1
|
Pachyn E, Aumiller M, Freymüller C, Linek M, Volgger V, Buchner A, Rühm A, Sroka R. Investigation on the influence of the skin tone on hyperspectral imaging for free flap surgery. Sci Rep 2024; 14:13979. [PMID: 38886457 PMCID: PMC11183063 DOI: 10.1038/s41598-024-64549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperspectral imaging (HSI) is a new emerging modality useful for the noncontact assessment of free flap perfusion. This measurement technique relies on the optical properties within the tissue. Since the optical properties of hemoglobin (Hb) and melanin overlap, the results of the perfusion assessment and other tissue-specific parameters are likely to be distorted by the melanin, especially at higher melanin concentrations. Many spectroscopic devices have been shown to struggle with a melanin related bias, which results in a clinical need to improve non-invasive perfusion assessment, especially for a more pigmented population. This study investigated the influence of skin tones on tissue indices measurements using HSI. In addition, other factors that might affect HSI, such as age, body mass index (BMI), sex or smoking habits, were also considered. Therefore, a prospective feasibility study was conducted, including 101 volunteers from whom tissue indices measurements were performed on 16 different body sites. Skin tone classification was performed using the Fitzpatrick skin type classification questionnaire, and the individual typology angle (ITA) acquired from the RGB images was calculated simultaneously with the measurements. Tissue indices provided by the used HSI-device were correlated to the possible influencing factors. The results show that a dark skin tone and, therefore, higher levels of pigmentation influence the HSI-derived tissue indices. In addition, possible physiological factors influencing the HSI-measurements were found. In conclusion, the HSI-based tissue indices can be used for perfusion assessment for people with lighter skin tone levels but show limitations in people with darker skin tones. Furthermore, it could be used for a more individual perfusion assessment if different physiological influencing factors are respected.
Collapse
Affiliation(s)
- Ester Pachyn
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany.
| | - Maximilian Aumiller
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christian Freymüller
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Matthäus Linek
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
| | - Veronika Volgger
- Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Adrian Rühm
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ronald Sroka
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
2
|
Wang Y, Kang X, Zhang Y, Shi Z, Ren H, Wang Q, Chen M, Zhang Y. Wavelength and frequency optimization in spatial frequency domain imaging for two-layer tissue. BIOMEDICAL OPTICS EXPRESS 2022; 13:3224-3242. [PMID: 35781948 PMCID: PMC9208585 DOI: 10.1364/boe.455386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Spatial frequency domain imaging is a non-contact, wide-field, fast-diffusion optical imaging technique, which in principle uses steady-state spatially modulated light to irradiate biological tissue, reconstruct two-dimensional or three-dimensional tissue optical characteristic map through optical transmission model, and further quantify the spatial distribution of tissue physiological parameters by multispectral imaging technique. The selection of light source wavelength and light field spatial modulation frequency is directly related to the accuracy of tissue optical properties and tissue physiological parameters extraction. For improvement of the measurement accuracy of optical properties and physiological parameters in the two-layer tissue, a multispectral spatial frequency domain imaging system is built based on liquid crystal tunable filter, and a data mapping table of spatially resolved diffuse reflectance and optical properties of two-layer tissue is established based on scaling Monte Carlo method. Combined with the dispersion effect and window effect of light-tissue interaction, the study applies numerical simulation to optimize the wavelength in the 650-850 nm range with spectral resolution of 10 nm. In order to minimize the uncertainty of the optical properties, Cramér-Rao bound is used to optimize the optical field spatial modulation frequency by transmitting the uncertainty of optical properties. The results showed that in order to realize the detection of melanin, oxyhemoglobin, deoxyhemoglobin, water and other physiological parameters in two-layer tissue, the best wavelength combination was determined as 720, 730, 760 and 810 nm according to the condition number. The findings of the Cramér-Rao bound analysis reveal that the uncertainty of optical characteristics for the frequency combinations [0, 0.3] mm-1, [0, 0.2] mm-1, and [0, 0.1] mm-1 increases successively. Under the optimal combination of wavelength and frequency, the diffuse reflectance of the gradient gray-scale plate measured by the multi-spectral spatial frequency domain imaging system is linearly correlated with the calibration value. The error between the measured liquid phantom absorption coefficient and the collimation projection system based on colorimetric dish is less than 2%. The experimental results of human brachial artery occlusion indicate that under the optimal wavelength combination, the change of the second layer absorption coefficient captured by the three frequency combinations decreases in turn, so as the change of oxygen saturation.
Collapse
Affiliation(s)
- Yikun Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
- These authors contributed equally to this work and should be considered co-first authors
| | - Xu Kang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- These authors contributed equally to this work and should be considered co-first authors
| | - Yang Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
| | - Zhiguo Shi
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230009, China
| | - Huiming Ren
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Quanfu Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuanzhi Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
| |
Collapse
|
3
|
Phan T, Rowland R, Ponticorvo A, Le BC, Sharif SA, Kennedy GT, Wilson RH, Durkin AJ. Quantifying the confounding effect of pigmentation on measured skin tissue optical properties: a comparison of colorimetry with spatial frequency domain imaging. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210337GR. [PMID: 35324096 PMCID: PMC8942554 DOI: 10.1117/1.jbo.27.3.036002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/16/2022] [Indexed: 05/20/2023]
Abstract
SIGNIFICANCE Spatial frequency domain imaging (SFDI) is a wide-field diffuse optical imaging technique for separately quantifying tissue reduced scattering (μs ' ) and absorption (μa) coefficients at multiple wavelengths, providing wide potential utility for clinical applications such as burn wound characterization and cancer detection. However, measured μs ' and μa can be confounded by absorption from melanin in patients with highly pigmented skin. This issue arises because epidermal melanin is highly absorbing for visible wavelengths and standard homogeneous light-tissue interaction models do not properly account for this complexity. Tristimulus colorimetry (which quantifies pigmentation using the L * "lightness" parameter) can provide a point of comparison between μa, μs ' , and skin pigmentation. AIM We systematically compare SFDI and colorimetry parameters to quantify confounding effects of pigmentation on measured skin μs ' and μa. We assess the correlation between SFDI and colorimetry parameters as a function of wavelength. APPROACH μs ' and μa from the palm and ventral forearm were measured for 15 healthy subjects with a wide range of skin pigmentation levels (Fitzpatrick types I to VI) using a Reflect RS® (Modulim, Inc., Irvine, California) SFDI instrument (eight wavelengths, 471 to 851 nm). L * was measured using a Chroma Meter CR-400 (Konica Minolta Sensing, Inc., Tokyo). Linear correlation coefficients were calculated between L * and μs ' and between L * and μa at all wavelengths. RESULTS For the ventral forearm, strong linear correlations between measured L * and μs ' values were observed at shorter wavelengths (R > 0.92 at ≤659 nm), where absorption from melanin confounded the measured μs ' . These correlations were weaker for the palm (R < 0.59 at ≤659 nm), which has less melanin than the forearm. Similar relationships were observed between L * and μa. CONCLUSIONS We quantified the effects of epidermal melanin on skin μs ' and μa measured with SFDI. This information may help characterize and correct pigmentation-related inaccuracies in SFDI skin measurements.
Collapse
Affiliation(s)
- Thinh Phan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Rebecca Rowland
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Adrien Ponticorvo
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Binh Cong Le
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Seyed A. Sharif
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Gordon T. Kennedy
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Irvine, California, United States
- University of California, Irvine, Health Policy Research Institute, Irvine, California, United States
| | - Anthony J. Durkin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| |
Collapse
|
4
|
Farkas DL. Biomedical Applications of Translational Optical Imaging: From Molecules to Humans. Molecules 2021; 26:molecules26216651. [PMID: 34771060 PMCID: PMC8587670 DOI: 10.3390/molecules26216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a powerful investigational tool in biomedicine, at all levels of structural organization. Its multitude of features (intensity, wavelength, polarization, interference, coherence, timing, non-linear absorption, and even interactions with itself) able to create contrast, and thus images that detail the makeup and functioning of the living state can and should be combined for maximum effect, especially if one seeks simultaneously high spatiotemporal resolution and discrimination ability within a living organism. The resulting high relevance should be directed towards a better understanding, detection of abnormalities, and ultimately cogent, precise, and effective intervention. The new optical methods and their combinations needed to address modern surgery in the operating room of the future, and major diseases such as cancer and neurodegeneration are reviewed here, with emphasis on our own work and highlighting selected applications focusing on quantitation, early detection, treatment assessment, and clinical relevance, and more generally matching the quality of the optical detection approach to the complexity of the disease. This should provide guidance for future advanced theranostics, emphasizing a tighter coupling-spatially and temporally-between detection, diagnosis, and treatment, in the hope that technologic sophistication such as that of a Mars rover can be translationally deployed in the clinic, for saving and improving lives.
Collapse
Affiliation(s)
- Daniel L. Farkas
- PhotoNanoscopy and Acceleritas Corporations, 13412 Ventura Boulevard, Sherman Oaks, CA 91423, USA; ; Tel.: +1-310-600-7102
- Clinical Photonics Corporation, 8591 Skyline Drive, Los Angeles, CA 90046, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Light- and Melanin Nanoparticle-Induced Cytotoxicity in Metastatic Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13070965. [PMID: 34206894 PMCID: PMC8309021 DOI: 10.3390/pharmaceutics13070965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Melanin nanoparticles are known to be biologically benign to human cells for a wide range of concentrations in a high glucose culture nutrition. Here, we show cytotoxic behavior at high nanoparticle and low glucose concentrations, as well as at low nanoparticle concentration under exposure to (nonionizing) visible radiation. To study these effects in detail, we developed highly monodispersed melanin nanoparticles (both uncoated and glucose-coated). In order to study the effect of significant cellular uptake of these nanoparticles, we employed three cancer cell lines: VM-M3, A375 (derived from melanoma), and HeLa, all known to exhibit strong macrophagic character, i.e., strong nanoparticle uptake through phagocytic ingestion. Our main observations are: (i) metastatic VM-M3 cancer cells massively ingest melanin nanoparticles (mNPs); (ii) the observed ingestion is enhanced by coating mNPs with glucose; (iii) after a certain level of mNP ingestion, the metastatic cancer cells studied here are observed to die—glucose coating appears to slow that process; (iv) cells that accumulate mNPs are much more susceptible to killing by laser illumination than cells that do not accumulate mNPs; and (v) non-metastatic VM-NM1 cancer cells also studied in this work do not ingest the mNPs, and remain unaffected after receiving identical optical energy levels and doses. Results of this study could lead to the development of a therapy for control of metastatic stages of cancer.
Collapse
|
6
|
Applegate MB, Spink SS, Roblyer D. Dual-DMD hyperspectral spatial frequency domain imaging (SFDI) using dispersed broadband illumination with a demonstration of blood stain spectral monitoring. BIOMEDICAL OPTICS EXPRESS 2021; 12:676-688. [PMID: 33520393 PMCID: PMC7818964 DOI: 10.1364/boe.411976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Spatial frequency domain imaging (SFDI) is a widefield diffuse optical measurement technique capable of generating 2D maps of sub-surface absorption and scattering in biological tissue. We developed a new hyperspectral SFDI instrument capable of collecting images at wavelengths from the visible to the near infrared. The system utilizes a custom-built monochromator with a digital micromirror device (DMD) that can dynamically select illumination wavelength bands from a broadband quartz tungsten halogen lamp, and a second DMD to provide spatially modulated sample illumination. The system is capable of imaging 10 wavelength bands in approximately 25 seconds. The spectral resolution can be varied from 12 to 30 nm by tuning the input slit width and the output DMD column width. We compared the optical property extraction accuracy between the new device and a commercial SFDI system and found an average error of 23% in absorption and 6% in scattering. The system was highly stable, with less than 5% variation in absorption and less than 0.2% variation in scattering across all wavelengths over two hours. The system was used to monitor hyperspectral changes in the optical absorption and reduced scattering spectra of blood exposed to air over 24 hours. This served as a general demonstration of the utility of this system, and points to a potential application for blood stain age estimation. We noted significant changes in both absorption and reduced scattering spectra over multiple discrete stages of aging. To our knowledge, these are the first measurement of changes in scattering of blood stains. This hyperspectral SFDI system holds promise for a multitude of applications in quantitative tissue and diffuse sample imaging.
Collapse
Affiliation(s)
- Matthew B. Applegate
- Boston University, Dept. of Biomedical Engineering, Boston, MA 02215, USA
- Authors contributed equally to this work
| | - Samuel S. Spink
- Boston University, Dept. of Biomedical Engineering, Boston, MA 02215, USA
- Authors contributed equally to this work
| | - Darren Roblyer
- Boston University, Dept. of Biomedical Engineering, Boston, MA 02215, USA
| |
Collapse
|
7
|
Janssen L, Mylle S, Van Kelst S, De Smedt J, Diricx B, Kimpe T, Boone M, Verhaeghe E, Brochez L, Garmyn M. Enhanced visualization of blood and pigment in multispectral skin dermoscopy. Skin Res Technol 2020; 26:708-712. [PMID: 32227367 DOI: 10.1111/srt.12859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/29/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Dermoscopy has proven its value in the diagnosis of skin cancer and, therefore, is well established in daily dermatology practice. Up until now, analogue white light dermoscopy is the standard. Multispectral dermoscopy is based on illumination of the skin with narrowband light sources with different wavelengths. Each of these wavelengths is differently absorbed by skin chromophores, such as pigment or (de)oxygenated blood. Multispectral dermoscopy could be a way to enhance the visualization of vasculature and pigment. We illustrate possible additional information by such "skin parameter maps" in some cases of basal cell carcinoma and Bowen's disease. METHODS Using a new digital multispectral dermatoscope, skin images at multiple wavelengths are collected from different types of skin lesions. These particular images together with the knowledge on skin absorption properties, result in so called "skin parameter maps". RESULTS A "pigment contrast map," which shows the relative concentration of primarily pigment, and a "blood contrast map" which shows the relative concentration of primarily blood were created. Especially, the latter is of importance in diagnosing keratinocyte skin cancer hence vascular structures are a characteristic feature, as further illustrated in the study. CONCLUSIONS Skin parameter maps based on multispectral images can give better insight in the inner structures of lesions, especially in lesions with characteristic blood vessels such as Bowen's disease and basal cell carcinoma. Skin parameter maps can be used complementary to regular dermoscopy and could potentially facilitate diagnosing skin lesions.
Collapse
Affiliation(s)
| | - Sofie Mylle
- Department of Dermatology, UZ Gent, Gent, Belgium
| | | | | | | | | | | | | | | | - Marjan Garmyn
- Department of Dermatology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
He Q, Wang R. Hyperspectral imaging enabled by an unmodified smartphone for analyzing skin morphological features and monitoring hemodynamics. BIOMEDICAL OPTICS EXPRESS 2020; 11:895-910. [PMID: 32133229 PMCID: PMC7041456 DOI: 10.1364/boe.378470] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 05/06/2023]
Abstract
We propose a novel method and system that utilizes a popular smartphone to realize hyperspectral imaging for analyzing skin morphological features and monitoring hemodynamics. The imaging system works based on a built-in RGB camera and flashlight on the smartphone. We apply Wiener estimation to transform the acquired RGB-mode images into "pseudo"-hyperspectral images with 16 wavebands, covering a visible range from 470nm to 620nm. The processing method uses weighted subtractions between wavebands to extract absorption information caused by specific chromophores within skin tissue, mainly including hemoglobin and melanin. Based on the extracted absorption information of hemoglobin, we conduct real-time monitoring experiments in the skin to measure heart rate and to observe skin activities during a vascular occlusion event. Compared with expensive hyperspectral imaging systems, the smartphone-based system delivers similar results but with very-high imaging resolution. Besides, it is easy to operate, very cost-effective and has a wider customer base. The use of an unmodified smartphone to realize hyperspectral imaging promises a possibility to bring a hyperspectral analysis of skin out from laboratory and clinical wards to daily life, which may also impact on healthcare in low resource settings and rural areas.
Collapse
Affiliation(s)
- Qinghua He
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
9
|
Ding H, Chen C, Zhao H, Yue Y, Han C. Smartphone based multispectral imager and its potential for point-of-care testing. Analyst 2019; 144:4380-4385. [PMID: 31206108 DOI: 10.1039/c9an00853e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a smartphone based multispectral imager (MSI), a promising tool for point-of-care (POC) testing, which utilizes a bio-inspired MSI chip to capture both the spectral and spatial information of a target simultaneously. As the key component for compact MSI, the proposed MSI chip mimics the structure of an insect compound-eye, wherein each sub-eye responds to a specific spectral band. This could allow a smartphone to be transformed into an MSI device that could acquire a snap-shot spectral image in a single exposure. An orthogonal polarization imaging method is adopted, to boost the capability of the smartphone MSI for chemical analysis. The feasibility and application potential of the proposed device are demonstrated non-invasively for skin lesion and dental plaque analysis. The experimental results are consistent with the physiological expectations, validating the ability of the smartphone MSI for multispectral image acquisition and further analytical determination. The chemical analysis capability, portability and cost-effectiveness of the smartphone MSI make it a promising analytical tool for POC testing, from chemical analysis to in vivo pathological diagnosis.
Collapse
Affiliation(s)
- Hui Ding
- Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an Shaanxi, P.R. China.
| | - Chen Chen
- Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an Shaanxi, P.R. China.
| | - Haicheng Zhao
- Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an Shaanxi, P.R. China.
| | - Ying Yue
- Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an Shaanxi, P.R. China.
| | - Chunyang Han
- Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an Shaanxi, P.R. China.
| |
Collapse
|
10
|
Non-ionizing, laser radiation in Theranostics: The need for dosimetry and the role of Medical Physics. Phys Med 2019; 63:7-18. [DOI: 10.1016/j.ejmp.2019.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023] Open
|
11
|
He X, Li T, Fu X, Jiang X, Gao Y, Rao X. Fast estimation of optical properties of pear using a single snapshot technique combined with a least-squares support vector regression model based on spatial frequency domain imaging. APPLIED OPTICS 2019; 58:4075-4084. [PMID: 31158164 DOI: 10.1364/ao.58.004075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Spatial frequency domain imaging has great potential in agricultural produce quality control due to its advantage of wide-field mapping of absorption (μa) and reduced scattering (μs') parameters. However, it is not widely adopted in real applications due to the large time cost during image acquisition and inversion calculation processes. In this study, a single snapshot technique was used to obtain ac and dc components (Rd_ac, Rd_dc) of diffuse reflectance of turbid media (phantoms and pears). The validation results for the snapshot method indicate that at the spatial frequency of 1000/3 m-1, it achieved the optimal demodulation, by comparison with the results obtained by the commonly used time-domain amplitude demodulation method. Diffusion approximation, artificial neural network, least-squares support vector machine regression (LSSVR), and LSSVR combined with a genetic algorithm (LSSVR+GA) were then used to predict μa and μs' from the obtained Rd_ac, Rd_dc at the fx of 1000/3 m-1. Validation results indicated that the LSSVR method took the least time to calculate μa and μs' with high performance. The proposed imaging system and algorithm were implemented for the inspection of a pear bruise. Results indicated that the bruise, which is not obviously distinguishable in original gray maps, can show obvious contrast in calculated μa and μs' maps, especially in μa maps. Further, the contrast becomes more obvious with the passage of time. In summary, this study developed a low-cost spatial frequency imaging system and matching software that could realize fast detection of optical properties for a pear with the proposed snapshot and LSSVR algorithms.
Collapse
|
12
|
Waterhouse DJ, Fitzpatrick CRM, Pogue BW, O'Connor JPB, Bohndiek SE. A roadmap for the clinical implementation of optical-imaging biomarkers. Nat Biomed Eng 2019; 3:339-353. [PMID: 31036890 DOI: 10.1038/s41551-019-0392-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Clinical workflows for the non-invasive detection and characterization of disease states could benefit from optical-imaging biomarkers. In this Perspective, we discuss opportunities and challenges towards the clinical implementation of optical-imaging biomarkers for the early detection of cancer by analysing two case studies: the assessment of skin lesions in primary care, and the surveillance of patients with Barrett's oesophagus in specialist care. We stress the importance of technical and biological validations and clinical-utility assessments, and the need to address implementation bottlenecks. In addition, we define a translational roadmap for the widespread clinical implementation of optical-imaging technologies.
Collapse
Affiliation(s)
- Dale J Waterhouse
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Catherine R M Fitzpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | | | | | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Johansen TH, Møllersen K, Ortega S, Fabelo H, Garcia A, Callico GM, Godtliebsen F. Recent advances in hyperspectral imaging for melanoma detection. WIRES COMPUTATIONAL STATISTICS 2019. [DOI: 10.1002/wics.1465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Kajsa Møllersen
- Department of Community Medicine UiT The Arctic University of Norway Tromsø Norway
| | - Samuel Ortega
- Institute for Applied Microelectronics University of Las Palmas de Gran Canaria Las Palmas Spain
| | - Himar Fabelo
- Institute for Applied Microelectronics University of Las Palmas de Gran Canaria Las Palmas Spain
| | - Aday Garcia
- Institute for Applied Microelectronics University of Las Palmas de Gran Canaria Las Palmas Spain
| | - Gustavo M. Callico
- Institute for Applied Microelectronics University of Las Palmas de Gran Canaria Las Palmas Spain
| | - Fred Godtliebsen
- Department of Mathematics and Statistics UiT The Arctic University of Norway Tromsø Norway
| |
Collapse
|
14
|
Chen X, Lin W, Wang C, Chen S, Sheng J, Zeng B, Xu M. In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light. BIOMEDICAL OPTICS EXPRESS 2017; 8:5468-5482. [PMID: 29296481 PMCID: PMC5745096 DOI: 10.1364/boe.8.005468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 05/04/2023]
Abstract
We present the real-time single snapshot multiple frequency demodulation - spatial frequency domain imaging (SSMD-SFDI) platform implemented with a visible digital mirror device that is capable of imaging and monitoring dynamic turbid medium and processes over a large field of view. One challenge in quantitative imaging of biological tissue such as the skin is the complex structure rendering techniques based on homogeneous medium models to fail. To address this difficulty we have also developed a novel method that maps the layered structure to a homogeneous medium for spatial frequency domain imaging. The varying penetration depth of spatially modulated light on its wavelength and modulation frequency is used to resolve the layered structure. The efficacy of the real-time SSMD-SFDI platform and this two-layer model is demonstrated by imaging forearms of 6 healthy subjects under the reactive hyperemia protocol. The results show that our approach not only successfully decouples light absorption by melanin from that by hemoglobin and yields accurate determination of cutaneous hemoglobin concentration and oxygen saturation, but also provides reliable estimation of the scattering properties, the melanin content and the epidermal thickness in real time. Potential applications of our system in imaging skin physiological and functional states, cancer screening, and microcirculation monitoring are discussed at the end.
Collapse
Affiliation(s)
- Xinlin Chen
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weihao Lin
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenge Wang
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaoheng Chen
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing Sheng
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bixin Zeng
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - M. Xu
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Dept. of Physics, Fairfield University, 1073 North Road, Fairfield, CT 06824, USA
| |
Collapse
|
15
|
Spigulis J, Oshina I, Berzina A, Bykov A. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:91508. [PMID: 28253387 DOI: 10.1117/1.jbo.22.9.091508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/10/2017] [Indexed: 05/12/2023]
Abstract
Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448–532–659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer’s law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.
Collapse
Affiliation(s)
- Janis Spigulis
- University of Latvia, Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, Riga, Latvia
| | - Ilze Oshina
- University of Latvia, Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, Riga, Latvia
| | - Anna Berzina
- University of Latvia, Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, Riga, Latvia
| | - Alexander Bykov
- University of Oulu, Optoelectronics and Measurement Techniques Unit, Faculty of Information Technology and Electrical Engineering, Oulu, Finland
| |
Collapse
|
16
|
Saager RB, Dang AN, Huang SS, Kelly KM, Durkin AJ. Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:094302. [PMID: 28964218 PMCID: PMC5589466 DOI: 10.1063/1.5001075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spatial Frequency Domain Spectroscopy (SFDS) is a technique for quantifying in-vivo tissue optical properties. SFDS employs structured light patterns that are projected onto tissues using a spatial light modulator, such as a digital micromirror device. In combination with appropriate models of light propagation, this technique can be used to quantify tissue optical properties (absorption, μa, and scattering, μs', coefficients) and chromophore concentrations. Here we present a handheld implementation of an SFDS device that employs line (one dimensional) imaging. This instrument can measure 1088 spatial locations that span a 3 cm line as opposed to our original benchtop SFDS system that only collects a single 1 mm diameter spot. This imager, however, retains the spectral resolution (∼1 nm) and range (450-1000 nm) of our original benchtop SFDS device. In the context of homogeneous turbid media, we demonstrate that this new system matches the spectral response of our original system to within 1% across a typical range of spatial frequencies (0-0.35 mm-1). With the new form factor, the device has tremendously improved mobility and portability, allowing for greater ease of use in a clinical setting. A smaller size also enables access to different tissue locations, which increases the flexibility of the device. The design of this portable system not only enables SFDS to be used in clinical settings but also enables visualization of properties of layered tissues such as skin.
Collapse
Affiliation(s)
- Rolf B Saager
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - An N Dang
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - Samantha S Huang
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - Kristen M Kelly
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - Anthony J Durkin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| |
Collapse
|