1
|
Liu R, Xu Y, Cao J, Geng H, Chen R, Liu H, Chen Y, Yuan S, Dai X. Effects of pH-varying thermal modification on sewage sludge: A focus on releasing nitrogen- and phosphorus-containing substances. WATER RESEARCH 2024; 257:121746. [PMID: 38733966 DOI: 10.1016/j.watres.2024.121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Sewage sludge is promising for the recovery and utilisation of nutrient components, but its complex nature hinders the release of these components. The combination of pH and thermal modifications shows promise for the release of nutrient components from sludge. However, comprehensive studies on the full spectrum of pH levels and corresponding mechanisms of pH-varying thermal modification are lacking. In this study, the main nutrient components, physicochemical properties, molecular structure, and noncovalent interactions of sludge were comprehensively investigated through pH-varying thermal modification (within a pH range of 2.0 to 12.0 under the same thermal condition). The experimental results showed that the release of main organics, particularly nitrogen (N)-containing organics, was well-fitted, with a tick-like function (R2: 0.74-0.96). The thermal protons exhibited a notable accumulative mutagenic effect on the N-containing organics release, while the thermal hydroxyl ions had a more direct effect, as revealed by the changes in multivalent metals and molecular structures with the protonation-deprotonation of carboxyl groups. The driving force for the release of N-containing organics was identified as the fluctuation of electrostatic interactions at the solid-liquid interface of the sludge. However, the release of phosphorus (P)-containing substances exhibited a contrasting response to that of N-containing substances with varying pH, likely because the reaction sites of thermal protons and thermal hydroxyl ions for P-containing substances were different. Moreover, high concentrations of thermal protons and hydroxyl ions collapsed the Lifshitz-van der Waals interactions of sludge, resulting in a decrease in viscoelasticity and binding strength. These propositions were further confirmed through statistical analyses of the main indicators of the main nutrient components, physicochemical properties, and noncovalent interactions of sludge. These findings can provide a basis for optimising characteristic-specific methods to recovery nutrient components (N/P) from sludge.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jiachang Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Renjie Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Romanowska K, Pyka D, Opieliński K, Krawiec K, Śliwiński R, Jamroziak K. Preliminary Numerical Analysis of Mechanical Wave Propagation Due to Elastograph Measuring Head Application in Non-Invasive Liver Condition Assessment. APPLIED SCIENCES 2023; 13:11843. [DOI: 10.3390/app132111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The authors of this paper focused their attention on developing numerical models of mechanical wave propagation along human tissue as a result of the application of the measuring head of the FibroScan® elastograph. The FibroScan® diagnostic device is used for diagnostic testing of liver fibrosis and steatosis. This examination is carried out using an in vivo method by directly applying the surface of the ultrasonic measuring probe to the patient’s skin at the site of the liver. The authors’ idea is to use this apparatus for non-invasive testing on the liver used for transplantation. In order to do this, the measuring head cap should be modified so that its application to the liver does not result in damage as a result of mechanical wave excitation. The purpose of the manuscript was to build numerical models of the liver and the tissues surrounding the liver. Then, the corresponding numerical simulations were carried out, the results of which corresponded to the mechanical–acoustic properties of the physical models of the tissues. The obtained results were validated on a set of commercial calibrated phantoms. High agreement of the numerical models was obtained.
Collapse
Affiliation(s)
- Katarzyna Romanowska
- Provincial Specialist Hospital in Wroclaw, Research and Development Centre, Kaminskiego 73A Str., 51-124 Wroclaw, Poland
| | - Dariusz Pyka
- Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25 Str., 50-370 Wroclaw, Poland
| | - Krzysztof Opieliński
- Department of Acoustics, Multimedia and Signal Processing, Wroclaw University of Science and Technology, Janiszewskiego 7/9 Str., 50-370 Wroclaw, Poland
| | - Karina Krawiec
- Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25 Str., 50-370 Wroclaw, Poland
| | | | - Krzysztof Jamroziak
- Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25 Str., 50-370 Wroclaw, Poland
| |
Collapse
|
3
|
Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol 2023; 24:495-516. [PMID: 36849594 PMCID: PMC10656994 DOI: 10.1038/s41580-023-00583-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
Mechanical properties of extracellular matrices (ECMs) regulate essential cell behaviours, including differentiation, migration and proliferation, through mechanotransduction. Studies of cell-ECM mechanotransduction have largely focused on cells cultured in 2D, on top of elastic substrates with a range of stiffnesses. However, cells often interact with ECMs in vivo in a 3D context, and cell-ECM interactions and mechanisms of mechanotransduction in 3D can differ from those in 2D. The ECM exhibits various structural features as well as complex mechanical properties. In 3D, mechanical confinement by the surrounding ECM restricts changes in cell volume and cell shape but allows cells to generate force on the matrix by extending protrusions and regulating cell volume as well as through actomyosin-based contractility. Furthermore, cell-matrix interactions are dynamic owing to matrix remodelling. Accordingly, ECM stiffness, viscoelasticity and degradability often play a critical role in regulating cell behaviours in 3D. Mechanisms of 3D mechanotransduction include traditional integrin-mediated pathways that sense mechanical properties and more recently described mechanosensitive ion channel-mediated pathways that sense 3D confinement, with both converging on the nucleus for downstream control of transcription and phenotype. Mechanotransduction is involved in tissues from development to cancer and is being increasingly harnessed towards mechanotherapy. Here we discuss recent progress in our understanding of cell-ECM mechanotransduction in 3D.
Collapse
Affiliation(s)
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
6
|
Sutlive J, Xiu H, Chen Y, Gou K, Xiong F, Guo M, Chen Z. Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103466. [PMID: 34837328 PMCID: PMC8831476 DOI: 10.1002/smll.202103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Indexed: 05/02/2023]
Abstract
Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.
Collapse
Affiliation(s)
- Joseph Sutlive
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Haning Xiu
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224
| | - Fengzhu Xiong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zi Chen
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
7
|
The Hertzian theory in AFM nanoindentation experiments regarding biological samples: Overcoming limitations in data processing. Micron 2022; 155:103228. [DOI: 10.1016/j.micron.2022.103228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
|
8
|
Efremov YM, Zurina IM, Presniakova VS, Kosheleva NV, Butnaru DV, Svistunov AA, Rochev YA, Timashev PS. Mechanical properties of cell sheets and spheroids: the link between single cells and complex tissues. Biophys Rev 2021; 13:541-561. [PMID: 34471438 PMCID: PMC8355304 DOI: 10.1007/s12551-021-00821-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell aggregates, including sheets and spheroids, represent a simple yet powerful model system to study both biochemical and biophysical intercellular interactions. However, it is becoming evident that, although the mechanical properties and behavior of multicellular structures share some similarities with individual cells, yet distinct differences are observed in some principal aspects. The description of mechanical phenomena at the level of multicellular model systems is a necessary step for understanding tissue mechanics and its fundamental principles in health and disease. Both cell sheets and spheroids are used in tissue engineering, and the modulation of mechanical properties of cell constructs is a promising tool for regenerative medicine. Here, we review the data on mechanical characterization of cell sheets and spheroids, focusing both on advances in the measurement techniques and current understanding of the subject. The reviewed material suggest that interplay between the ECM, intercellular junctions, and cellular contractility determines the behavior and mechanical properties of the cell aggregates.
Collapse
Affiliation(s)
- Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
| | - Irina M. Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Denis V. Butnaru
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Andrey A. Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St, Moscow, Russia
| | - Yury A. Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, H91 W2TY, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin St, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1–3, Moscow, 119991 Russia
| |
Collapse
|