimic the head. The model predicts stress at the scalp-skull and skull-brain interfaces as the functions of reflected pressure, which is further dependent on incident pressure. A numerical model is used to corroborate the theoretical predictions. It is concluded that scalp has an amplification effect on intracranial pressure. If scalp is absent, there exists a critical incident pressure, defined as P cr at approximately 16 kPa. When peak incident pressure σ in is higher than 16 kPa, the pressure at the skull-brain interface is greater than σ in; otherwise, it is lower than σ in.
Collapse
Affiliation(s)
- Feng Zhu
- Bioengineering Center, Wayne State University, Detroit, MI, USA
| | - Clifford C Chou
- Bioengineering Center, Wayne State University, Detroit, MI, USA
| | - King H Yang
- Bioengineering Center, Wayne State University, Detroit, MI, USA
| | - Albert I King
- Bioengineering Center, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Kobeissy F, Mondello S, Tümer N, Toklu HZ, Whidden MA, Kirichenko N, Zhang Z, Prima V, Yassin W, Anagli J, Chandra N, Svetlov S, Wang KKW. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury. Front Neurol 2013; 4:186. [PMID: 24312074 PMCID: PMC3836009 DOI: 10.3389/fneur.2013.00186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/02/2013] [Indexed: 01/10/2023] Open
Abstract
Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the “distinct” but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Psychiatry, Center of Neuroproteomics & Biomarker Research, University of Florida , Gainesville, FL , USA ; Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|