1
|
Ashbell I, Agam N, Katzir A, Basov S, Platkov M, Avital I, Nisky I, Netz U. Laser tissue soldering of the gastrointestinal tract: A systematic review LTS of the gastrointestinal tract. Heliyon 2023; 9:e16018. [PMID: 37205994 PMCID: PMC10189270 DOI: 10.1016/j.heliyon.2023.e16018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Background Laser Tissue Soldering (LTS) is a promising tissue bonding technique in which a solder is applied between the tissues and then irradiated by laser, causing it to solidify and form links with the tissue. Methods A comprehensive systematic review summarizing the state of research of LTS in the gastrointestinal tract. Results Most studies were conducted on large animal tissues, using liquid proteinaceous solder, and irradiated by a continuous wave laser at 808 nm. LTS can provide better sealing and burst pressure than conventional methods. The application of LTS on top of or in addition to sutures showed an impressive increase in burst pressures. LTS may decrease the inflammatory and foreign body reaction caused by sutures. Conclusions LTS has strong potential to be applied in a clinical setting in leak prevention and in closure of gastrointestinal structures as an adjunct or additional anastomotic technology, decreasing leak rates, morbidity, and mortality.
Collapse
Affiliation(s)
- Ido Ashbell
- Goldman School of Medicine, Ben Gurion University, Beer-Sheva, Israel
| | - Nadav Agam
- Goldman School of Medicine, Ben Gurion University, Beer-Sheva, Israel
| | - Abraham Katzir
- School of Physics & Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Svetlana Basov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Max Platkov
- Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Itzhak Avital
- Goldman School of Medicine, Ben Gurion University, Beer-Sheva, Israel
- Department of Surgery A, Soroka University Medical Center, Beer-Sheva, Israel
- Legacy-Heritage Oncology Center, Larry Norton Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ilana Nisky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Uri Netz
- Goldman School of Medicine, Ben Gurion University, Beer-Sheva, Israel
- Department of Surgery A, Soroka University Medical Center, Beer-Sheva, Israel
- Corresponding author. Department of Surgery A, Soroka University Medical Center, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Ratto F, Magni G, Aluigi A, Giannelli M, Centi S, Matteini P, Oberhauser W, Pini R, Rossi F. Cyanine-Doped Nanofiber Mats for Laser Tissue Bonding. NANOMATERIALS 2022; 12:nano12091613. [PMID: 35564323 PMCID: PMC9105542 DOI: 10.3390/nano12091613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
In spite of an extensive body of academic initiatives and innovative products, the toolkit of wound dressing has always revolved around a few common concepts such as adhesive patches and stitches and their variants. Our work aims at an alternative solution for an immediate restitutio ad integrum of the mechanical functionality in cutaneous repairs. We describe the fabrication and the application of electrospun mats of bioactive nanofibers all made of biocompatible components such as a natural polysaccharide and a cyanine dye for use as laser-activatable plasters, resembling the ultrastructure of human dermis. In particular, we investigate their morphological features and mechanical moduli under conditions of physiological relevance, and we test their use to bind a frequent benchmark of connective tissue as rabbit tendon and a significant case of clinical relevance as human dermis. Altogether, our results point to the feasibility of a new material for wound dressing combining translational potential, strength close to human dermis, extensibility exceeding 15% and state-of-art adhesive properties.
Collapse
Affiliation(s)
- Fulvio Ratto
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
- Correspondence: (F.R.); (F.R.)
| | - Giada Magni
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
| | - Annalisa Aluigi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, BO, Italy; (A.A.); (M.G.)
| | - Marta Giannelli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, BO, Italy; (A.A.); (M.G.)
| | - Sonia Centi
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
| | - Paolo Matteini
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
| | - Werner Oberhauser
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy;
| | - Roberto Pini
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
| | - Francesca Rossi
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
- Correspondence: (F.R.); (F.R.)
| |
Collapse
|
3
|
Role of the interactions of soft hyaluronan nanomaterials with CD44 and supported bilayer membranes in the cellular uptake. Colloids Surf B Biointerfaces 2021; 205:111916. [PMID: 34146785 DOI: 10.1016/j.colsurfb.2021.111916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Increasing valence by acting on nanomaterial morphology can enhance the ability of a ligand to specifically bind to targeted cells. Herein, we investigated cell internalization of soft hyaluronic acid (HA) nanoplatelets (NPs) that exhibit a typical hexagonal shape, flat surfaces and high aspect ratio (Γ≈12 to 20), as characterized by atomic force microscopy in hydrated conditions. Fluorescence imaging revealed that internalization of HA-NPs by a T24 tumor cell line and by macrophages was higher than native polysaccharide in a dose-dependent and time-dependent manners. The ability of HA-NPs to efficiently compete with native HA assessed using Bio-layer interferometry showed that NPs had a stronger interaction with recombinant CD44 receptor compared to native HA. The results were discussed regarding physical properties of the NPs and the implication of multivalent interactions in HA binding to CD44. Experiments conducted on supported bilayer membranes with different compositions showed that non-specific interactions of NPs with lipid membranes were negligible. Our findings provide insights into intracellular drug delivery using soft HA-NPs through receptor-mediated multivalent interactions.
Collapse
|
4
|
Bittner A, Gosselet F, Sevin E, Dehouck L, Ducray AD, Gaschen V, Stoffel MH, Cho H, Mevissen M. Time-Dependent Internalization of Polymer-Coated Silica Nanoparticles in Brain Endothelial Cells and Morphological and Functional Effects on the Blood-Brain Barrier. Int J Mol Sci 2021; 22:ijms22041657. [PMID: 33562136 PMCID: PMC7915594 DOI: 10.3390/ijms22041657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoparticle (NP)-assisted procedures including laser tissue soldering (LTS) offer advantages compared to conventional microsuturing, especially in the brain. In this study, effects of polymer-coated silica NPs used in LTS were investigated in human brain endothelial cells (ECs) and blood-brain barrier models. In the co-culture setting with ECs and pericytes, only the cell type directly exposed to NPs displayed a time-dependent internalization. No transfer of NPs between the two cell types was observed. Cell viability was decreased relatively to NP exposure duration and concentration. Protein expression of the nuclear factor ĸ-light-chain-enhancer of activated B cells and various endothelial adhesion molecules indicated no initiation of inflammation or activation of ECs after NP exposure. Differentiation of CD34+ ECs into brain-like ECs co-cultured with pericytes, blood-brain barrier (BBB) characteristics were obtained. The established endothelial layer reduced the passage of integrity tracer molecules. NP exposure did not result in alterations of junctional proteins, BBB formation or its integrity. In a 3-dimensional setup with an endothelial tube formation and tight junctions, barrier formation was not disrupted by the NPs and NPs do not seem to cross the blood-brain barrier. Our findings suggest that these polymer-coated silica NPs do not damage the BBB.
Collapse
Affiliation(s)
- Aniela Bittner
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
| | - Fabien Gosselet
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Emmanuel Sevin
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Lucie Dehouck
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Angélique D. Ducray
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (V.G.); (M.H.S.)
| | - Michael H. Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (V.G.); (M.H.S.)
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Department of Intelligent Precision Healthcare Concergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, #868715 N-Center Suwon-si, Gyeonggi-do 16419, Korea;
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
- Correspondence: ; Tel.: +41-31-631-22-31
| |
Collapse
|
5
|
Milanesi A, Magni G, Centi S, Schifino G, Aluigi A, Khlebtsov BN, Cavigli L, Barucci A, Khlebtsov NG, Ratto F, Rossi F, Pini R. Optically activated and interrogated plasmonic hydrogels for applications in wound healing. JOURNAL OF BIOPHOTONICS 2020; 13:e202000135. [PMID: 32542912 DOI: 10.1002/jbio.202000135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
We disclose the use of hybrid materials featuring Au/Ag core/shell nanorods in porous chitosan/polyvinyl alcohol scaffolds for applications in tissue engineering and wound healing. The combination of Au and Ag in a single construct provides synergistic opportunities for optical activation of functions as near infrared laser tissue bonding, and remote interrogation to return parameters of prognostic relevance in wound healing monitoring. In particular, the bimetallic component ensures optical tunability, enhanced shelf life and photothermal stability, serves as a reservoir of germicidal silver cations, and changes in near-infrared and visible color according to the environmental level of oxidative stress. At the same time, the polymeric blend is ideal to bind connective tissue upon photothermal activation, and to support fabrication processes that provide high porosity, such as electrospinning, thus putting all the premises for cellular repopulation and antimicrobial protection.
Collapse
Affiliation(s)
- Alessio Milanesi
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Florence, Italy
- Dipartimento di Chimica "Ugo Schiff", Universitá degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Giada Magni
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Florence, Italy
| | - Sonia Centi
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Florence, Italy
| | - Gioacchino Schifino
- Istituto per la Sintesi Organica e la Fotoreattivitá, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Annalisa Aluigi
- Istituto per la Sintesi Organica e la Fotoreattivitá, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Lucia Cavigli
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Florence, Italy
| | - Andrea Barucci
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Florence, Italy
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Faculty of Nano- and Biomedical Technologies, Saratov State University, Saratov, Russia
| | - Fulvio Ratto
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Florence, Italy
| | - Francesca Rossi
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Florence, Italy
| | - Roberto Pini
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Bittner A, Ducray AD, Widmer HR, Stoffel MH, Mevissen M. Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood-brain barrier. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:941-954. [PMID: 31165021 PMCID: PMC6541356 DOI: 10.3762/bjnano.10.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Nanomedicine is a constantly expanding field, facilitating and improving diagnosis and treatment of diseases. As nanomaterials are foreign objects, careful evaluation of their toxicological and functional aspects prior to medical application is imperative. In this study, we aimed to determine the effects of gold and polymer-coated silica nanoparticles used in laser tissue soldering on brain endothelial cells and the blood-brain barrier using rat brain capillary endothelial cells (rBCEC4). All types of nanoparticles were taken up time-dependently by the rBCEC4 cells, albeit to a different extent, causing a time- and concentration-dependent decrease in cell viability. Nanoparticle exposure did not change cell proliferation, differentiation, nor did it induce inflammation. rBCEC4 cells showed blood-brain barrier characteristics including tight junctions. None of the nanoparticles altered the expression of tight junctions or impaired the blood-brain barrier permeability. The findings suggest that effects of these nanoparticles on the metabolic state of cells have to be further characterized before use for medical purposes.
Collapse
Affiliation(s)
- Aniela Bittner
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Angélique D Ducray
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Research Unit, Inselspital, University of Bern, Freiburgstrasse 8, 3010 Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Cai Z, Zhang H, Wei Y, Cong F. Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications. Biomacromolecules 2017; 18:1677-1696. [PMID: 28485601 DOI: 10.1021/acs.biomac.7b00424] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanomaterials, including gold, silver, and magnetic nanoparticles, carbon, and mesoporous materials, possess unique physiochemical and biological properties, thus offering promising applications in biomedicine, such as in drug delivery, biosensing, molecular imaging, and therapy. Recent advances in nanotechnology have improved the features and properties of nanomaterials. However, these nanomaterials are potentially cytotoxic and demonstrate a lack of cell-specific function. Thus, they have been functionalized with various polymers, especially polysaccharides, to reduce toxicity and improve biocompatibility and stability under physiological conditions. In particular, nanomaterials have been widely functionalized with hyaluronan (HA) to enhance their distribution in specific cells and tissues. This review highlights the most recent advances on HA-functionalized nanomaterials for biotechnological and biomedical applications, as nanocarriers in drug delivery, contrast agents in molecular imaging, and diagnostic agents in cancer therapy. A critical evaluation of barriers affecting the use of HA-functionalized nanomaterials is also discussed, and insights into the outlook of the field are explored.
Collapse
Affiliation(s)
- Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yue Wei
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Fengsong Cong
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
8
|
Nakadate R, Omori S, Ikeda T, Akahoshi T, Oguri S, Arata J, Onogi S, Hashizume M. Improving the strength of sutureless laser-assisted vessel repair using preloaded longitudinal compression on tissue edge. Lasers Surg Med 2017; 49:533-538. [PMID: 28129436 DOI: 10.1002/lsm.22621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVE Little is known about the approximation of coapted edges in sutureless laser-assisted vessel welding. Tissue shrinkage by laser irradiation may cause coapted edges to separate, reducing strength of welding. This may be avoided by preloaded longitudinal compression on the tissue edges to be welded. This study compared welding strength with and without preloaded compression in ex vivo animal experiments. MATERIALS AND METHODS This study evaluated 24 samples of harvested porcine carotid arteries, each having a length of 3 cm and an inner diameter of 1.0-2.0 mm. A half circumferential incision was made at the center of each sample. A steel shaft 2.0 mm in diameter was inserted into each sample to approximate the incised edges. The samples were longitudinally compressed to 6 mm. Incision sites were repaired by irradiation with a 970-nm diode laser. No glue or die was used. The repair strength was evaluated by measuring the bursting point (BP) of all samples. In a pilot study, the welding conditions, including power, duration, and interval of the laser spots, were tested by trial and error in 18 samples, including six treated under optimum conditions. As a control group, six samples were welded under optimum conditions, but without compression. RESULTS Optimum conditions, consisting of 2.4 W power, 30-second duration, and 1-mm intervals of laser spots, yielded the highest BP (623 ± 236 mmHg), which was significantly higher than in the control group without compression (204 ± 208 mmHg, P = 0.009). Defining BP > 400 mmHg as successful repair, the success rates in the compression and control groups were 83% and 17%, respectively. CONCLUSION Preloaded longitudinal compression on the coapted edges may be important for sutureless laser-assisted vessel repair and anastomosis and may affect the strength of welding. Lasers Surg. Med. 49:533-538, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryu Nakadate
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shigeru Omori
- Department of Medical Course, Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, 170-8445, Japan
| | - Tetsuo Ikeda
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomohiko Akahoshi
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Susumu Oguri
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jumpei Arata
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shinya Onogi
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Frost SJ, Mawad D, Hook J, Lauto A. Micro- and Nanostructured Biomaterials for Sutureless Tissue Repair. Adv Healthc Mater 2016; 5:401-14. [PMID: 26725593 DOI: 10.1002/adhm.201500589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/23/2015] [Indexed: 01/01/2023]
Abstract
Sutureless procedures for wound repair and closure have recently integrated nanostructured devices to improve their effectiveness and clinical outcome. This review highlights the major advances in gecko-inspired bioadhesives that relies mostly on van der Waals bonding forces. These are challenged by the moist environment of surgical settings that weaken adherence to tissue. The incorporation of nanoparticles in biomatrices and their role in tissue repair and drug delivery is also reviewed with an emphasis on procedures involving adhesives that are laser-activated. Nanostructured adhesive devices have the advantage of being minimally invasive to tissue, can seal wounds, and deliver drugs in situ. All these tasks are very difficult to accomplish by sutures or staples that are invasive to host organs and often cause scarring.
Collapse
Affiliation(s)
- Samuel J. Frost
- School of Science and Health; University of Western Sydney; Penrith NSW 2751 Australia
| | - D. Mawad
- Department of Materials; Imperial College London; SW7 2AZ UK
- School of Materials Science and Engineering; University of New South Wales; Sydney 2052 Australia
| | - J. Hook
- School of Chemistry; University of New South Wales; Sydney 2052 Australia
| | - Antonio Lauto
- School of Science and Health; University of Western Sydney; Penrith NSW 2751 Australia
- The Biomedical Engineering and Neuroscience (BENS) Research Group; The MARCS Institute; Penrith NSW 2751 Australia
| |
Collapse
|
10
|
Jia H, Fang C, Zhu XM, Ruan Q, Wang YXJ, Wang J. Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7418-7426. [PMID: 26079391 DOI: 10.1021/acs.langmuir.5b01444] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Absorption-dominant small Au nanorods with diameters of less than 10 nm are prepared using a facile seed-mediated growth method. The diameters of the small gold nanorods range from 6 to 9 nm, and their lengths vary from 16 to 45 nm. Their aspect ratios can be tailored from 2.7 to 4.7. As a result, the longitudinal plasmon resonance wavelengths are readily tunable from ∼720 nm to ∼830 nm by changing the seed-to-Au(III) molar ratio in the growth solution. The fractions of the scattering in the total extinction of the small Au nanorods are found to be in the range of 0.005 to 0.025 with finite-difference time-domain simulations, confirming that the extinction values of these small Au nanorods are dominantly contributed to by the light absorption. Moreover, the small Au nanorod sample is coated with a dense silica layer for photothermal therapy with three cell lines. It shows improved photothermal therapy performance compared to a large Au nanorod sample for the same cellular Au contents. Our study suggests that small Au nanorods are promising light absorbers and photothermal therapy agents.
Collapse
Affiliation(s)
- Henglei Jia
- †Department of Physics and ‡Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caihong Fang
- †Department of Physics and ‡Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiao-Ming Zhu
- †Department of Physics and ‡Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qifeng Ruan
- †Department of Physics and ‡Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi-Xiang J Wang
- †Department of Physics and ‡Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- †Department of Physics and ‡Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
11
|
Locatelli E, Matteini P, Sasdelli F, Pucci A, Chiariello M, Molinari V, Pini R, Comes Franchini M. Surface chemistry and entrapment of magnesium nanoparticles into polymeric micelles: a highly biocompatible tool for photothermal therapy. Chem Commun (Camb) 2014; 50:7783-6. [DOI: 10.1039/c4cc01513d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel highly biocompatible nanosystem containing Mg nanoparticles is reported, characterized and tested as a suitable and non-toxic tool for photothermal therapy.
Collapse
Affiliation(s)
- E. Locatelli
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna, Italy
| | - P. Matteini
- Institute of Applied Physics “Nello Carrara”
- National Research Council
- 50019 Sesto Fiorentino, Italy
| | - F. Sasdelli
- Istituto Toscano Tumori
- Core Research Laboratory and Istituto di Fisiologia Clinica
- Consiglio Nazionale delle Ricerche
- Siena, Italy
| | - A. Pucci
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna, Italy
| | - M. Chiariello
- Istituto Toscano Tumori
- Core Research Laboratory and Istituto di Fisiologia Clinica
- Consiglio Nazionale delle Ricerche
- Siena, Italy
| | - V. Molinari
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna, Italy
| | - R. Pini
- Institute of Applied Physics “Nello Carrara”
- National Research Council
- 50019 Sesto Fiorentino, Italy
| | - M. Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna, Italy
| |
Collapse
|
12
|
Abstract
Gold nanorods have been receiving extensive attention owing to their extremely attractive applications in biomedical technologies, plasmon-enhanced spectroscopies, and optical and optoelectronic devices. The growth methods and plasmonic properties of Au nanorods have therefore been intensively studied. In this review, we present a comprehensive overview of the flourishing field of Au nanorods in the past five years. We will focus mainly on the approaches for the growth, shape and size tuning, functionalization, and assembly of Au nanorods, as well as the methods for the preparation of their hybrid structures. The plasmonic properties and the associated applications of Au nanorods will also be discussed in detail.
Collapse
Affiliation(s)
- Huanjun Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | |
Collapse
|
13
|
Esposito G, Rossi F, Matteini P, Scerrati A, Puca A, Albanese A, Rossi G, Ratto F, Maira G, Pini R. In vivo laser assisted microvascular repair and end-to-end anastomosis by means of indocyanine green-infused chitosan patches: a pilot study. Lasers Surg Med 2013; 45:318-25. [PMID: 23740739 DOI: 10.1002/lsm.22145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Laser-based repairing techniques offer several advantages respect to standard suturing in microsurgery. In this work we evaluate the applicability and feasibility of two innovative laser-based approaches for microvascular repair and anastomoses: (1) laser-assisted vascular repair (LAVR); (2) laser-assisted end-to-end vascular anastomosis (LAVA). All these procedures have been executed by the use of diode laser irradiation and chitosan-patches infused with Indocyanine Green (ICG). STUDY DESIGN/MATERIALS AND METHODS Experiments were performed on 30 rabbits. Twenty animals underwent LAVR and 10 end-to-end LAVA procedures. In the LAVR group, a 5-mm longitudinal cut was performed on the common carotid artery (CCA), then an ICG-infused chitosan patch was topically applied and laser-soldered over the arterial lesion. In the LAVA group the end-to-end anastomosis was executed on CCA by means of application of the three interrupted sutures and subsequent laser soldering of the ICG-infused patch. Animals underwent different follow-up periods (2, 7, 30, and 90 days). At the end of every follow-up, the animals were re-anesthetized and a microdoppler analysis was performed in order to check patency of the treated vessels. Then soldered segments were excised and subjected to histological and ultrastructural evaluations. RESULTS At the end of surgery no bleeding from the treated segment was observed; all the treated vessels were patent. At the end of follow-up periods, no signs of perivascular haemorrhage were found. An intraoperative microdoppler evaluation assessed the patency of all the treated vessels. Histology showed a good reorganization of the vascular wall structures and an early endothelial regeneration was observed by SEM. CONCLUSIONS Our study demonstrated the efficacy of laser tissue soldering by means of ICG-infused chitosan patches for the in vivo repairing of microvascular lesions and end-to-end anastomoses. This approach offers several advantages over conventional suturing methods and is technically easy to perform, minimizing the surgical trauma to vessels.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Institute of Neurosurgery, Catholic University School of Medicine, Rome, 00100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Matteini P, Tatini F, Luconi L, Ratto F, Rossi F, Giambastiani G, Pini R. Photothermally Activated Hybrid Films for Quantitative Confined Release of Chemical Species. Angew Chem Int Ed Engl 2013; 52:5956-60. [DOI: 10.1002/anie.201207986] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/12/2013] [Indexed: 12/25/2022]
|
15
|
Photothermally Activated Hybrid Films for Quantitative Confined Release of Chemical Species. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Huang HC, Walker CR, Nanda A, Rege K. Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders. ACS NANO 2013; 7:2988-2998. [PMID: 23530530 DOI: 10.1021/nn303202k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Approximately 1.5 million people suffer from colorectal cancer and inflammatory bowel disease in the United States. Occurrence of leakage following standard surgical anastomosis in intestinal and colorectal surgery is common and can cause infection leading to life-threatening consequences. In this report, we demonstrate that plasmonic nanocomposites, generated from elastin-like polypeptides (ELPs) cross-linked with gold nanorods, can be used to weld ruptured intestinal tissue upon exposure to near-infrared (NIR) laser irradiation. Mechanical properties of these nanocomposites can be modulated based on the concentration of gold nanorods embedded within the ELP matrix. We employed photostable, NIR-absorbing cellularized and noncellularized GNR-ELP nanocomposites for ex vivo laser welding of ruptured porcine small intestines. Laser welding using the nanocomposites significantly enhanced the tensile strength, leakage pressure, and bursting pressure of ruptured intestinal tissue. This, in turn, provided a liquid-tight seal against leakage of luminal liquid from the intestine and resulting bacterial infection. This study demonstrates the utility of laser tissue welding using plasmonic polypeptide nanocomposites and indicates the translational potential of these materials in intestinal and colorectal repair.
Collapse
Affiliation(s)
- Huang-Chiao Huang
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, United States
| | | | | | | |
Collapse
|
17
|
Matteini P, Ratto F, Rossi F, de Angelis M, Cavigli L, Pini R. Hybrid nanocomposite films for laser-activated tissue bonding. JOURNAL OF BIOPHOTONICS 2012; 5:868-877. [PMID: 22899671 DOI: 10.1002/jbio.201200115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/09/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
We report new advancements in the biomedical exploitation of plasmonic nanoparticles as an effective platform for the photothermal repair of biological tissue. Chitosan films are loaded with gold nanorods with intense optical absorption in the "therapeutic window" of deepest light penetration through the body, and then activated by near infrared laser excitation to give adhesion with adjacent connective tissues. The adhesion consists of 0.07 mm(2) welds of ~20 kPa tensile strength at the film/tissue interface, which are obtained by administration of pulses with duration in the hundreds of millisecond timescale from a diode laser at ~130 J cm(-2). We investigate the adhesive effect as a function of pulse power and duration and identify an optimal operative window to achieve effective and reproducible welds with minimal detrimental superheating. These results may prove valuable to standardize laser bonding techniques and meet current needs for new knowledge which is urged by the penetration of nanotechnology into biomedical optics.
Collapse
Affiliation(s)
- Paolo Matteini
- Istituto di Fisica Applicata Nello Carrara, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Bogni S, Ortner MA, Vajtai I, Jost C, Reinert M, Dallemagne B, Frenz M. New laser soldering-based closures: a promising method in natural orifice transluminal endoscopic surgery. Gastrointest Endosc 2012; 76:151-8. [PMID: 22726474 DOI: 10.1016/j.gie.2012.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/05/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Complete closure of gastrotomy is the linchpin of safe natural orifice transgastric endoscopic surgery. OBJECTIVE To evaluate feasibility and efficacy of a new method of gastrotomy closure by using a sutureless laser tissue-soldering (LTS) technique in an ex vivo porcine stomach. DESIGN In vitro experiment. SETTING Experimental laboratory. INTERVENTIONS Histological analysis and internal and external liquid pressure with and without hydrochloric acid exposure were determined comparing gastrotomy closure with LTS and with hand-sewn surgical sutures. MAIN OUTCOME MEASUREMENTS Comparison of LTS and hand-sewn surgical gastrotomy closure. The primary outcome parameter was the internal leak pressure. Secondary parameters were the difference between internal and external leak pressures, the impact of an acid environment on the device, histological changes, and feasibility of endoscopic placement. RESULTS The internal liquid leak pressure after LTS was almost twice as high as after hand-sewn surgical closure (416 ± 53 mm Hg vs 229 ± 99 mm Hg; P = .01). The internal leak pressure (416 ± 53 mm Hg) after LTS was higher than the external leak pressure (154 ± 46 mm Hg; P < .0001). An acidic environment did not affect leak pressure after LTS. Endoscopic LTS closure was feasible in all experiments. Histopathology revealed only slight alterations beneath the soldering plug. LIMITATIONS In vitro experiments. CONCLUSIONS Leak pressure after LTS closure of gastrotomy is higher than after hand-sewn surgical closure. LTS is a promising technique for closure of gastrotomies and iatrogenic perforations. Further experiments, in particular survival studies, are mandatory.
Collapse
Affiliation(s)
- Serge Bogni
- Department of Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Singh Sekh B. Nanoprobes and Their Applications in Veterinary Medicine and Animal Health. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/rjnn.2012.1.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Matteini P, Ratto F, Rossi F, Pini R. Emerging concepts of laser-activated nanoparticles for tissue bonding. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:010701. [PMID: 22352632 DOI: 10.1117/1.jbo.17.1.010701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report recent achievements and future perspectives of minimally invasive bonding of biological tissues triggered by laser light. In particular, we review new advancements in the biomedical exploitation of near-infrared absorbing gold nanoparticles as an original solution for the photothermal closure of surgical incisions. Advanced concepts of laser tissue bonding involving the application of hybrid nanocomposites obtained by inclusion of nanochromophores into biopolymer scaffolds are also introduced. The perspectives of tissue bonding are discussed in the following aspects: (1) tissue bonding with highly-stabilized nanochromophores, (2) enhanced tissue bonding with patterned nanocomposites, (3) real-time monitoring of temperature distributions, (4) tracking of tissue regeneration based on the optical resonances of gold nanoparticles.
Collapse
Affiliation(s)
- Paolo Matteini
- Institute of Applied Physics Nello Carrara, Italian National Research Council, via Madonna del Piano, 10-50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
21
|
Schöni DS, Bogni S, Bregy A, Wirth A, Raabe A, Vajtai I, Pieles U, Reinert M, Frenz M. Nanoshell assisted laser soldering of vascular tissue. Lasers Surg Med 2011; 43:975-83. [PMID: 22109727 DOI: 10.1002/lsm.21140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Laser tissue soldering (LTS) is a promising technique for tissue fusion but is limited by the lack of reproducibility particularly when the amount of indocyanine green (ICG) applied as energy absorber cannot be controlled during the soldering procedure. Nanotechnology enables the control over the quantitative binding of the ICG. The aim of this study was to establish a highly reproducible and strong tissue fusion using ICG packed nanoshells. By including the chromophore in the soldering scaffold, dilution of the energy absorber during the soldering procedure is prevented. The feasibility of this novel nanoshell soldering technique was studied by assessing the local heating of the area and tensile strength of the resulting fused tissue. STUDY DESIGN/MATERIALS AND METHODS Nanoshells with a diameter of 250-270 nm were loaded with ICG and included in a porous polycaprolactone (PCL) scaffold doped with albumin solder. The nanoshell scaffold was used in a flexible, semi-dry formulation suitable for surgical use. Heat development, tensile strength as well as tissue damage were assessed. RESULTS Rabbit aortic arteries were successfully soldered using an ICG packed nanoshell scaffold. Tensile strengths of these nanoshell soldered anastomoses were found to be 734 ± 327 mN (median = 640 mN). Thermal damage was restricted to the adventitia at the irradiated area. In addition, absorber dilution was prevented during the soldering procedure resulting in significantly lower variance in maximum temperature (P = 0.03) compared to the classical liquid ICG soldering technique. CONCLUSION Using nanoshells, controlled amounts of chromophore could successfully be bound into the polymer scaffold. Diode laser soldering of vascular tissue using ICG-nanoshell scaffolds leads to strong and reproducible tissue fusion. With optimally chosen settings of irradiation time, nanoshells coating and scaffold properties, our improved LTS procedure demonstrates the potential for a clinically applicable anastomosis technique.
Collapse
Affiliation(s)
- Daniel S Schöni
- Department of Neurosurgery, Inselspital Bern, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|