1
|
Banna HU, Slayo M, Armitage JA, Del Rosal B, Vocale L, Spencer SJ. Imaging the eye as a window to brain health: frontier approaches and future directions. J Neuroinflammation 2024; 21:309. [PMID: 39614308 PMCID: PMC11606158 DOI: 10.1186/s12974-024-03304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
Recent years have seen significant advances in diagnostic testing of central nervous system (CNS) function and disease. However, there remain challenges in developing a comprehensive suite of non- or minimally invasive assays of neural health and disease progression. Due to the direct connection with the CNS, structural changes in the neural retina, retinal vasculature and morphological changes in retinal immune cells can occur in parallel with disease conditions in the brain. The retina can also, uniquely, be assessed directly and non-invasively. For these reasons, the retina may prove to be an important "window" for revealing and understanding brain disease. In this review, we discuss the gross anatomy of the eye, focusing on the sensory and non-sensory cells of the retina, especially microglia, that lend themselves to diagnosing brain disease by imaging the retina. We include a history of ocular imaging to describe the different imaging approaches undertaken in the past and outline current and emerging technologies including retinal autofluorescence imaging, Raman spectroscopy, and artificial intelligence image analysis. These new technologies show promising potential for retinal imaging to be used as a tool for the diagnosis of brain disorders such as Alzheimer's disease and others and the assessment of treatment success.
Collapse
Affiliation(s)
- Hasan U Banna
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - James A Armitage
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | | | - Loretta Vocale
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Boodram V, Lim H. Differential protection by nicotinamide in a mouse model of glaucoma DBA/2J revealed by second-harmonic generation microscopy. PLoS One 2024; 19:e0309400. [PMID: 39255314 PMCID: PMC11386466 DOI: 10.1371/journal.pone.0309400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Glaucoma is a blinding disease where the retinal ganglion cells and their axons degenerate. Degradation of axonal microtubules is thought to play a critical role in the pathogenesis, but the mechanism is unknown. Here we investigate whether microtubule disruption in glaucoma can be alleviated by metabolic rescue. The integrity of axonal microtubules and the morphology of the retinal nerve fibers were evaluated by second-harmonic generation microscopy in a mouse model of glaucoma, DBA/2J, which received a dietary supplement of nicotinamide (NAM) for reducing metabolic stress. It was compared with control DBA/2J, which did not receive NAM, and non-glaucomatous DBA/2J-Gpnmb+. We found that the morphology of the retinal nerve fibers, but not axonal microtubules, are significantly protected by NAM. The decoupling is analogous to microtubule deficit, a glaucoma pathology in which axonal microtubules exhibit rapid degradation compared to the morphology of the retinal nerve fibers. Understanding microtubule deficit could provide insights into the divergent responses to NAM. From co-registered images of second-harmonic generation and immunofluorescence, it was determined that microtubule deficit was not due to a shortage of tubulins. Furthermore, microtubule deficit colocalized with the sectors in which the retinal ganglion cells were disconnected from the brain, suggesting that microtubule disruption is associated with axonal transport deficit in glaucoma. Together, our data suggests significant role axonal microtubules play in glaucomatous degeneration, offering a new opportunity for neuroprotection.
Collapse
Affiliation(s)
- Vinessia Boodram
- Department of Physics and Astronomy, Hunter College of the City University of New York, New York, NY, United States of America
| | - Hyungsik Lim
- Department of Physics and Astronomy, Hunter College of the City University of New York, New York, NY, United States of America
| |
Collapse
|
3
|
Boodram V, Lim H. Protective effects of nicotinamide in a mouse model of glaucoma DBA/2 studied by second-harmonic generation microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583928. [PMID: 38496666 PMCID: PMC10942456 DOI: 10.1101/2024.03.07.583928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Glaucoma is a blinding disease where the retinal ganglion cells and their axons degenerate. Degradation of axonal microtubules is thought to play a critical role in the pathogenesis, but the mechanism is unknown. Here we investigate whether microtubule disruption in glaucoma can be alleviated by metabolic rescue. The morphology and integrity of microtubules of the retinal nerve fibers were evaluated by second-harmonic generation microscopy in a mouse model of glaucoma, DBA/2, which received a dietary supplement of nicotinamide to reduce metabolic stress. It was compared with control DBA/2, which did not receive nicotinamide, and non-glaucomatous DBA/2-Gpnmb+. We found that morphology but not microtubules are significantly protected by nicotinamide. Furthermore, from co-registered images of second-harmonic generation and immunofluorescence, it was determined that microtubule deficit was not due to a shortage of tubulins. Microtubule deficit colocalized with the sectors in which the retinal ganglion cells were disconnected from the brain, indicating that microtubule disruption is associated with axonal transport deficit in glaucoma. Together, our data suggests significant role axonal microtubules play in glaucomatous degeneration, offering a new opportunity for neuroprotection.
Collapse
Affiliation(s)
- Vinessia Boodram
- Department of Physics and Astronomy, Hunter College of the City University of New York, New York, NY 10065
| | - Hyungsik Lim
- Department of Physics and Astronomy, Hunter College of the City University of New York, New York, NY 10065
- School of Optometry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
4
|
Rishøj L, Hernández IC, Ramachandran S, Jowett N. Multiphoton microscopy for label-free multicolor imaging of peripheral nerve. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210327GRR. [PMID: 35568795 PMCID: PMC9109936 DOI: 10.1117/1.jbo.27.5.056501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/13/2022] [Indexed: 06/02/2023]
Abstract
SIGNIFICANCE Means for quantitation of myelinated fibers in peripheral nerve may guide diagnosis and clinical decision making in management of peripheral nerve disorders. Multiphoton microscopy techniques such as the third-harmonic generation enable label-free in vivo imaging of peripheral nerves. AIM Develop a multiphoton microscope based on a custom high-power infrared fiber laser for label-free imaging of peripheral nerve. APPROACH A cost-effective multiphoton microscope employing a single fiber laser source at 1300 nm was designed and used for stain-free multicolor imaging of murine and human peripheral nerve. RESULTS Second-harmonic generation signal from collagen centered about 650-nm delineated neural connective tissue, whereas third-harmonic general signal centered about 433-nm delineated myelin and other lipids. In sciatic nerve from transgenic reporter mice expressing yellow fluorescent protein within peripheral neurons, three-photon-excitation with emission peak at 527-nm delineated axoplasm. The signal obtained from unlabeled axially sectioned samples was adequate for segmentation of myelinated fibers using commercial image processing software. In unlabeled whole mount specimens, imaging depths over 100-μm were achieved. CONCLUSIONS A multiphoton microscope powered by a fiber laser enables stain-free histomorphometry of mammalian peripheral nerve. The simplicity of the microscope design carries potential for clinical translation to inform decision making in peripheral nerve disorders.
Collapse
Affiliation(s)
- Lars Rishøj
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Technical University of Denmark, DTU Fotonik, Kgs. Lyngby, Denmark
| | - Iván Coto Hernández
- Mass Eye and Ear and Harvard Medical School, Surgical Photonics and Engineering Laboratory, Boston, United States
| | - Siddharth Ramachandran
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Nate Jowett
- Mass Eye and Ear and Harvard Medical School, Surgical Photonics and Engineering Laboratory, Boston, United States
| |
Collapse
|
5
|
Lim H. Harmonic Generation Microscopy 2.0: New Tricks Empowering Intravital Imaging for Neuroscience. Front Mol Biosci 2019; 6:99. [PMID: 31649934 PMCID: PMC6794408 DOI: 10.3389/fmolb.2019.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Optical harmonic generation, e.g., second- (SHG) and third-harmonic generation (THG), provides intrinsic contrasts for three-dimensional intravital microscopy. Contrary to two-photon excited fluorescence (TPEF), however, they have found relatively specialized applications, such as imaging collagenous and non-specific tissues, respectively. Here we review recent advances that broaden the capacity of SHG and THG for imaging the central nervous system in particular. The fundamental contrast mechanisms are reviewed as they encode novel information including molecular origin, spectroscopy, functional probes, and image analysis, which lay foundations for promising future applications in neuroscience.
Collapse
Affiliation(s)
- Hyungsik Lim
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
6
|
Sharoukhov D, Bucinca-Cupallari F, Lim H. Microtubule Imaging Reveals Cytoskeletal Deficit Predisposing the Retinal Ganglion Cell Axons to Atrophy in DBA/2J. Invest Ophthalmol Vis Sci 2019; 59:5292-5300. [PMID: 30383181 PMCID: PMC6218151 DOI: 10.1167/iovs.18-24150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Glaucoma is characterized by progressive loss of the retinal ganglion cells (RGCs) and their axons. Here we test an outstanding notion that microtubules (MTs) within RGC axons degrade before the loss of morphology (“MT hypothesis”). Methods The integrity of axonal MTs was interrogated by intrinsic second-harmonic generation (SHG) microscopy. Using DBA/2J mice as a model of glaucoma and DBA/2J-Gpnmb+ as a nonglaucomatous control, the relationship between MT disruption and morphology was quantitatively examined as a function of age and sex in the fresh retinal wholemounts. Results The mean SHG density (i.e., the mean SHG intensity per thickness) was significantly lower in DBA/2J than in DBA/2J-Gpnmb+ and also depended on sex and age. The loss of SHG density, indicating MT disruption within intact RGC axons, occurred in a sectorial manner near the loss of the retinal nerve fiber bundles. The decay rate of SHG density was approximately 97% higher than that of thickness. Conclusions Collectively, the results indicate that the breakdown of MTs is pathology of glaucoma and likely a precursor of morphological atrophy. Based on a new finding that SHG density is highly variable and spatially discrete, a new model of RGC degeneration is proposed. This study validates SHG retinal imaging for elucidating the role and mechanism of MT deficiency in the course of glaucoma pathogenesis.
Collapse
Affiliation(s)
- Denis Sharoukhov
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, New York, New York, United States
| | - Festa Bucinca-Cupallari
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, New York, New York, United States
| | - Hyungsik Lim
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, New York, New York, United States
| |
Collapse
|
7
|
Wilson GN, Smith MA, Inman DM, Dengler-Crish CM, Crish SD. Early Cytoskeletal Protein Modifications Precede Overt Structural Degeneration in the DBA/2J Mouse Model of Glaucoma. Front Neurosci 2016; 10:494. [PMID: 27857681 PMCID: PMC5093131 DOI: 10.3389/fnins.2016.00494] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Axonal transport deficits precede structural loss in glaucoma and other neurodegenerations. Impairments in structural support, including modified cytoskeletal proteins, and microtubule-destabilizing elements, could be initiating factors in glaucoma pathogenesis. We investigated the time course of changes in protein levels and post-translational modifications in the DBA/2J mouse model of glaucoma. Using anterograde tract tracing of the retinal projection, we assessed major cytoskeletal and transported elements as a function of transport integrity in different stages of pathological progression. Using capillary-based electrophoresis, single- and multiplex immunosorbent assays, and immunofluorescence, we quantified hyperphosphorylated neurofilament-heavy chain, phosphorylated tau (ptau), calpain-mediated spectrin breakdown product (145/150 kDa), β–tubulin, and amyloid-β42 proteins based on age and transport outcome to the superior colliculus (SC; the main retinal target in mice). Phosphorylated neurofilament-heavy chain (pNF-H) was elevated within the optic nerve (ON) and SC of 8–10 month-old DBA/2J mice, but was not evident in the retina until 12–15 months, suggesting that cytoskeletal modifications first appear in the distal retinal projection. As expected, higher pNF-H levels in the SC and retina were correlated with axonal transport deficits. Elevations in hyperphosphorylated tau (ptau) occurred in ON and SC between 3 and 8 month of age while retinal ptau accumulations occurred at 12–15 months in DBA/2J mice. In vitro co-immunoprecipitation experiments suggested increased affinity of ptau for the retrograde motor complex protein dynactin. We observed a transport-related decrease of β-tubulin in ON of 10–12 month-old DBA/2J mice, suggesting destabilized microtubule array. Elevations in calpain-mediated spectrin breakdown product were seen in ON and SC at the earliest age examined, well before axonal transport loss is evident. Finally, transport-independent elevations of amyloid-β42, unlike pNF-H or ptau, occurred first in the retina of DBA/2J mice, and then progressed to SC. These data demonstrate distal-to-proximal progression of cytoskeletal modifications in the progression of glaucoma, with many of these changes occurring prior to complete loss of functional transport and axon degeneration. The earliest changes, such as elevated spectrin breakdown and amyloid-β levels, may make retinal ganglion cells susceptible to future stressors. As such, targeting modification of the axonal cytoskeleton in glaucoma may provide unique opportunities to slow disease progression.
Collapse
Affiliation(s)
- Gina N Wilson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA; School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA; Integrated Pharmaceutical Medicine Program, Northeast Ohio Medical UniversityRootstown, OH, USA
| | - Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University Rootstown, OH, USA
| | | | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University Rootstown, OH, USA
| |
Collapse
|
8
|
Fortune B, Cull G, Reynaud J, Wang L, Burgoyne CF. Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2015; 56:3936-44. [PMID: 26087359 DOI: 10.1167/iovs.15-16548] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To relate changes in retinal function and retinal nerve fiber layer (RNFL) retardance to loss of RNFL thickness and optic nerve axon counts in a nonhuman primate (NHP) model of experimental glaucoma (EG). METHODS Bilateral longitudinal measurements of peripapillary RNFL thickness (spectral-domain optical coherence tomography, SDOCT; Spectralis), retardance (GDxVCC), and multifocal electroretinography (mfERG; VERIS) were performed in 39 NHP at baseline (BL; median, 5 recordings; range, 3-10) and weekly after induction of unilateral EG by laser photocoagulation of the trabecular meshwork. Multifocal ERG responses were high-pass filtered (>75 Hz) to measure high- and low-frequency component (HFC and LFC) amplitudes, including LFC features N1, P1, and N2. High-frequency component amplitudes are known to specifically reflect retinal ganglion cell (RGC) function. Complete (100%) axon counts of orbital optic nerves were obtained in 31/39 NHP. RESULTS Postlaser follow-up was 10.4 ± 7.9 months; mean and peak IOP were 18 ± 5 and 41 ± 11 mm Hg in EG eyes, 11 ± 2 and 18 ± 6 mm Hg in control (CTL) eyes. At the final available time point, RNFL thickness had decreased from BL by 14 ± 14%, retardance by 20 ± 11%, and the mfERG HFC by 30 ± 17% (P < 0.0001 each). Longitudinal changes in retardance and HFC were linearly related to RNFL thickness change (R2 = 0.51, P < 0.0001 and R2 = 0.22, P = 0.002, respectively); LFC N2 was weakly related but N1 or P2 (N1: R2 = 0.07, P = 0.11; P1: R2 = 0.04, P = 0.24; N2: R2 = 0.13, P = 0.02). At zero change from BL for RNFL thickness (Y-intercept), retardance was reduced by 11% (95% confidence interval [CI]: -15.3% to -6.8%) and HFC by 21.5% (95% CI: -28.7% to -14.3%). Relative loss of RNFL thickness, retardance, and HFC (EG:CTL) were each related to axon loss (R2 = 0.66, P < 0.0001; R2 = 0.42, P < 0.0001; R2 = 0.42, P < 0.0001, respectively), but only retardance and HFC were significantly reduced at zero relative axon loss (Y-intercept; retardance: -9.4%, 95% CI: -15.5% to -3.4%; HFC: -10.9%, 95% CI: -18.6% to -3.2%; RNFL thickness: +1.8%, 95% CI: -4.9% to +5.4%). CONCLUSIONS Retinal nerve fiber layer retardance and RGC function exhibit progressive loss from baseline before any loss of RNFL thickness or orbital optic nerve axons occurs in NHP EG. These in vivo measures might serve as potential biomarkers of early-stage glaucomatous damage preceding axon loss and RGC death.
Collapse
|