1
|
Labrague GB, Wu Y, Santos E, Ahn D, Chen X, Gubbels F, Kuo TC, Chen Z. Investigating the Molecular Behaviors of Titanium Catalyst and Silane Cross-Linker at the Buried Silicone Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8389-8397. [PMID: 40105410 DOI: 10.1021/acs.langmuir.5c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The curing and adhesion properties of many silicone adhesives are mediated by organometallic catalysts (e.g., titanates, zirconates, or aluminates) and silane cross-linker and coupling agents in the formulation. However, how these catalysts and cross-linkers behave at the interface to enhance adhesion is not well established. In this study, sum frequency generation (SFG) vibrational spectroscopy was utilized to investigate the behaviors of titanium catalysts and silane cross-linkers at buried interfaces. When a titanium catalyst (titanium diisopropoxy-bis ethylacetoacetate (TDIDE)) was mixed with methyltrimethoxysilane (MTMS), a new SFG signal centered at ∼2815 cm-1 emerges, especially in the formulations where there were substantially more MTMS than titanium catalysts. At the same time, methoxy signals (∼2845 cm-1) were found to increase in intensity as more MTMS was present in the sample. In contrast, mixtures that had more titanium catalysts than MTMS did not show the ∼2815 cm-1 peak or the strong methoxy signals. It is concluded that the ∼2815 cm-1 peak is attributed to the C-H stretching mode of a Ti-OCH3 moiety, an intermediate species formed by the reaction between MTMS and titanium catalyst that results in ligand exchange. SFG experiments were also conducted with TDIDE-MTMS mixtures incorporated into PDMS. Similar interfacial behaviors of TDIDE and MTMS could be observed at the interface. To the best of our knowledge, this is the first time that the mechanism has been elucidated as to the molecular interactions that occur between titanium catalyst and silane in silicone adhesive formulation at buried interface.
Collapse
Affiliation(s)
- Gladwin Bryan Labrague
- Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth Santos
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Xiaoyun Chen
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Frédéric Gubbels
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Tzu-Chi Kuo
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Judd KD, Parsons SW, Majumder T, Dawlaty JM. Electrostatics, Hydration, and Chemical Equilibria at Charged Monolayers on Water. Chem Rev 2025; 125:2440-2473. [PMID: 39933097 DOI: 10.1021/acs.chemrev.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The chemistry and physics of soft matter interfaces, especially aqueous-organic interfaces, are centrally important to many areas of science and technology. Often, the thermodynamics, kinetics, and selectivity of reactions are modified at interfaces. Here, we review the electrostatics and hydration at charged monolayers on water and their influence on interfacial chemical equilibria. First, we provide an understanding of interfaces as a conceptual continuation of the solvation shell of small molecules, along with recent relevant experimental work. Then, we provide a summary of models for describing the electrostatics of aqueous interfaces. While we will discuss a range of new developments, our focus will be on systems where the electrostatics of the surface is controllable by the choice of relatively simple insoluble surfactants. New insights into the molecular structure of the double layer, with particular attention on the knowledge gained from spectroscopy will be reviewed. Our approach is to familiarize the reader with simple models, followed by discussion of models with further complexity for explaining interfacial phenomena. Experiments that test the limits of such models will also be discussed. Finally, we will provide an outlook on engineering the interfacial environment for tailored reactivity, along with the anticipated experimental advancements and potentials impacts.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Sean W Parsons
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Tirthick Majumder
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Gomez F, Roter SF, Rossi D, Wu G, Safaripour M, Webster D, Chen Z. Molecular Structures of Surfaces and Interfaces of Poly(dimethylsiloxane) Incorporated with Silicone Oils Containing Phenyl Functionality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1985-1996. [PMID: 39813392 DOI: 10.1021/acs.langmuir.4c04566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Poly(dimethylsiloxane) (PDMS) materials have been widely researched and applied as fouling-release coatings. Incorporation of silicone oils into PDMS has been shown to improve the antifouling properties of PDMS materials. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to study PDMS materials incorporated with various silicone oils containing phenyl groups in air, water, and protein solutions. It was found that the surface structures of various silicone oils varied, which results in different surface structures of PDMS with different oils incorporated. Such different PDMS surfaces interact with water molecules differently, leading to different surface hydrations. A model protein, fibrinogen, was used to study molecular interactions between oil-incorporated PDMS and biological molecules, testing the antifouling and fouling-release performance of different PDMS materials. It was found that fibrinogen has different adsorption behaviors on different PDMS surfaces, while adsorbed fibrinogen adopts bent structures. This study demonstrated that SFG can be used to deduce molecular information on silicone oil, PDMS, water, and fibrinogen on surfaces/at interfaces in situ in real-time. The different silicone oils incorporated into PDMS changed the PDMS surfaces, leading to varied interactions with water and biological media, influencing the antifouling and fouling-release activities. In most cases, the presence of silicone oils could enhance the surface hydration. However, the presence of phenyl groups could reduce the level of surface hydration. Nevertheless, our studies demonstrated that incorporation of silicone oils into PDMS led to better antifouling or fouling-release properties.
Collapse
Affiliation(s)
- Fernando Gomez
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
| | - Samuel F Roter
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
- Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Daniel Rossi
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
| | - Guangyao Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
| | - Maryam Safaripour
- Department of Coatings and Polymeric Materials, North Dakota State University, 1735 NDSU Research Park Drive, Fargo, North Dakota 58102, United States
| | - Dean Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, 1735 NDSU Research Park Drive, Fargo, North Dakota 58102, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
| |
Collapse
|
4
|
Wu Y, Rossi D, Labrague G, Li R, Santos E, Ahn D, Chen X, Gubbels F, Shephard NE, Mohler C, Kuo TC, Chen Z. Environmental Effects on the Interfacial Chemical Reactions at RTV Silicone-Silica Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26303-26313. [PMID: 39576876 DOI: 10.1021/acs.langmuir.4c03931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Silicone sealants and adhesives are extensively used in construction, automotive, industrial, and electronic applications because they exhibit excellent mechanical properties, strong adhesion, and good weather resistance. Room-temperature vulcanized (RTV) silicones develop good adhesion to many substrates and do not require heat for curing, which leads to flexible use in many applications. Although it is known that various factors such as relative humidity and temperature affect the curing of the RTV silicone adhesives, the interfacial chemistry that occurs during the curing process is still poorly understood but critical for success in adhesive applications. To address this, sum frequency generation (SFG) vibrational spectroscopy was used to probe the molecular details of the buried interface of the RTV silicone adhesive in situ. Time-dependent SFG experiments were conducted on two polydimethylsiloxane (PDMS) matrices, at three humidity levels, and with two kinds of silica surfaces to investigate the behavior of the methoxy groups at the interface and the impact of environmental conditions on the adhesion mechanism. It was found that both the methoxy groups from methyltrimethoxysilane (MTMS) and methoxy-terminated PDMS could segregate to the interface. The diffusion of MTMS and bulk rearrangement of methoxy-terminated PDMS lead to the segregation and ordering of methoxy groups at the interface. After comparing eight samples cured under different environmental conditions, the reactions of the interfacial methoxy groups were found to be facilitated by both the surface water on silica and moisture from the environment. The silylation treatment on the silica slows the reactions of the interfacial methoxy groups, while the high environmental humidity accelerates the consumption of the interfacial methoxy groups. These findings provide insightful information about the adhesion mechanism of RTV silicone adhesives and accelerate new product development.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel Rossi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gladwin Labrague
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ruiheng Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth Santos
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Xiaoyun Chen
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Frédéric Gubbels
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Nick E Shephard
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Carol Mohler
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Tzu-Chi Kuo
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Rossi D, Wu Y, Dong Y, Paradkar R, Chen X, Kuo TC, Chen Z. Correlations between adhesion and molecular interactions at buried interfaces of model polymer systems and in commercial multilayer barrier films. J Chem Phys 2024; 161:124710. [PMID: 39324534 DOI: 10.1063/5.0232449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Sum frequency generation vibrational spectroscopy (SFG) was applied to characterize the interfacial adhesion chemistry at several buried polymer interfaces in both model systems and blown multilayer films. Anhydride/acid modified polyolefins are used as tie layers to bond dissimilar polymers in multilayer barrier structures. In these films, the interfacial reactions between the barrier polymers, such as ethylene vinyl alcohol (EVOH) or nylon, and the grafted anhydrides/acids provide covalent linkages that enhance adhesion. However, the bonding strengths vary for different polymer-tie layer combinations. Here, using SFG, we aim to provide a systematic study on four common polymer-tie interfaces, including EVOH/polypropylene-tie, EVOH/polyethylene-tie, nylon/polypropylene-tie, and nylon/polyethylene-tie, to understand how the adhesion chemistry varies and its impact on the measured adhesion. Our SFG studies suggest that adhesion enhancement is driven by a combination of reaction kinetics and the interfacial enrichment of the anhydride/acid, resulting in stronger adhesion in the case of nylon. This observation matches well with the higher adhesion observed in the nylon/tie systems in both lap shear and peel test measurements. In addition, in the polypropylene-tie systems, grafted oligomers due to chain scission may migrate to the interface, affecting the adhesion. These by-products can react or interfere with the barrier-tie chemistry, resulting in reduced adhesion strength in the polypropylene-tie system.
Collapse
Affiliation(s)
- Daniel Rossi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yifan Dong
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, USA
| | - Rajesh Paradkar
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, USA
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, USA
| | - Tzu-Chi Kuo
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Hore DK. Phase of the second-order susceptibility in vibrational sum frequency generation spectroscopy: Origins, utility, and measurement techniques. J Chem Phys 2024; 161:060902. [PMID: 39132786 DOI: 10.1063/5.0220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Vibrational sum frequency generation can provide valuable structural information at surfaces and buried interfaces. Relating the measured spectra to the complex-valued second-order susceptibility χ(2) is at the heart of the technique and a requisite step in nearly all subsequent analyses. The magnitude and phase of χ(2) as a function of frequency reveal important information about molecules and materials in regions where centrosymmetry is broken. In this tutorial-style perspective, the origins of the χ(2) phase are first described, followed by the utility of phase determination. Finally, some practical methods of phase extraction are discussed.
Collapse
Affiliation(s)
- Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada and Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
7
|
Labrague G, Gomez F, Chen Z. Characterization of Buried Interfaces of Silicone Materials in Situ to Understand Their Fouling-Release, Antifouling, and Adhesion Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9345-9361. [PMID: 38669686 DOI: 10.1021/acs.langmuir.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Poly(dimethylsiloxane) (PDMS) has numerous excellent properties and is extensively used as the main component of many silicone products in a variety of research fields and practical applications such as biomedical materials, aviation, construction, electronic devices, and automobiles. Interfacial structures of PDMS and other components in silicone systems are important for such research and applications. It is difficult to probe interfacial molecular structures of buried solid-liquid and solid-solid interfaces of silicone materials due to the lack of appropriate analytical tools. In this feature article, we presented our research on elucidating the molecular structures of PDMS as well as other additives in silicone samples at buried interfaces in situ at the molecular level using a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibrational spectroscopy. SFG was applied to study various PDMS surfaces in liquid environments to understand their fouling-release and antifouling activities. SFG has also been used to study buried solid-solid interfaces between silicone adhesives and polymers, elucidating the molecular adhesion mechanisms. Our SFG studies provide important knowledge on interfacial structure-function relationships of silicone materials, helping the design and development of silicone materials with improved properties through optimization of silicone interfacial structures.
Collapse
Affiliation(s)
- Gladwin Labrague
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fernando Gomez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Zhang J, Pei R, Tan J, Ni Z, Ye S, Luo Y. Visualizing Water Monomers and Chiral OH -(H 2O) Complexes Infiltrated in a Macroscopic Hydrophobic Teflon Matrix. J Am Chem Soc 2023. [PMID: 38048434 DOI: 10.1021/jacs.3c09950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Insights into the interaction of fluoroalkyl groups with water are crucial to understanding the polar hydrophobicity of fluorinated compounds, such as Teflon. While an ordered hydrophobic-like 2D water layer has been demonstrated to be present on the surface of macroscopically hydrophobic fluorinated polymers, little is known about how the water infiltrates into the Teflon and what is the molecular structure of the water infiltrated into the Teflon. Using highly sensitive femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), we observe for the first time that monomeric H2O and chiral OH-(H2O) complexes are present in macroscopically hydrophobic Teflon. The species are inhomogeneously distributed inside the Teflon matrix and at the Teflon surface. No water clusters or single-file water "wires" are observed in the matrix. SFG free induction decay (SFG-FID) experiments demonstrate that the OH oscillators of physically absorbed molecular water at the surface dephase on the time scale of <230 fs, whereas the water monomers and hydrated hydroxide ions infiltrated in the Teflon matrix dephase much more slowly (680-830 fs), indicating that the embedded monomeric H2O and OH-(H2O) complexes are decoupled from the outer environment. Our findings can well interpret ultrafast water permeation through fluorous nanochannels and the charging mechanism of Teflon, which may tailor the desired applications of organofluorines.
Collapse
Affiliation(s)
- Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
9
|
Golbek TW, Weidner T. Peptide Orientation Strongly Affected by the Nanoparticle Size as Revealed by Sum Frequency Scattering Spectroscopy. J Phys Chem Lett 2023; 14:9819-9823. [PMID: 37889607 DOI: 10.1021/acs.jpclett.3c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The orientation of proteins at interfaces has a profound effect on the function of proteins. For nanoparticles (NPs) in a biological environment, protein orientation determines the toxicity, function, and identity of the NP. Thus, understanding how proteins orientate at NP surfaces is a critical parameter in controlling NP biochemistry. While planar surfaces are often used to model NP interfaces for protein orientation studies, it has been shown recently that proteins can orient very differently on NP surfaces. This study uses sum frequency scattering vibrational spectroscopy of the model helical leucine-lysine (LK) peptide on NPs of different sizes to determine the cause for the orientation effects. The data show that, for low dielectric constant materials, the orientation of the helical LK peptide is a function of the coulombic forces between peptides across different particle volumes. This finding strongly suggests that flat model systems are only of limited use for determining protein orientation at NP interfaces and that charge interactions should be considered when designing medical NPs or assessing NP biocompatibility.
Collapse
Affiliation(s)
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Carpenter AP, Golbek TW. "Nonlinear" pursuit of understanding pollutant accumulation and chemistry at environmental and biological interfaces. Biointerphases 2023; 18:058501. [PMID: 37728303 DOI: 10.1116/6.0003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Over the past few decades, the public recognition of the prevalence of certain classes of pollutants, such as perfluoroalkyl substances and nanoplastics, within the environment, has sparked growing concerns over their potential impact on environmental and human health. Within both environmental and biological systems, the adsorption and structural organization of pollutants at aqueous interfaces can greatly impact the chemical reactivity and transformation. Experimentally probing chemical behavior at interfaces can often pose a problem due to bulk solvated molecules convoluting molecular signatures from interfacial molecules. To solve this problem, there exist interface-specific nonlinear spectroscopy techniques that can directly probe both macroscopic planar interfaces and nanoplastic interfaces in aqueous environments. These techniques can provide essential information such as chemical adsorption, structure, and reactivity at interfaces. In this perspective, these techniques are presented with obvious advantages for studying the chemical properties of pollutants adsorbed to environmental and biological interfaces.
Collapse
Affiliation(s)
- Andrew P Carpenter
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331
| | | |
Collapse
|
11
|
Kumar Y, Dhami S, Pandey R. Theoretical study of electronic sum frequency generation spectroscopy to assess the buried interfaces. Biointerphases 2023; 18:041202. [PMID: 37417719 DOI: 10.1116/6.0002698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
This article provides a comprehensive theoretical background of electronic sum frequency generation (ESFG), a second-order nonlinear spectroscopy technique. ESFG is utilized to investigate both exposed and buried interfaces, which are challenging to study using conventional spectroscopic methods. By overlapping two incident beams at the interface, ESFG generates a beam at the sum of their frequencies, allowing for the extraction of valuable interfacial molecular information such as molecular orientation and density of states present at interfaces. The unique surface selectivity of ESFG arises from the absence of inversion symmetry at the interfaces. However, detecting weak signals from interfaces requires the ultrafast lasers to generate a sufficiently strong signal. By understanding the theoretical foundations of ESFG presented in this article, readers can gain a solid grasp of the basics of ESFG spectroscopy.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Haridwar 247667, Uttarakhand, India
| | - Suman Dhami
- Department of Chemistry, Indian Institute of Technology Roorkee, Haridwar 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Haridwar 247667, Uttarakhand, India
| |
Collapse
|
12
|
Yang P, Guo W, Ramamoorthy A, Chen Z. Conformation and Orientation of Antimicrobial Peptides MSI-594 and MSI-594A in a Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5352-5363. [PMID: 37017985 DOI: 10.1021/acs.langmuir.2c03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is significant interest in the development of antimicrobial compounds to overcome the increasing bacterial resistance to conventional antibiotics. Studies have shown that naturally occurring and de novo-designed antimicrobial peptides could be promising candidates. MSI-594 is a synthetic linear, cationic peptide that has been reported to exhibit a broad spectrum of antimicrobial activities. Investigation into how MSI-594 disrupts the cell membrane is important for better understanding the details of this antimicrobial peptide (AMP)'s action against bacterial cells. In this study, we used two different synthetic lipid bilayers: zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and anionic 7:3 POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (POPG). Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to determine the orientations of MSI-594 and its analogue MSI-594A associated with zwitterionic POPC and anionic 7:3 POPC/POPG lipid bilayers. The simulated ATR-FTIR and SFG spectra using nuclear magnetic resonance (NMR)-determined structures were compared with experimental spectra to optimize the bent angle between the N- (1-11) and C- (12-24) termini helices and the membrane orientations of the helices; since the NMR structure of the peptide was determined from lipopolysaccharide (LPS) micelles, the optimization was needed to find the most suitable conformation and orientation in lipid bilayers. The reported experimental results indicate that the optimized MSI-594 helical hairpin structure adopts a complete lipid bilayer surface-bound orientation (denoted "face-on") in both POPC and 7:3 POPC/POPG lipid bilayers. The analogue peptide, MSI-584A, on the other hand, exhibited a larger bent angle between the N- (1-11) and C- (12-24) termini helices with the hydrophobic C-terminal helix inserted into the hydrophobic region of the bilayer (denoted "membrane-inserted") when interacting with both POPC and 7:3 POPC/POPG lipid bilayers. These experimental findings on the membrane orientations suggest that both peptides are likely to disrupt the cell membrane through the carpet mechanism.
Collapse
Affiliation(s)
- Pei Yang
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Wen Guo
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Zhan Chen
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|