1
|
Combined Non-Invasive Optical Oximeter and Flowmeter with Basic Metrological Equipment. PHOTONICS 2022. [DOI: 10.3390/photonics9060392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Optical non-invasive diagnostic methods and equipment are used today in many medical disciplines. However, there is still no generally accepted and unifying engineering theory of such systems. Today, they are developed most empirically and do not always have the desired effectiveness in clinics. Among reasons for their insufficient clinical efficiency, we can claim the limited set of measured parameters, the poorly substantiated technical design parameters, and the lack of metrological certification, which all together lead to large uncertainties and inaccuracies in diagnostic data. The purpose of this study is to develop a new instrument for non-invasive optical oximetry by means of substantiating and creating amore informative tissue oximeter with an enhanced number of measured parameters and equipped with the basic metrological tools—imitational measures. The combination of two related optical diagnostic techniques—a tissue oximetry, including a cerebral one, and a fluctuation flowmetry on a single hardware platform—was used. Theoretical modeling of light transport in tissues was applied to substantiate the main technical design parameters of the device. For each measuring channel, relevant imitation measures for metrological verification and adjustment have been proposed. Some common principles for the operation of such equipment are described in the article, as well.
Collapse
|
2
|
Maly S, Janousek L, Bortel R, Sebek J, Hospodka J, Skapa J, Fronek J. NIRS-based monitoring of kidney graft perfusion. PLoS One 2020; 15:e0243154. [PMID: 33264371 PMCID: PMC7710057 DOI: 10.1371/journal.pone.0243154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction Acute early vascular complications are rare, but serious complications after kidney transplantation. They often result in graft loss. For this reason, shortening the diagnostic process is crucial. Currently, it is standard procedure to monitor renal graft perfusion using Doppler ultrasound (DU). With respect to acute vascular complications, the main disadvantage of this type of examination is its periodicity. It would be of great benefit if graft blood perfusion could be monitored continuously during the early postoperative period. It appears evident that a well-designed near infrared spectroscopy (NIRS) monitoring system could prove very useful during the early post-transplantation period. Its role in the immediate diagnosis of vascular complications could result in a significant increase in graft salvage, thus improving the patient’s overall quality of life and lowering morbidity and mortality for renal graft recipients. The aim of this study was to design, construct and test such a monitoring system. Materials and methods We designed a rough NIRS-based system prototype and prepared a two-stage laboratory experiment based on a laboratory pig model. In the first stage, a total of 10 animals were used to verify and optimize the technical aspects and functionality of the prototype sensor by testing it on the animal kidneys in-vivo. As a result of these tests, a more specific prototype was designed. During the second stage, we prepared a unique laboratory model of a pig kidney autotransplantation and tested the system for long-term functionality on a group of 20 animals. Overall sensitivity and specificity were calculated, and a final prototype was prepared and completed with its own analytic software and chassis. Results We designed and constructed a NIRS-based system for kidney graft perfusion monitoring. The measurement system provided reliable performance and 100% sensitivity when detecting acute diminished blood perfusion of the transplanted kidneys in laboratory conditions. Conclusion The system appears to be a useful tool for diagnosing diminished blood perfusion of kidney transplants during the early postoperative period. However, further testing is still required. We believe that applying our method in current human transplantation medicine is feasible, and we are confident that our prototype is ready for human testing.
Collapse
Affiliation(s)
- Stepan Maly
- Transplant Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Libor Janousek
- Transplant Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Radoslav Bortel
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Sebek
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jiri Hospodka
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jiri Skapa
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jiri Fronek
- Transplant Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Anatomy, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
3
|
Cardinali M, Magnin M, Bonnet-Garin JM, Paquet C, Ayoub JY, Allaouchiche B, Junot S. A new photoplethysmographic device for continuous assessment of urethral mucosa perfusion: evaluation in a porcine model. J Clin Monit Comput 2020; 35:585-598. [PMID: 32361961 DOI: 10.1007/s10877-020-00515-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/27/2020] [Indexed: 01/25/2023]
Abstract
This study proposes to evaluate an innovative device consisting of an indwelling urinary catheter equipped with a photoplethysmography (PPG) sensor in contact with the urethral mucosa that provides a continuous index called urethral perfusion index (uPI). The goal of this study was to determine if the uPI could bring out tissue perfusion modifications induced by hypotension and vasopressors in a porcine model. Twelve piglets were equipped for heart rate, MAP, cardiac index, stroke volume index, systemic vascular resistance index and uPI monitoring. The animals were exposed to different levels of mean arterial pressure (MAP), ranging from low to high values. Friedman tests with a posteriori multiple comparison were performed and a generalized linear mixed model (GLMM) was used to assess the relationship between uPI and MAP. Urethral Perfusion Index and other haemodynamic parameters varied significantly at the different time-points of interest. There was a positive correlation between MAP and uPI below a specific MAP value, called dissociation threshold (DT). Above this threshold, uPI and MAP were negatively correlated. This relationship, assessed with the GLMM, yielded a significant positive fixed effect coefficient (+ 0.2, P < 0.00001) below the DT and a significant negative fixed effect (- 0.14, P < 0.00001) above DT. In an experimental setting, the PPG device and its index uPI permitted the detection of urethral mucosa perfusion alterations associated with hypotension or excessive doses of vasopressors. Further studies are needed to evaluate this device in a clinical context.
Collapse
Affiliation(s)
- Martina Cardinali
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Mathieu Magnin
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Jeanne-Marie Bonnet-Garin
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Christian Paquet
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Jean-Yves Ayoub
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France
| | - Bernard Allaouchiche
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Réanimation Médicale, Université Claude Bernard Lyon 1, Unité APCSe, 5 place d'Arsonval, 69437, Lyon, Cedex 03, France
| | - Stephane Junot
- VetAgro Sup, Université de Lyon, Unité APCSe, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France.
| |
Collapse
|
4
|
Robinson MB, Wisniowiecki AM, Butcher RJ, Wilson MA, Nance Ericson M, Cote GL. In vivo performance of a visible wavelength optical sensor for monitoring intestinal perfusion and oxygenation. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-12. [PMID: 29777581 PMCID: PMC5981030 DOI: 10.1117/1.jbo.23.5.055004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Traumatic injury resulting in hemorrhage is a prevalent cause of death worldwide. The current standard of care for trauma patients is to restore hemostasis by controlling bleeding and administering intravenous volume resuscitation. Adequate resuscitation to restore tissue blood flow and oxygenation is critical within the first hours following admission to assess severity and avoid complications. However, current clinical methods for guiding resuscitation are not sensitive or specific enough to adequately understand the patient condition. To better address the shortcomings of the current methods, an approach to monitor intestinal perfusion and oxygenation using a multiwavelength (470, 560, and 630 nm) optical sensor has been developed based on photoplethysmography and reflectance spectroscopy. Specifically, two sensors were developed using three wavelengths to measure relative changes in the small intestine. Using vessel occlusion, systemic changes in oxygenation input, and induction of hemorrhagic shock, the capabilities and sensitivity of the sensor were explored in vivo. Pulsatile and nonpulsatile components of the red, blue, and green wavelength signals were analyzed for all three protocols (occlusion, systemic oxygenation changes, and shock) and were shown to differentiate perfusion and oxygenation changes in the jejunum. The blue and green signals produced better correlation to perfusion changes during occlusion and shock, while the red and blue signals, using a new correlation algorithm, produced better data for assessing changes in oxygenation induced both systemically and locally during shock. The conventional modulation ratio method was found to be an ineffective measure of oxygenation in the intestine due to noise and an algorithm was developed based on the Pearson correlation coefficient. The method utilized the difference in phase between two different wavelength signals to assess oxygen content. A combination of measures from the three wavelengths provided verification of oxygenation and perfusion states, and showed promise for the development of a clinical monitor.
Collapse
Affiliation(s)
- Mitchell B. Robinson
- Texas A&M University, Optical Biosensing Laboratory, Department of Biomedical Engineering, College Station, Texas, United States
| | - Anna M. Wisniowiecki
- Texas A&M University, Optical Biosensing Laboratory, Department of Biomedical Engineering, College Station, Texas, United States
| | - Ryan J. Butcher
- Texas A&M University, Optical Biosensing Laboratory, Department of Biomedical Engineering, College Station, Texas, United States
| | - Mark A. Wilson
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Department of Surgery, Pittsburgh, Pennsylvania, United States
| | | | - Gerard L. Cote
- Texas A&M University, Optical Biosensing Laboratory, Department of Biomedical Engineering, College Station, Texas, United States
- TEES Center for Remote Healthcare Technologies and Systems, College Station, Texas, United States
| |
Collapse
|
5
|
Robinson MB, Butcher RJ, Wilson MA, Ericson MN, Coté GL. In-silico and in-vitro investigation of a photonic monitor for intestinal perfusion and oxygenation. BIOMEDICAL OPTICS EXPRESS 2017; 8:3714-3734. [PMID: 28856045 PMCID: PMC5560836 DOI: 10.1364/boe.8.003714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 05/14/2023]
Abstract
The quantification of visceral organ oxygenation after trauma-related systemic hypovolemia and shock is critical to enable effective resuscitation. In this work, a photoplethysmography-based (PPG) sensor was specifically designed for probing the perfusion and oxygenation condition of intestinal tissue with the ultimate goal to monitor patients post trauma to guide resuscitation. Through Monte Carlo modeling, suitable optofluidic phantoms were determined, the wavelength and separation distance for the sensor was optimized, and sensor performance for the quantification of tissue perfusion and oxygenation was tested on the in-vitro phantom. In particular, the Monte Carlo simulated both a standard block three-layer model and a more realistic model including villi. Measurements were collected on the designed three layer optofluidic phantom and the results taken with the small form factor PPG device showed a marked improvement when using shorter visible wavelengths over the more conventional longer visible wavelengths. Overall, in this work a Monte Carlo model was developed, an optofluidic phantom was built, and a small form factor PPG sensor was developed and characterized using the phantom for perfusion and oxygenation over the visible wavelength range. The results show promise that this small form factor PPG sensor could be used as a future guide to shock-related resuscitation.
Collapse
Affiliation(s)
- Mitchell B Robinson
- Texas A&M University, Optical Biosensing Lab, Biomedical Engineering, 5045 Emerging Technologies Building 3120 TAMU, College Station 77843, USA
| | - Ryan J Butcher
- Texas A&M University, Optical Biosensing Lab, Biomedical Engineering, 5045 Emerging Technologies Building 3120 TAMU, College Station 77843, USA
| | - Mark A Wilson
- University of Pittsburgh, Department of Surgery, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA
- VA Pittsburgh Healthcare System, University Drive C-112, Pittsburgh, Pennsylvania 15240, USA
| | | | - Gerard L Coté
- Texas A&M University, Optical Biosensing Lab, Biomedical Engineering, 5045 Emerging Technologies Building 3120 TAMU, College Station 77843, USA
- TEES Center for Remote Health Technologies and Systems, TEES Headquarters 3470 TAMU, College Station, 77843, USA
| |
Collapse
|
6
|
Yamakoshi Y, Matsumura K, Yamakoshi T, Lee J, Rolfe P, Kato Y, Shimizu K, Yamakoshi KI. Side-scattered finger-photoplethysmography: experimental investigations toward practical noninvasive measurement of blood glucose. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:67001. [PMID: 28636064 DOI: 10.1117/1.jbo.22.6.067001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/31/2017] [Indexed: 03/11/2025]
Abstract
The aim of this study was to discover a simple/convenient geometrical arrangement of radiation sources and detector to acquire finger-photoplethysmograms (PPGs) with wavelength regions of blood glucose (BGL) absorption, toward practical noninvasive BGL measurement. First, we compared PPGs with three wavelengths: 808 nm (without water absorption), 1160 nm (with weak water absorption), and 1600 nm (with nearly peak BGL absorption and strong water absorption), while the source-detector spacing was successively increased circumferentially around a fingertip. In 10 healthy subjects, we observed clear cardiac-related pulsatile components of PPG signals at 808 and 1160 nm in any incident positions with more than 15 dB of signal-to-noise ratio ( S / N ), but reliable PPG detections at 1600 nm with more than 10 dB of S / N was only possible when the source-detector distance was less than 3 mm around the fingertip circumference. Second, with this arrangement, an experiment was performed using six wavelengths to cover glucose absorption bands (from 1550 to 1749 nm), obtaining pulsatile PPG signals with more or less 15 dB of S / N . Through the present experiments, this orthogonal arrangement of the source and detector to detect forward- and side-scattered radiation through the tissue is appropriate for PPG measurements with wavelength regions where there is potential for BGL measurement.
Collapse
Affiliation(s)
- Yasuhiro Yamakoshi
- Hokkaido University, Graduate School of Information Science and Technology, Division of Bioengineering and Bioinformatics, Sapporo, Hokkaido, Japan
| | - Kenta Matsumura
- Hokkaido University, Graduate School of Information Science and Technology, Division of Bioengineering and Bioinformatics, Sapporo, Hokkaido, Japan
| | - Takehiro Yamakoshi
- Fukuoka Institute of Technology, Information and Systems Engineering, Graduate School of Engineering, Fukuoka, Japan
| | - Jihyoung Lee
- Fukuoka Institute of Technology, Information and Systems Engineering, Graduate School of Engineering, Fukuoka, Japan
| | - Peter Rolfe
- Harbin Institute of Technology, Department of Automatic Measurement and Control, Harbin, China
| | - Yuji Kato
- Hokkaido University, Graduate School of Information Science and Technology, Division of Bioengineering and Bioinformatics, Sapporo, Hokkaido, Japan
| | - Koichi Shimizu
- Hokkaido University, Graduate School of Information Science and Technology, Division of Bioengineering and Bioinformatics, Sapporo, Hokkaido, Japan
| | | |
Collapse
|