1
|
Yu Y, Zhang N, Xiang B, Ding N, Liu J, Huang J, Zhao M, Zhao Y, Wang Y, Ma Z. In vivo characterization of cerebrovascular impairment induced by amyloid β peptide overload in glymphatic clearance system using swept-source optical coherence tomography. NEUROPHOTONICS 2023; 10:015005. [PMID: 36817752 PMCID: PMC9933996 DOI: 10.1117/1.nph.10.1.015005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Antiamyloid β ( A β ) immunotherapy is a promising therapeutic strategy for Alzheimer's disease (AD) but generates large amounts of soluble A β peptides that could overwhelm the clearance pathway, leading to serious side effects. Direct implications of A β in glymphatic drainage transport for cerebral vasculature and tissue are not well known. Studies are needed to resolve this issue and pave the way to better monitoring abnormal vascular events that may occur in A β -modifying therapies for AD. AIM The objective is to characterize the modification of cerebral vasculature and tissue induced by soluble A β abundantly present in the glymphatic clearance system. APPROACH A β 1 - 42 peptide was injected intracerebroventricularly and swept-source optical coherence tomography (SS-OCT) was used to monitor the progression of changes in the brain microvascular network and tissue in vivo over 14 days. Parameters reflecting vascular morphology and structure as well as tissue status were quantified and compared before treatment. RESULTS Vascular perfusion density, vessel length, and branch density decreased sharply and persistently following peptide administration. In comparison, vascular average diameter and vascular tortuosity were moderately increased at the late stage of monitoring. Endpoint density gradually increased, and the global optical attenuation coefficient value decreased significantly over time. CONCLUSIONS A β burden in the glymphatic system directly contributes to cerebrovascular structural and morphological abnormalities and global brain tissue damage, suggesting severe deleterious properties of soluble cerebrospinal fluid- A β . We also show that OCT can be used as an effective tool to monitor cerebrovascular dynamics and tissue property changes in response to therapeutic treatments in drug discovery research.
Collapse
Affiliation(s)
- Yao Yu
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Ning Zhang
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
| | - Ben Xiang
- Northeastern University, College of Information Science and Engineering, Shenyang, China
| | - Ning Ding
- Northeastern University, College of Information Science and Engineering, Shenyang, China
| | - Jian Liu
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Jiangmei Huang
- First Hospital of Qinhuangdao, Department of Pathology, Qinhuangdao, China
| | - Min Zhao
- First Hospital of Qinhuangdao, Department of Pathology, Qinhuangdao, China
| | - Yuqian Zhao
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
| | - Yi Wang
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Zhenhe Ma
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| |
Collapse
|
2
|
Yu Y, Yu M, Liu J, Ding N, Huang J, Wan D, Zhao Y, Ma Z. In vivo monitoring of thrombosis in mice by optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201900105. [PMID: 31339664 DOI: 10.1002/jbio.201900105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study is to establish a novel method for continuously monitoring thrombus progression with various outcome measures and to assess the efficacy of antithrombotic drugs in murine thrombosis model in mice. In the study, thrombus was induced in the femoral vein of mice by FeCl3 and monitored over time by spectral-domain optical coherence tomography (OCT). Three-dimensional images of thrombi with or without heparin as an antithrombotic agent were obtained from OCT angiography. In addition, several parameters of thrombi were analyzed and compared between control and anticoagulant groups. By using OCT, we were able to trace thrombus generation in the same mouse in real time. We found that in our model heparin reduced thrombus size by ~60% and thrombus cross-sectional area by 50%. OCT results also show that both time to thrombus size (>0.02mm3 ) and time to occlusion (>30%) were significantly reduced after heparin addition. This study demonstrates that OCT reliably monitors thrombus generation and progression from various aspects including thrombus size. This enables us to measure the kinetic of thrombosis more accurately, and effectively evaluate the efficacy and activities of antithrombotic drugs. This model may represent a useful tool in antithrombotic drug discoveries in preclinical studies.
Collapse
Affiliation(s)
- Yao Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Menghan Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Jian Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Ning Ding
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Jiangmei Huang
- Department of Pathology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Dong Wan
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhenhe Ma
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
3
|
R-Ras-Akt axis induces endothelial lumenogenesis and regulates the patency of regenerating vasculature. Nat Commun 2017; 8:1720. [PMID: 29170374 PMCID: PMC5700916 DOI: 10.1038/s41467-017-01865-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
The formation of endothelial lumen is fundamental to angiogenesis and essential to the oxygenation of hypoxic tissues. The molecular mechanism underlying this important process remains obscure. Here, we show that Akt activation by a Ras homolog, R-Ras, stabilizes the microtubule cytoskeleton in endothelial cells leading to endothelial lumenogenesis. The activation of Akt by the potent angiogenic factor VEGF-A does not strongly stabilize microtubules or sufficiently promote lumen formation, hence demonstrating a distinct role for the R-Ras-Akt axis. We show in mice that this pathway is important for the lumenization of new capillaries and microvessels developing in ischemic muscles to allow sufficient tissue reperfusion after ischemic injury. Our work identifies a role for Akt in lumenogenesis and the significance of the R-Ras-Akt signaling for the patency of regenerating blood vessels. Formation of the vascular lumen initiates the blood flow and it is crucial for tissue homeostasis. Here, Li et. al show that the R-Ras-Akt signaling axis is crucial for reparative angiogenesis in mice because it stabilizes the microtubule cytoskeleton in endothelial cells to promote endothelial lumen formation.
Collapse
|
4
|
Jacobs I, Strijkers GJ, Keizer HM, Janssen HM, Nicolay K, Schabel MC. A novel approach to tracer-kinetic modeling for (macromolecular) dynamic contrast-enhanced MRI. Magn Reson Med 2015; 75:1142-53. [PMID: 25846802 DOI: 10.1002/mrm.25704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a novel tracer-kinetic modeling approach for multi-agent dynamic contrast-enhanced MRI (DCE-MRI) that facilitates separate estimation of parameters characterizing blood flow and microvascular permeability within one individual. METHODS Monte Carlo simulations were performed to investigate the performance of the constrained multi-agent model. Subsequently, multi-agent DCE-MRI was performed on tumor-bearing mice (n = 5) on a 7T Bruker scanner on three measurement days, in which two dendrimer-based contrast agents having high and intermediate molecular weight, respectively, along with gadoterate meglumine, were sequentially injected within one imaging session. Multi-agent data were simultaneously fit with the gamma capillary transit time model. Blood flow, mean capillary transit time, and bolus arrival time were constrained to be identical between the boluses, while extraction fractions and washout rate constants were separately determined for each agent. RESULTS Simulations showed that constrained multi-agent model regressions led to less uncertainty and bias in estimated tracer-kinetic parameters compared with single-bolus modeling. The approach was successfully applied in vivo, and significant differences in the extraction fraction and washout rate constant between the agents, dependent on their molecular weight, were consistently observed. CONCLUSION A novel multi-agent tracer-kinetic modeling approach that enforces self-consistency of model parameters and can robustly characterize tumor vascular status was demonstrated.
Collapse
Affiliation(s)
- Igor Jacobs
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Matthias C Schabel
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA.,Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Eggers C, Müller J, Schultze-Mosgau S. VEGF transfer based on gene-modified fibroblasts using a hypoxia-induced vector to modulate neoangiogenesis in ischaemic regions of myocutaneous transplants. Int J Oral Maxillofac Surg 2014; 44:267-76. [PMID: 25441860 DOI: 10.1016/j.ijom.2014.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022]
Abstract
The effect of a hypoxia-inducible VEGF-expressing on wound healing in an ischaemic hind leg rat model was evaluated in this study. 180 Wistar rats were assigned randomly to three groups. After ligation of the femoral artery, group 1 received pRTP801-VEGF165, group 2 untransfected fibroblasts, group 3 saline; injection was into the subcutaneous tissue, proximal and distal to the artery ligation. Biopsy specimens were obtained on days 3, 5, 7, 14 after implementation. VEGF transgene expression, vessel architecture, the amount and total area of vessel formation were investigated. Results showed a significantly higher level of VEGF protein expression in group 1 compared to group 2 (P≤0.001) throughout the investigational period. Group 1 exhibited a significant growth of CD31-positive blood vessels in the subcutaneous tissue on day 14 compared to groups 2 and 3 (P≤0.001) (group 1, 62.20±1.92; group 2, 20.60±1.67; group 3, 12.40±1.14). Alpha-SMA-positive staining also showed significant vessel growth in group 1 on day 5 (group 1, 27.00±1.87; group 2, 7.20±1.48; group 3, 10.00±1.73). These results were confirmed in the distal muscle tissue. No significant results were obtained for the proximal muscle tissue. The subcutaneous application of pRTP801-VEGF165 showed a long-lasting effect, with an increased expression of VEGF over the entire observation period. It appears that the use of fibroblasts transfected with VEGF is a promising way to increase early angiogenesis in ischaemic tissue.
Collapse
Affiliation(s)
- C Eggers
- Department of Oral and Cranio-Maxillofacial Surgery/Plastic Surgery, Friedrich-Schiller University, Jena, Germany.
| | - J Müller
- Department of Oral and Cranio-Maxillofacial Surgery/Plastic Surgery, Friedrich-Schiller University, Jena, Germany
| | - S Schultze-Mosgau
- Department of Oral and Cranio-Maxillofacial Surgery/Plastic Surgery, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
6
|
Poole KM, McCormack DR, Patil CA, Duvall CL, Skala MC. Quantifying the vascular response to ischemia with speckle variance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:4118-30. [PMID: 25574425 PMCID: PMC4285592 DOI: 10.1364/boe.5.004118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
Longitudinal monitoring techniques for preclinical models of vascular remodeling are critical to the development of new therapies for pathological conditions such as ischemia and cancer. In models of skeletal muscle ischemia in particular, there is a lack of quantitative, non-invasive and long term assessment of vessel morphology. Here, we have applied speckle variance optical coherence tomography (OCT) methods to quantitatively assess vascular remodeling and growth in a mouse model of peripheral arterial disease. This approach was validated on two different mouse strains known to have disparate rates and abilities of recovering following induction of hind limb ischemia. These results establish the potential for speckle variance OCT as a tool for quantitative, preclinical screening of pro- and anti-angiogenic therapies.
Collapse
|
7
|
Shen HY, Sun H, Hanthorn MM, Zhi Z, Lan JQ, Poulsen DJ, Wang RK, Boison D. Overexpression of adenosine kinase in cortical astrocytes and focal neocortical epilepsy in mice. J Neurosurg 2013; 120:628-38. [PMID: 24266544 DOI: 10.3171/2013.10.jns13918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT New experimental models and diagnostic methods are needed to better understand the pathophysiology of focal neocortical epilepsies in a search for improved epilepsy treatment options. The authors hypothesized that a focal disruption of adenosine homeostasis in the neocortex might be sufficient to trigger electrographic seizures. They further hypothesized that a focal disruption of adenosine homeostasis might affect microcirculation and thus offer a diagnostic opportunity for the detection of a seizure focus located in the neocortex. METHODS Focal disruption of adenosine homeostasis was achieved by injecting an adeno-associated virus (AAV) engineered to overexpress adenosine kinase (ADK), the major metabolic clearance enzyme for the brain's endogenous anticonvulsant adenosine, into the neocortex of mice. Eight weeks following virus injection, the affected brain area was imaged via optical microangiography (OMAG) to detect changes in microcirculation. After completion of imaging, cortical electroencephalography (EEG) recordings were obtained from the imaged brain area. RESULTS Viral expression of the Adk cDNA in astrocytes generated a focal area (~ 2 mm in diameter) of ADK overexpression within the neocortex. OMAG scanning revealed a reduction in vessel density within the affected brain area of approximately 23% and 29% compared with control animals and the contralateral hemisphere, respectively. EEG recordings revealed electrographic seizures within the focal area of ADK overexpression at a rate of 1.3 ± 0.2 seizures per hour (mean ± SEM). CONCLUSIONS The findings of this study suggest that focal adenosine deficiency is sufficient to generate a neocortical focus of hyperexcitability, which is also characterized by reduced vessel density. The authors conclude that their model constitutes a useful tool to study neocortical epilepsies and that OMAG constitutes a noninvasive diagnostic tool for the imaging of seizure foci with disrupted adenosine homeostasis.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Poole KM, Tucker-Schwartz JM, Sit WW, Walsh AJ, Duvall CL, Skala MC. Quantitative optical imaging of vascular response in vivo in a model of peripheral arterial disease. Am J Physiol Heart Circ Physiol 2013; 305:H1168-80. [PMID: 23955718 PMCID: PMC3798791 DOI: 10.1152/ajpheart.00362.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/13/2013] [Indexed: 12/20/2022]
Abstract
The mouse hind limb ischemia (HLI) model is well established for studying collateral vessel formation and testing therapies for peripheral arterial disease, but there is a lack of quantitative techniques for intravitally analyzing blood vessel structure and function. To address this need, non-invasive, quantitative optical imaging techniques were developed to assess the time-course of recovery in the mouse HLI model. Hyperspectral imaging and optical coherence tomography (OCT) were used to non-invasively image hemoglobin oxygen saturation and microvessel morphology plus blood flow, respectively, in the anesthetized mouse after induction of HLI. Hyperspectral imaging detected significant increases in hemoglobin saturation in the ischemic paw as early as 3 days after femoral artery ligation (P < 0.01), and significant increases in distal blood flow were first detected with OCT 14 days postsurgery (P < 0.01). Intravital OCT images of the adductor muscle vasculature revealed corkscrew collateral vessels characteristic of the arteriogenic response to HLI. The hyperspectral imaging and OCT data significantly correlated with each other and with laser Doppler perfusion imaging (LDPI) and tissue oxygenation sensor data (P < 0.01). However, OCT measurements acquired depth-resolved information and revealed more sustained flow deficits following surgery that may be masked by more superficial measurements (LDPI, hyperspectral imaging). Therefore, intravital OCT may provide a robust biomarker for the late stages of ischemic limb recovery. This work validates non-invasive acquisition of both functional and morphological data with hyperspectral imaging and OCT. Together, these techniques provide cardiovascular researchers an unprecedented and comprehensive view of the temporal dynamics of HLI recovery in living mice.
Collapse
Affiliation(s)
- Kristin M Poole
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
9
|
Qin J, Reif R, Zhi Z, Dziennis S, Wang R. Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system. BIOMEDICAL OPTICS EXPRESS 2012; 3:455-66. [PMID: 22435094 PMCID: PMC3296534 DOI: 10.1364/boe.3.000455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/14/2012] [Accepted: 01/16/2012] [Indexed: 05/03/2023]
Abstract
A multi-functional imaging system capable of determining relative changes in blood flow, hemoglobin concentration, and morphological features of the blood vasculature is demonstrated. The system combines two non-invasive imaging techniques, a dual-wavelength laser speckle contrast imaging (2-LSI) and an optical microangiography (OMAG) system. 2-LSI is used to monitor the changes in the dynamic blood flow and the changes in the concentration of oxygenated (HbO), deoxygenated (Hb) and total hemoglobin (HbT). The OMAG system is used to acquire high resolution images of the functional blood vessel network. The vessel area density (VAD) is used to quantify the blood vessel network morphology, specifically the capillary recruitment. The proposed multi-functional system is employed to assess the blood perfusion status from a mouse pinna before and immediately after a burn injury. To our knowledge, this is the first non-invasive, non-contact and multifunctional imaging modality that can simultaneously measure variations of several blood perfusion parameters.
Collapse
Affiliation(s)
- Jia Qin
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, Washington 98195, USA
- These authors contributed equally to this work
| | - Roberto Reif
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, Washington 98195, USA
- These authors contributed equally to this work
| | - Zhongwei Zhi
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, Washington 98195, USA
| | - Suzan Dziennis
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, Washington 98195, USA
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, Washington 98195, USA
| |
Collapse
|
10
|
Jia Y, Li P, Dziennis S, Wang RK. Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography. PLoS One 2011; 6:e26802. [PMID: 22046363 PMCID: PMC3201975 DOI: 10.1371/journal.pone.0026802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/04/2011] [Indexed: 12/18/2022] Open
Abstract
Oxygen availability is regarded as a critical factor to metabolically regulate systemic blood flow. There is a debate as to how peripheral blood flow (PBF) is affected and modulated during hypoxia and hyperoxia; however in vivo evaluating of functional PBF under oxygen-related physiological perturbation remains challenging. Microscopic observation, the current frequently used imaging modality for PBF characterization often involves the use of exogenous contrast agents, which would inevitably perturb the intrinsic physiologic responses of microcirculation being investigated. In this paper, optical micro-angiography (OMAG) was employed that uses intrinsic optical scattering signals backscattered from blood flows for imaging PBF in skeletal muscle challenged by the alteration of oxygen concentration. By utilizing optical reflectance signals, we demonstrated that OMAG is able to show the response of hemodynamic activities upon acute hypoxia and hyperoxia, including the modulation of macrovascular caliber, microvascular density, and flux regulation within different sized vessels within skeletal muscle in mice in vivo. Our results suggest that OMAG is a promising tool for in vivo monitoring of functional macro- or micro-vascular responses within peripheral vascular beds.
Collapse
Affiliation(s)
- Yali Jia
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Peng Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Suzan Dziennis
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|