1
|
Dąbkowska M, Stukan I, Kosiorowska A, Szatanik A, Łuczkowska K, Machalińska A, Machaliński B. In vitro and in vivo characterization of human serum albumin-based PEGylated nanoparticles for BDNF and NT3 codelivery. Int J Biol Macromol 2024; 265:130726. [PMID: 38490392 DOI: 10.1016/j.ijbiomac.2024.130726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The utilization of neurotrophins in medicine shows significant potential for addressing neurodegenerative conditions, such as age-related macular degeneration (AMD). However, the therapeutic use of neurotrophins has been restricted due to their short half-life. Here, we aimed to synthesize PEGylated nanoparticles based on electrostatic-driven interactions between human serum albumin (HSA), a carrier for adsorption; neurotrophin-3 (NT3); and brain-derived neurotrophic factor (BDNF). Electrophoretic (ELS) and multi-angle dynamic light scattering (MADLS) revealed that the PEGylated HSA-NT3-BDNF nanoparticles ranged from 10 to 430 nm in diameter and exhibited a low polydispersity index (<0.4) and a zeta potential of -8 mV. Based on microscale thermophoresis (MST), the estimated dissociation constant (Kd) from the HSA molecule of BDNF was 1.6 μM, and the Kd of NT3 was 732 μM. The nanoparticles were nontoxic toward ARPE-19 and L-929 cells in vitro and efficiently delivered BDNF and NT3. Based on the biodistribution of neurotrophins after intravitreal injection into BALB/c mice, both nanoparticles were gradually released in the mouse vitreous body within 28 days. PEGylated HSA-NT3-BDNF nanoparticles stabilize neurotrophins and maintain this characteristic in vivo. Thus, given the simplicity of the system, the nanoparticles may enhance the treatment of a variety of neurological disorders in the future.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 71-899 Szczecin, Poland.
| | - Iga Stukan
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-111 Szczecin, Poland
| | - Alicja Kosiorowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 71-899 Szczecin, Poland; Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-111 Szczecin, Poland
| | - Alicja Szatanik
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 71-899 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-111 Szczecin, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Dąbkowska M, Stukan I, Kowalski B, Donerowicz W, Wasilewska M, Szatanik A, Stańczyk-Dunaj M, Michna A. BDNF-loaded PDADMAC-heparin multilayers: a novel approach for neuroblastoma cell study. Sci Rep 2023; 13:17939. [PMID: 37864014 PMCID: PMC10589271 DOI: 10.1038/s41598-023-45045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023] Open
Abstract
Biomaterial science has contributed tremendously to developing nanoscale materials for delivering biologically active compounds, enhancing protein stability, and enabling its therapeutic use. This paper presents a process of formation of polyelectrolyte multilayer (PEM) prepared by sequential adsorption of positively charged polydiallyldimethylammonium chloride (PDADMAC) and negatively charged heparin sodium salt (HP), from low polyelectrolyte concentration, on a solid substrate. PEM was further applied as a platform for the adsorption of a brain-derived growth factor (BDNF), which is a protein capable of regulating neuronal cell development. The multilayers containing BDNF were thoroughly characterized by electrokinetic (streaming potential measurements, SPM) and optical (optical waveguide lightmode spectroscopy, OWLS) techniques. It was found that BDNF was significantly adsorbed onto polyelectrolyte multilayers terminated by HP under physiological conditions. We further explore the effect of established PEMs in vitro on the neuroblastoma SH-SY5Y cell line. An enzyme-linked immunosorbent assay (ELISA) confirmed that BDNF was released from multilayers, and the use of the PEMs intensified its cellular uptake. Compared to the control, PEMs with adsorbed BDNF significantly reduced cell viability and mitochondrial membrane polarization to as low as 72% and 58%, respectively. HPLC analysis showed that both PDADMAC-terminated and HP-terminated multilayers have antioxidative properties as they almost by half decreased lipid peroxidation in SH-SY5Y cells. Finally, enhanced formation of spheroid-like, 3D structures was observed by light microscopy. We offer a well-characterized PEM with antioxidant properties acting as a BDNF carrier, stabilizing BDNF and making it more accessible to cells in an inhomogeneous, dynamic, and transient in vitro environment. Described multilayers can be utilized in future biomedical applications, such as boosting the effect of treatment by selective anticancer as adjuvant therapy, and in biomedical research for future development of more precise neurodegenerative disease models, as they enhance cellular 3D structure formation.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland.
| | - Iga Stukan
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Wiktoria Donerowicz
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Alicja Szatanik
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | | | - Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| |
Collapse
|
3
|
Treatment of rat brain ischemia model by NSCs-polymer scaffold transplantation. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
Neural stem cells (NSCs) transplantation is a promising therapeutic strategy for ischemic stroke. However, significant cell death after transplantation greatly limits its effectiveness. Poly (trimethylene carbonate)15-F127-poly (trimethylene carbonate)15 (PTMC15-F127-PTMC15, PFP) is a biodegradable thermo-sensitive hydrogel biomaterial, which can control drug release and provide permissive substrates for donor NSCs. In our study, we seeded NSCs into PFP polymer scaffold loaded with three neurotrophic factors, including brain-derived neurotrophic factor, nerve growth factor, and Neurotrophin-3. And then we transplanted this NSCs-polymer scaffold in rat brains 14 days after middle cerebral artery occlusion. ELISA assay showed that PFP polymer scaffold sustained releasing three neurotrophic factors for at least 14 days. Western Blot and fluorescence immunostaining revealed that NSCs-polymer scaffold transplantation significantly reduced apoptosis of ischemic penumbra and promoted differentiation of the transplanted NSCs into mature neurons. Furthermore, infarct size was reduced, and neurological performance of the animals were improved by the transplanted NSCs-polymer scaffold. These results demonstrate that PFP polymer scaffold loaded with neurotrophic factors can enhance the effectiveness of stem cell transplantation therapy, which provides a new way for cell transplantation therapy in ischemic stroke.
Collapse
|
4
|
Landry MJ, Gu K, Harris SN, Al‐Alwan L, Gutsin L, Biasio D, Jiang B, Nakamura DS, Corkery TC, Kennedy TE, Barrett CJ. Tunable Engineered Extracellular Matrix Materials: Polyelectrolyte Multilayers Promote Improved Neural Cell Growth and Survival. Macromol Biosci 2019; 19:e1900036. [DOI: 10.1002/mabi.201900036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Michael J. Landry
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of ChemistryMcGill University 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| | - Kaien Gu
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of ChemistryMcGill University 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| | - Stephanie N. Harris
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
| | - Laila Al‐Alwan
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
| | - Laura Gutsin
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of ChemistryMcGill University 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| | - Daniele Biasio
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of ChemistryMcGill University 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| | - Bernie Jiang
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of ChemistryMcGill University 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| | - Diane S. Nakamura
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
| | - T. Christopher Corkery
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
| | - Timothy E. Kennedy
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
| | - Christopher J. Barrett
- McGill Program in NeuroengineeringMcGill University 3801 University Street Montreal QC H3A 2B4 Canada
- Department of ChemistryMcGill University 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| |
Collapse
|
5
|
Grzeczkowicz A, Gruszczynska-Biegala J, Czeredys M, Kwiatkowska A, Strawski M, Szklarczyk M, Koźbiał M, Kuźnicki J, Granicka LH. Polyelectrolyte membrane scaffold sustains growth of neuronal cells. J Biomed Mater Res A 2019; 107:839-850. [PMID: 30586231 PMCID: PMC6590472 DOI: 10.1002/jbm.a.36599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 01/14/2023]
Abstract
Cell immobilization within nano‐thin polymeric shells can provide an optimal concentration of biological material in a defined space and facilitate its directional growth. Herein, polyelectrolyte membrane scaffolds were constructed using a layer‐by‐layer approach to determine the possibility of promoting improved growth of rat cortical neuronal cells. Membrane presence was confirmed by Fourier transform infrared spectroscopy, Zeta potential, and atomic force and scanning electron microscopy. Scaffold performance toward neuronal cell growth was assessed in vitro during a 14‐day culture. Cell conditions were analyzed immunocytochemically. Furthermore, western blot and real‐time PCR analyses were used to validate the presence of neuronal and glial cells on the scaffolds. We observed that alginate/chitosan, alginate/polylysine, and polyethyleneimine/chitosan scaffolds promote neuronal growth similarly to the control, poly‐d‐lysine/laminin. We conclude that membranes maintaining cell viability, integrity and immobilization in systems supporting neuronal regeneration can be applied in neurological disease or wound healing treatment. © 2018 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 839–850, 2019.
Collapse
Affiliation(s)
- A Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | | | - M Czeredys
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - A Kwiatkowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - M Strawski
- Laboratory of Electrochemistry Faculty of Chemistry University of Warsaw, Warsaw, Poland
| | - M Szklarczyk
- Laboratory of Electrochemistry Faculty of Chemistry University of Warsaw, Warsaw, Poland
| | - M Koźbiał
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - J Kuźnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - L H Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Landry MJ, Rollet FG, Kennedy TE, Barrett CJ. Layers and Multilayers of Self-Assembled Polymers: Tunable Engineered Extracellular Matrix Coatings for Neural Cell Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8709-8730. [PMID: 29481757 DOI: 10.1021/acs.langmuir.7b04108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Growing primary cells and tissue in long-term cultures, such as primary neural cell culture, presents many challenges. A critical component of any environment that supports neural cell growth in vivo is an appropriate 2-D surface or 3-D scaffold, typically in the form of a thin polymer layer that coats an underlying plastic or glass substrate and aims to mimic critical aspects of the extracellular matrix. A fundamental challenge to mimicking a hydrophilic, soft natural cell environment is that materials with these properties are typically fragile and are difficult to adhere to and stabilize on an underlying plastic or glass cell culture substrate. In this review, we highlight the current state of the art and overview recent developments of new artificial extracellular matrix (ECM) surfaces for in vitro neural cell culture. Notably, these materials aim to strike a balance between being hydrophilic and soft while also being thick, stable, robust, and bound well to the underlying surface to provide an effective surface to support long-term cell growth. We focus on improved surface and scaffold coating systems that can mimic the natural physicochemical properties that enhance neuronal survival and growth, applied as soft hydrophilic polymer coatings for both in vitro cell culture and for implantable neural probes and 3-D matrixes that aim to enhance stability and longevity to promote neural biocompatibility in vivo. With respect to future developments, we outline four emerging principles that serve to guide the development of polymer assemblies that function well as artificial ECMs: (a) design inspired by biological systems and (b) the employment of principles of aqueous soft bonding and self-assembly to achieve (c) a high-water-content gel-like coating that is stable over time in a biological environment and possesses (d) a low modulus to more closely mimic soft, compliant real biological tissue. We then highlight two emerging classes of thick material coatings that have successfully captured these guiding principles: layer-by-layer deposited water-soluble polymers (LbL) and silk fibroin (SF) materials. Both materials can be deposited from aqueous solution yet transition to a water-insoluble coating for long-term stability while retaining a softness and water content similar to those of biological materials. These materials hold great promise as next-generation biocompatible coatings for tissue engineers and for chemists and biologists within the biomedical field.
Collapse
|
7
|
Zhang K, Huang D, Yan Z, Wang C. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. J Biomed Mater Res A 2017; 105:1900-1910. [PMID: 28256802 DOI: 10.1002/jbm.a.36053] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 11/06/2022]
Abstract
Biomimicing topological structure of natural nerve tissue to direct axon growth and controlling sustained release of moderate neurotrophic factors are extremely propitious to the functional recovery of damaged nervous systems. In this study, the heparin/collagen encapsulating nerve growth factor (NGF) multilayers were coated onto the aligned poly-L-lactide (PLLA) nanofibrous scaffolds via a layer-by-layer (LbL) self-assembly technique to combine biomolecular signals, and physical guidance cues for peripheral nerve regeneration. Scanning electronic microscopy (SEM) revealed that the surface of aligned PLLA nanofibrous scaffolds coated with heparin/collagen multilayers became rougher and appeared some net-like filaments and protuberances in comparison with PLLA nanofibrous scaffolds. The heparin/collagen multilayers did not destroy the alignment of nanofibers. X-ray photoelectron spectroscopy and water contact angles displayed that heparin and collagen were successfully coated onto the aligned PLLA nanofibrous scaffolds and improved its hydrophilicity. Three-dimensional (3 D) confocal microscopy images further demonstrated that collagen, heparin, and NGF were not only coated onto the surface of aligned PLLA nanofibrous scaffolds but also permeated into the inner of scaffolds. Moreover, NGF presented a sustained release for 2 weeks from aligned nanofibrous scaffolds coated with 5.5 bilayers or above and remained good bioactivity. The heparin/collagen encapsulating NGF multilayers coated aligned nanofibrous scaffolds, in particular 5.5 bilayers or above, was more beneficial to Schwann cells (SCs) proliferation and PC12 cells differentiation as well as the SC cytoskeleton and neurite growth along the direction of nanofibrous alignment compared to the aligned PLLA nanofibrous scaffolds. This novel scaffolds combining sustained release of bioactive NGF and aligned nanofibrous topography presented an excellent potential in peripheral nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1900-1910, 2017.
Collapse
Affiliation(s)
- Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Dianwu Huang
- College of Civil Engineering and Architecture, Jiaxing University, Jiaxing, 314001, China
| | - Zhiyong Yan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Chunyang Wang
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
8
|
Zhang Z, Li Q, Han L, Zhong Y. Layer-by-layer films assembled from natural polymers for sustained release of neurotrophin. Biomed Mater 2015; 10:055006. [DOI: 10.1088/1748-6041/10/5/055006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Qin J, Sun X, Liu Y, Berthold T, Harms H, Wick LY. Electrokinetic control of bacterial deposition and transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5663-5671. [PMID: 25844535 DOI: 10.1021/es506245y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microbial biofilms can cause severe problems in technical installations where they may give rise to microbially influenced corrosion and clogging of filters and membranes or even threaten human health, e.g. when they infest water treatment processes. There is, hence, high interest in methods to prevent microbial adhesion as the initial step of biofilm formation. In environmental technology it might be desired to enhance bacterial transport through porous matrices. This motivated us to test the hypothesis that the attractive interaction energy allowing cells to adhere can be counteracted and overcome by the shear force induced by electroosmotic flow (EOF, i.e. the water flow over surfaces exposed to a weak direct current (DC) electric field). Applying EOF of varying strengths we quantified the deposition of Pseudomonas fluorescens Lp6a in columns containing glass collectors and on a quartz crystal microbalance. We found that the presence of DC reduced the efficiency of initial adhesion and bacterial surface coverage by >85%. A model is presented which quantitatively explains the reduction of bacterial adhesion based on the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory of colloid stability and the EOF-induced shear forces acting on a bacterium. We propose that DC fields may be used to electrokinetically regulate the interaction of bacteria with surfaces in order to delay initial adhesion and biofilm formation in technical installations or to enhance bacterial transport in environmental matrices.
Collapse
Affiliation(s)
- Jinyi Qin
- †Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Saxony, Germany
| | - Xiaohui Sun
- ‡Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Yang Liu
- ‡Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Tom Berthold
- †Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Saxony, Germany
| | - Hauke Harms
- †Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Saxony, Germany
| | - Lukas Y Wick
- †Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Saxony, Germany
- ‡Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| |
Collapse
|
10
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
11
|
Lei KF, Lee IC, Liu YC, Wu YC. Successful differentiation of neural stem/progenitor cells cultured on electrically adjustable indium tin oxide (ITO) surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14241-14249. [PMID: 25363477 DOI: 10.1021/la5039238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In order to control differentiation of neural cells and guide the developed neurites to targets, polyelectrolyte multilayer (PEM) films were used because of their capability of modulation of electrical charged characteristics, thickness, and stiffness. In this work, we suggested that indium tin oxide (ITO) is an alternative surface to achieve the above-mentioned objectives. A microfluidic system with four culture chambers was developed and each chamber consisted of parallel ITO surfaces for the application of adjustable electrical field. Neural stem/progenitor cells (NSPCs) were respectively cultured on the ITO surfaces with and without PEM film, constructed by alternate adsorption of poly(L-lysine) (PLL) and poly(L-glutamic acid) (PLGA). Analyses of cell morphology, cytotoxicity, process outgrowth, differentiated cell types, and neuron functionality were compared between both surfaces. In this study, NSPCs successfully differentiated on ITO surface with electrical stimulation. The optimal electrical potential was found to be 80 mV that could stimulate the longest process, i.e., >300 μm, after 3 days culture. Cell differentiation, process development, and functionality of differentiated neuron on ITO surface were shown to be strongly controlled by the electrical stimulation that can be simply adjusted by external equipment. The electrically adjustable cell differentiation reported here could potentially be applied to neurochip for the study of neural signal transmission in a well-constructed network.
Collapse
Affiliation(s)
- Kin Fong Lei
- Graduate Institute of Medical Mechatronics, Chang Gung University , Taoyuan, Taiwan
| | | | | | | |
Collapse
|
12
|
Adhesion and proliferation of HeLa and fibroblast cells on chemically-modified gold surfaces. Colloids Surf B Biointerfaces 2014; 123:429-38. [DOI: 10.1016/j.colsurfb.2014.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022]
|
13
|
Zhou K, Thouas G, Bernard C, Forsythe JS. 3D presentation of a neurotrophic factor for the regulation of neural progenitor cells. Nanomedicine (Lond) 2014; 9:1239-51. [DOI: 10.2217/nnm.13.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Adequate cell–scaffold interactions and neurotrophin support are essential factors for neural regeneration. Aim: To provide insight into the biofunctionalization of complex 3D scaffolds with nanoscale precision, as well as the effect of spatial distribution of brain-derived neurotrophic factor (BDNF) and its prolonged stimulation in combination with enhanced cell affinity of nanofibrous scaffolds on the survival/proliferation and neurite outgrowth. Methods & materials: We developed a versatile approach using layer-by-layer self-assembly to incorporate cell adhesion and spatial representation of neurotrophic factors into complex nanofibrous scaffolds. Results: Heparin/poly-L-lysine (PLL) polyelectrolyte multilayers (PEMs) were deposited on electrospun poly-ε-caprolatone nanofibers. Well-controlled amounts of BDNF were immobilized on the PEM-modified nanofibers. In addition, longer neurite outgrowth was observed in neural progenitor cells cultured on PLL-terminating PEM scaffolds. The immobilized BDNF on PLL-terminated PEM scaffolds resulted in significantly longer neurites and higher cell numbers (p < 0.01) compared with BDNF-free and BDNF-adsorbed PLL-terminating scaffolds. Interestingly, there was no upregulation of TrkB-FL, TrkB-T1 or GAP-43 mRNAs with immobilized BDNF in day 5 cultures. Discussion & conclusion: This work reinforces the importance of the combinatorial effects of biomaterial scaffold nanostructure and spatial presentation of neurotrophins in directing neural progenitor cell fates. Original submitted 18 January 2013; Revised submitted 3 May 2013
Collapse
Affiliation(s)
- Kun Zhou
- Department of Materials Engineering, Monash University, VIC 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC 3800, Australia
| | - George Thouas
- Department of Zoology, The University of Melbourne, VIC 3010, Australia
| | - Claude Bernard
- Australian Regenerative Medicine Institute, Monash University, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Engineering, Monash University, VIC 3800, Australia
| |
Collapse
|
14
|
Zhou K, Thouas GA, Bernard CC, Nisbet DR, Finkelstein DI, Li D, Forsythe JS. Method to impart electro- and biofunctionality to neural scaffolds using graphene-polyelectrolyte multilayers. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4524-31. [PMID: 22809168 DOI: 10.1021/am3007565] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electroactive scaffolds that are passively conductive and able to transmit applied electrical stimuli are of increasing importance for neural tissue engineering. Here, we report a process of rendering both 2D and 3D polymer scaffolds electrically conducting, while also enhancing neuron attachment. Graphene-heparin/poly-l-lysine polyelectrolytes were assembled via layer-by-layer (LbL) deposition onto 2D surfaces and 3D electrospun nanofibers. The employed LbL coating technique in this work enables the electro- and biofunctionalization of complex 3D scaffold structures. LbL assembly was characterized by a steady mass increase during the in situ deposition process in 2D, with regular step changes in hydrophobicity. Uniform coverage of the graphene/polyelectrolyte coatings was also achieved on nanofibers, with hydrodynamic flow and post-thermal annealing playing an important role in controlling sheet resistance of 2D surfaces and nanofibers. Cell culture experiments showed that both 2D and 3D graphene-PEMs supported neuron cell adhesion and neurite outgrowth, with no appreciable cell death. This electroactive scaffold modification may therefore assist in neuronal regeneration, for creating functional and biocompatible polymer scaffolds for electrical entrainment or biosensing applications.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Materials Engineering and Monash Vision Group, Monash University, VIC 3800, Australia
| | | | | | | | | | | | | |
Collapse
|