1
|
Robinson KJ, Voelcker NH, Thissen H. Clinical challenges and opportunities related to the biological responses experienced by indwelling and implantable bioelectronic medical devices. Acta Biomater 2025; 193:49-64. [PMID: 39675496 DOI: 10.1016/j.actbio.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Implantable electrodes have been utilized for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. While the underlying science related to the application of electrodes is a mature field, preclinical and clinical studies have demonstrated that there are still significant challenges in vivo associated with a lack of control over tissue-material interfacial interactions, especially over longer time frames. Herein we discuss the current challenges and opportunities for implantable electrodes and the associated bioelectronic interfaces across the clinical landscape with a focus on emerging technologies and the obstacles of biofouling, microbial colonization, and the foreign body response. Overcoming these challenges is predicted to open the door for a new generation of implantable medical devices and significant associated clinical impact. STATEMENT OF SIGNIFICANCE: Implantable electrodes have been utilised for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. Next-generation bioelectronic implantable medical devices promise an explosion of new applications that have until this point in time been impossible to achieve. However, there are several persistent biological challenges hindering the realisation of these new applications. We present a clinical perspective on how these biological challenges have shaped the device market and clinical trial landscape. Specifically, we present statistical breakdowns of current device applications and discuss biofouling, the foreign body response, and microbial colonisation as the main factors that need to be addressed before a new generation of devices can be explored.
Collapse
Affiliation(s)
- Kye J Robinson
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
2
|
Ma G, Ji F, Lin W, Chen S. Determination of non-freezing water in different nonfouling materials by differential scanning calorimetry. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1012-1024. [PMID: 35073220 DOI: 10.1080/09205063.2022.2034285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nonfouling materials have attracted increasing interest for their excellent biocompatibility and low immunogenicity. Strong hydration is believed to be the key reason for their resisting capability to nonspecific protein adsorption. However, little attention has been paid to quantifying their strong water binding capacity. In this study, we synthesized four zwitterionic polymers, including poly(sulfobetaine methacrylate) (pSBMA), poly(carboxybetaine methacrylate) (pCBMA), poly(carboxybetaine acrylamide) (pCBAA) and poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC), and compared non-freezing water of these zwitterionic polymers with typical antifouling polymer poly(ethylene glycol) (PEG) using differential scanning calorimetry (DSC). Non-freezing water of their monomers was also investigated. The non-freezing water of the polymers (per unit) is pMPC (10.7 ± 1.4) ≈ pCBAA (10.8 ± 1.5) > pCBMA (9.0 ± 0.6) > pSBMA (6.6 ± 0.4) > PEG20000 (0.60 ± 0.04). Similar trend is observed for their monomers. For all studied zwitterionic materials, they showed higher binding capacity than PEG. We attribute the stronger hydration of zwitterionic polymers to their strong electrostatic interactions.
Collapse
Affiliation(s)
- Guanglong Ma
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China.,Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Fangqin Ji
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China.,Taizhou Technician College, Taizhou, PR China
| | - Weifeng Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China.,Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
3
|
Coffey JW, van der Burg NMD, Rananakomol T, Ng HI, Fernando GJP, Kendall MAF. An Ultrahigh‐Density Microneedle Array for Skin Vaccination: Inducing Epidermal Cell Death by Increasing Microneedle Density Enhances Total IgG and IgG1 Immune Responses. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jacob W. Coffey
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- Department of Chemical Engineering David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Division of Gastroenterology Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunology University of Melbourne Melbourne VIC 3000 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
| | - Nicole M. D. van der Burg
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
| | - Thippayawan Rananakomol
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
| | - Hwee-Ing Ng
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
| | - Germain J. P. Fernando
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- The University of Queensland School of Chemistry and Molecular Biosciences Brisbane QLD 4072 Australia
- Vaxxas Pty Translational Research Institute Woolloongabba QLD 4102 Australia
| | - Mark A. F. Kendall
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
- The University of Queensland School of Chemistry and Molecular Biosciences Brisbane QLD 4072 Australia
| |
Collapse
|
4
|
Ahmed ST, Leckband DE. Forces between mica and end-grafted statistical copolymers of sulfobetaine and oligoethylene glycol in aqueous electrolyte solutions. J Colloid Interface Sci 2022; 608:1857-1867. [PMID: 34752975 DOI: 10.1016/j.jcis.2021.09.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
This study quantified the interfacial forces associated with end-grafted, statistical (AB) co-polymers of sulfobetaine methacrylate (SBMA) and oligoethylene glycol methacrylate (OEGMA) (poly(SBMA-co-OEGMA)). Surface force apparatus measurements compared forces between mica and end-grafted copolymers containing 0, 40, or 80 mol% SBMA. Studies compared forces measured at low grafting density (weakly overlapping chains) and at high density (brushes). At high density, the range of repulsive forces did not change significantly with increasing SBMA content. By contrast, at low density, both the range and the amplitude of the repulsion increased with the percentage of SBMA in the chains. The ionic strength dependence of the film thickness and repulsive forces increased similarly with SBMA content, reflecting the increasing influence of charged monomers and their interactions with ions in solution. The forces could be described by models of simple polymers in good solvent. However, the forces and fitted model parameters change continuously with the SBMA content. The latter behavior suggests that ethyene glycol and sulfobetaine behave as non-interacting, miscible monomers that contribute independently to the interfacial forces. The results suggest that molecular scale properties of statistical poly (SBMA-co-OEGMA) films can be readily tuned by simple variation of the monomer ratios.
Collapse
Affiliation(s)
- Syeda Tajin Ahmed
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA; Department of Chemistry, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Ganguly R, Saha P, Banerjee SL, Pich A, Singha NK. Stimuli-Responsive Block Copolymer Micelles Based on Mussel-Inspired Metal-Coordinated Supramolecular Networks. Macromol Rapid Commun 2021; 42:e2100312. [PMID: 34347312 DOI: 10.1002/marc.202100312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/16/2021] [Indexed: 12/21/2022]
Abstract
Amphiphilic diblock copolymers containing dopamine and zwitterions are synthesized via the RAFT polymerization method, which undergo temperature-mediated micellization in aqueous media. The presence of catechol moiety in dopamine is exploited to form pH-responsive cross-links with ferric ions (Fe3+ ) at different pH value. Herein, a comprehensive study of the effect of pH as well as temperature on the size and solution behavior of these cross-linked micelles is presented. These micelles cross-linked via metal-catechol coordination bonds can have several important biomedical applications such as degradable scaffolds for payload delivery.
Collapse
Affiliation(s)
- Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India
| | - Pabitra Saha
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Germany
| | - Sovan Lal Banerjee
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, 6167, The Netherlands
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India.,School of Nanosciences and Technology, Indian Institute of Technology Kharagpur, 721302, India
| |
Collapse
|
6
|
Gaihre B, Liu X, Lee Miller A, Yaszemski M, Lu L. Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1758718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Lim J, Matsuoka H, Saruwatari Y. Effects of pH on the Stimuli-Responsive Characteristics of Double Betaine Hydrophilic Block Copolymer PGLBT- b-PSPE. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1727-1736. [PMID: 31983203 DOI: 10.1021/acs.langmuir.9b03682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the pH-responsive behavior of the carboxybetaine-sulfobetaine diblock copolymer poly(2-(2-(methacryloyloxy)ethyl)dimethylammonio)acetate-block-3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (PGLBT-b-PSPE) in aqueous solution under varying temperatures. Alongside the temperature-responsive PSPE block which induces self-assembly of polymer micelles under the upper critical solution temperature, the PGLBT motifs having protonation sites caused additional changes in the phase behaviors. In acidic conditions where the pH is lower than the pKa of PGLBT-b-PSPE, the transmittance of polymer solutions more abruptly dropped and became cloudy at higher temperatures compared to the case of salt-free solutions. There were two simultaneous diffusive modes in the turbid solutions equivalent to unimers or micelles and large aggregates over a few hundred nanometers. Unlike in neutral and basic conditions, those large aggregates did not disappear after the emergence of the polymer micelles. The trend of the temperature-responsive behavior hardly changed in the alkaline solutions; however, the critical temperature significantly decreased. The surface charge of the unimers and self-assembled objects determined by zeta potential measurement varied from neutral or negative to positive with proton addition and further positively increased below the micelle formation temperature. This indicates the cationization of PGLBT moieties and their arrangement in the outer layer of the polymer micelle surface. In spite of the positively charged outer surface, two fast and slow diffusive modes representing micelles and large clusters were repeatedly observed in acidic solutions, and to some extent, size-grown particles eventually precipitated.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd. , 7-20 Azuchi-machi, 1chome , Chuo-ku, Osaka 541-0052 , Japan
| |
Collapse
|
8
|
Petroff MG, Garcia EA, Herrera-Alonso M, Bevan MA. Ionic Strength-Dependent Interactions and Dimensions of Adsorbed Zwitterionic Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4976-4985. [PMID: 30889950 DOI: 10.1021/acs.langmuir.9b00218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report direct measurements of ionic strength-dependent interactions between different molecular weights of zwitterionic triblock copolymers adsorbed to hydrophobic colloids and surfaces. The zwitterionic copolymers investigated include phosphorylcholine [poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)] and sulfopropylbetaine [poly(3-( N-2-methacryloyloxyethyl- N, N-dimethyl)ammonatopropanesulfonate) (PMAPS)] end blocks separated by poly(propylene oxide) center blocks. The range of repulsion between adsorbed PMAPS copolymer layers increases with increasing NaCl from 0.01 to 3 M, and layer thicknesses range from ∼50 to 100% of the PMAPS block contour length. In contrast, repulsion between PMPC layers does not change for 0.01-3 M NaCl, and layers remain near full extension at their contour length. NaCl-dependent interactions and inferred layer dimensions correlate with hydrodynamic layer thickness and polymer second virial coefficients. These results suggest that the interaction range and layer thickness of adsorbed zwitterionic copolymers arise from a balance of intramolecular dipolar attraction and repulsion possibly mediated by water solvation. The balance between these competing effects and resulting ionic strength dependence is determined by specific zwitterionic moieties.
Collapse
Affiliation(s)
- Matthew G Petroff
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Elena A Garcia
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Margarita Herrera-Alonso
- Chemical & Biological Engineering & School of Advanced Materials Discovery , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Michael A Bevan
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
9
|
Petroff MG, Garcia EA, Dengler RA, Herrera-Alonso M, Bevan MA. kT-Scale Interactions and Stability of Colloids with Adsorbed Zwitterionic and Ethylene Oxide Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matthew G. Petroff
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elena Alexandra Garcia
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Raymond A. Dengler
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Margarita Herrera-Alonso
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael A. Bevan
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Coffey JW, Corrie SR, Kendall MAF. Rapid and selective sampling of IgG from skin in less than 1 min using a high surface area wearable immunoassay patch. Biomaterials 2018; 170:49-57. [PMID: 29649748 DOI: 10.1016/j.biomaterials.2018.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022]
Abstract
Microprojection array (MPA) patches are an attractive approach to selectively capture circulating proteins from the skin with minimal invasiveness for diagnostics at the point-of-care or in the home. A key challenge to develop this technology is to extract sufficient quantities of specific proteins from within the skin to enable high diagnostic sensitivity within a convenient amount of time. To achieve this, we investigated the effect of MPA geometry (i.e. projection density, length and array size) on protein capture. We hypothesised that the penetrated surface area of MPAs is a major determinant of protein capture however it was not known if simultaneously increasing projection density, length and array size is possible without adversely affecting penetration and/or tolerability. We show that increasing the projection density (5000-30,000 proj. cm-2) and array size (4-36 mm2) significantly increases biomarker capture whilst maintaining of a similar level tolerability, which supports previous literature for projection length (40-190 μm). Ultimately, we designed a high surface area MPA (30,000 proj. cm-2, 36 mm2, 140 μm) with a 4.5-fold increase in penetrated surface area compared to our standard MPA design (20,408 proj. cm-2, 16 mm2, 100 μm). The high surface area MPA captured antigen-specific IgG from mice in 30 s with 100% diagnostic sensitivity compared with 10-30 min for previous MPA immunoassay patches, which is over an order of magnitude reduction in wear time. This demonstrates for the first time that MPAs may be used for ultra-rapid (<1 min) protein capture from skin in a time competitive with standard clinical procedures like the needle and lancet, which has broad implications for minimally invasive and point-of-care diagnostics.
Collapse
Affiliation(s)
- Jacob W Coffey
- Australian Institute for Bioengineering and Nanotechnology, Delivery of Drugs and Genes Group (D2G2), The University of Queensland, St Lucia, Queensland 4072, Australia; Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Simon R Corrie
- Australian Institute for Bioengineering and Nanotechnology, Delivery of Drugs and Genes Group (D2G2), The University of Queensland, St Lucia, Queensland 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia; Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia; Australian Infectious Diseases Research Centre, St. Lucia, Queensland, 4067, Australia
| | - Mark A F Kendall
- Australian Institute for Bioengineering and Nanotechnology, Delivery of Drugs and Genes Group (D2G2), The University of Queensland, St Lucia, Queensland 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, St. Lucia, Queensland, 4067, Australia; The Australian National University, Canberra, Australian Capital Territory 2600, Australia.
| |
Collapse
|
11
|
Schubert J, Chanana M. Coating Matters: Review on Colloidal Stability of Nanoparticles with Biocompatible Coatings in Biological Media, Living Cells and Organisms. Curr Med Chem 2018; 25:4553-4586. [PMID: 29852857 PMCID: PMC7040520 DOI: 10.2174/0929867325666180601101859] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles' physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.
Collapse
Affiliation(s)
- Jonas Schubert
- Address correspondence to these authors at the Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany and Department of Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany;E-mails: ;
| | - Munish Chanana
- Address correspondence to these authors at the Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany and Department of Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany;E-mails: ;
| |
Collapse
|
12
|
Wang M, Kovacik P, Gleason KK. Chemical Vapor Deposition of Thin, Conductive, and Fouling-Resistant Polymeric Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10623-10631. [PMID: 28933863 DOI: 10.1021/acs.langmuir.7b02646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fouling has been a persistent issue within applications ranging from membrane separation to biomedical implantation. Research to date focuses on fouling-resistant coatings, where electrical conductivity is unnecessary. In this study, we report the synthesis of multifunctional thin films with both fouling resistance and electrical conductivity for their potential applications in the electrolysis-based self-cleaning of separation membranes and in the field of bioelectronics. This unique combination of properties results in multifunctional coatings that are a zwitterionic derivative of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) synthesized via oxidative chemical vapor deposition (oCVD). Their fouling resistance is shown to be comparable to that of known dielectric fouling-resistant surfaces, such as a poly(4-vinylpyridine)-co-divinylbenzene (p4VP-DVB)-derived zwitterionic coating, an amphiphilic poly(1H,1H,2H,2H-perfluorodecyl acrylate-co-2-hydroxyethyl methacrylate) (pPFDA-HEMA) coating, and a glass surface, and are far superior to the fouling resistance of gold or polydimethylsiloxane (PDMS) surfaces. The fouling resistances of seven surfaces are quantitatively characterized by molecular force probe (MFP) analysis. In addition, four-point probe electrical measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), variable-angle spectroscopic ellipsometry (VASE), profilometry, water contact angle (WCA) measurements, surface ζ-potential measurements, and atomic force microscopy (AFM) were employed to characterize the physiochemical properties and morphology of the different surfaces.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Kovacik
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Karen K Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Weydert S, Zürcher S, Tanner S, Zhang N, Ritter R, Peter T, Aebersold MJ, Thompson-Steckel G, Forró C, Rottmar M, Stauffer F, Valassina IA, Morgese G, Benetti EM, Tosatti S, Vörös J. Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8594-8605. [PMID: 28792773 DOI: 10.1021/acs.langmuir.7b01437] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering and analyzing elementary circuitry in vitro. Building well-defined neural networks is the ultimate goal. Antifouling coatings are often used to control neurite outgrowth. Because erroneous connectivity alters the entire topology and functionality of minicircuits, the requirements are demanding. Current state-of-the-art coating solutions such as widely used poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) fail to prevent primary neurons from making undesired connections in long-term cultures. In this study, a new copolymer with greatly enhanced antifouling properties is developed, characterized, and evaluated for its reliability, stability, and versatility. To this end, the following components are grafted to a poly(acrylamide) (PAcrAm) backbone: hexaneamine, to support spontaneous electrostatic adsorption in buffered aqueous solutions, and propyldimethylethoxysilane, to increase the durability via covalent bonding to hydroxylated culture surfaces and antifouling polymer poly(2-methyl-2-oxazoline) (PMOXA). In an assay for neural connectivity control, the new copolymer's ability to effectively prevent unwanted neurite outgrowth is compared to the gold standard, PLL-g-PEG. Additionally, its versatility is evaluated on polystyrene, glass, and poly(dimethylsiloxane) using primary hippocampal and cortical rat neurons as well as C2C12 myoblasts, and human fibroblasts. PAcrAm-g-(PMOXA, NH2, Si) consistently outperforms PLL-g-PEG with all tested culture surfaces and cell types, and it is the first surface coating which reliably prevents arranged nodes of primary neurons from forming undesired connections over the long term. Whereas the presented work focuses on the proof of concept for the new antifouling coating to successfully and sustainably prevent unwanted connectivity, it is an important milestone for in vitro neuroscience, enabling follow-up studies to engineer neurologically relevant networks. Furthermore, because PAcrAm-g-(PMOXA, NH2, Si) can be quickly applied and used with various surfaces and cell types, it is an attractive extension to the toolbox for in vitro biology and biomedical engineering.
Collapse
Affiliation(s)
- Serge Weydert
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Stefanie Tanner
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Ning Zhang
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 210096 Nanjing, China
| | - Rebecca Ritter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Thomas Peter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen, Switzerland
| | - Flurin Stauffer
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Giulia Morgese
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | | | - János Vörös
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Xing CM, Meng FN, Quan M, Ding K, Dang Y, Gong YK. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater 2017; 59:129-138. [PMID: 28663144 DOI: 10.1016/j.actbio.2017.06.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/07/2017] [Accepted: 06/26/2017] [Indexed: 01/15/2023]
Abstract
A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. STATEMENT OF SIGNIFICANCE Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by precoating a polydopamine intermediate layer as the universal adhesive and readily re-modifiable surface. Importantly, the coating fabrication and antifouling performance can be monitored and optimized quantitatively by a surface plasma resonance (SPR) system. More significantly, the SPR on-line optimized coatings were successfully duplicated off-line on other substrates, and supported by their excellent antifouling properties.
Collapse
Affiliation(s)
- Cheng-Mei Xing
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China
| | - Fan-Ning Meng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China
| | - Miao Quan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China
| | - Kai Ding
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China
| | - Yuan Dang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China.
| |
Collapse
|
15
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [PMID: 28472638 DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
16
|
Lee KT, Coffey JW, Robinson KJ, Muller DA, Grøndahl L, Kendall MAF, Young PR, Corrie SR. Investigating the Effect of Substrate Materials on Wearable Immunoassay Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:773-782. [PMID: 28006902 DOI: 10.1021/acs.langmuir.6b03933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Immunoassays are ubiquitous across research and clinical laboratories, yet little attention is paid to the effect of the substrate material on the assay performance characteristics. Given the emerging interest in wearable immunoassay formats, investigations into substrate materials that provide an optimal mix of mechanical and bioanalytical properties are paramount. In the course of our research in developing wearable immunoassays which can penetrate skin to selectively capture disease antigens from the underlying blood vessels, we recently identified significant differences in immunoassay performance between gold and polycarbonate surfaces, even with a consistent surface modification procedure. We observed significant differences in PEG density, antibody immobilization, and nonspecific adsorption between the two substrates. Despite a higher PEG density formed on gold-coated surfaces than on amine-functionalized polycarbonate, the latter revealed a higher immobilized capture antibody density and lower nonspecific adsorption, leading to improved signal-to-noise ratios and assay sensitivities. The major conclusion from this study is that in designing wearable bioassays or biosensors, the design and its effect on the antifouling polymer layer can significantly affect the assay performance in terms of analytical specificity and sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A F Kendall
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
- Faculty of Medicine and Biomedical Sciences, Royal Brisbane and Women's Hospital , Herston, Queensland 4029, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
| | - Simon R Corrie
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Barrett A, Imbrogno J, Belfort G, Petersen PB. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9074-9082. [PMID: 27506305 DOI: 10.1021/acs.langmuir.6b01936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying antifouling coatings in the same aqueous environment for which they are designed. These results further suggest that strong long-range water structuring is limited in high ionic strength environments, such as within cells, facilitating chemical and biological reactions and processes.
Collapse
Affiliation(s)
- Aliyah Barrett
- Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14850, United States
| | - Joseph Imbrogno
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Poul B Petersen
- Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14850, United States
| |
Collapse
|
18
|
He M, Jiang H, Wang R, Xie Y, Zhao W, Zhao C. A versatile approach towards multi-functional surfaces via covalently attaching hydrogel thin layers. J Colloid Interface Sci 2016; 484:60-69. [PMID: 27591729 DOI: 10.1016/j.jcis.2016.08.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 01/07/2023]
Abstract
In this study, a robust and straightforward method to covalently attach multi-functional hydrogel thin layers onto substrates was provided. In our strategy, double bonds were firstly introduced onto substrates to provide anchoring points for hydrogel layers, and then hydrogel thin layers were prepared via surface cross-linking copolymerization of the immobilized double bonds with functional monomers. Sulfobetaine methacrylate (SBMA), sodium allysulfonate (SAS), and methyl acryloyloxygen ethyl trimethyl ammonium chloride (METAC) were selected as functional monomers to form hydrogel layers onto polyether sulfone (PES) membrane surfaces, respectively. The thickness of the formed hydrogel layers could be controlled, and the layers showed excellent long-term stability. The PSBMA hydrogel layer exhibited superior antifouling property demonstrated by undetectable protein adsorption and excellent bacteria resistant property; after attaching PSAS hydrogel layer, the membrane showed incoagulable surface property when contacting with blood confirmed by the activated partial thromboplastin time (APTT) value exceeding 600s; while, the PMETAC hydrogel thin layer could effectively kill attached bacteria. The proposed method provides a new platform to directly modify material surfaces with desired properties, and thus has great potential to be widely used in designing materials for blood purification, drug delivery, wound dressing, and intelligent biosensors.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Huiyi Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China; Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| |
Collapse
|
19
|
Exciting new developments at the 5th International Symposium on Surface and Interface of Biomaterials. Biointerphases 2015; 10:04A101. [PMID: 26679721 DOI: 10.1116/1.4936957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Materials intended for use as implantable or diagnostic devices are required not only to display the required functional bulk properties but also have surface properties that elicit a desired biological response, and do so with high selectivity. The area of surface functionalization approaches and bioactive coatings for biomaterials and biomedical devices has been the subject of much research over several decades; yet, many challenges still remain to be solved. The 5th International Symposium on Surface and Interface of Biomaterials (ISSIB) held in Sydney (Australia) in April 2015 was an ideal forum to discuss the most recent developments in biomaterial surface modification, characterization, and evaluation of biological responses. The conference covered a range of topics including antimicrobial coatings, analysis of biomaterial surfaces and interfaces, biomolecules and cells at surfaces and interfaces, nanoparticles, functional coatings, patterned biomaterials, nanofabrication, bioreactors, and biosensors. In this special conference issue, the authors include papers that detail some of the highlights from the meeting.
Collapse
|