1
|
Wang Z, Li K, Chen H, Li Z, Li W, Lin H, Zheng L, Zhang X, Wu S. Quantitative Characterization of Zebrafish Caudal Fin Regeneration Based on Mueller Matrix OCT In Vivo. JOURNAL OF BIOPHOTONICS 2024; 17:e202400376. [PMID: 39323178 DOI: 10.1002/jbio.202400376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Zebrafish serves as a valuable model for studying tissue regeneration due to their comprehensive regenerative abilities, particularly in bone tissue. In this study, a Mueller matrix optical coherence tomography (OCT) system was applied to monitor the regenerative processes of zebrafish caudal fins in vivo. The analysis focused on evaluating the thickness of the caudal fin tip and the distribution of internal bone tissue during the regenerative process. Subsequently, the effect of ectoine solution on the regeneration process was observed and discussed. Our findings revealed that the caudal fin blastema did not exhibit phase-induced polarization characteristics in the Mueller matrix OCT images. Statistical analyses indicated that the caudal fins did not fully regenerate to their original state within 21 days. Furthermore, the results suggested that ectoine solution could enhance tissue regeneration. This approach provides a method for quantifying zebrafish caudal fin regeneration and advances observation techniques for biomedical and clinical applications.
Collapse
Affiliation(s)
- Zaifan Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Ke Li
- School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hui Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Wangbiao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Liqin Zheng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaoman Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Shulian Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Gao W, Zhang Y, Zhang Y, Yuan Z, Chen K, Xie W, Li D, Zhang J, Zhang L. Nondestructive and high-resolution monitoring of inflammation-type skull defects regeneration on adult zebrafish with optical coherence tomography. JOURNAL OF BIOPHOTONICS 2024; 17:e202300268. [PMID: 37710141 DOI: 10.1002/jbio.202300268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Optimized animal models and effective imaging techniques are exceedingly important to study cranial defects in bone loss due to chronic inflammation. In this study, the assessment procedure on a zebrafish inflammation-type skull defects model was monitored in vivo with spectral-domain optical coherence tomography (SD-OCT), and the efficacy of etidronate disodium in bone regeneration was assessed. An acute skull defect injury model was established in adult zebrafish using a stereotaxic craniotomy device. SD-OCT imaging was performed immediately following the mechanical injury. Both SD-OCT and immunohistochemistry results demonstrated an increase in inflammation-induced skull destruction within 5 days, which was confirmed by pathological experiments.
Collapse
Affiliation(s)
- Weijian Gao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiqing Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanhan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zishan Yuan
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Keer Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weilin Xie
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lan Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Li K, Liu B, Wang Z, Li Y, Li H, Wu S, Li Z. Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:2889-2904. [PMID: 37342688 PMCID: PMC10278635 DOI: 10.1364/boe.488614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Organ development analysis plays an important role in assessing an individual' s growth health. In this study, we present a non-invasive method for the quantitative characterization of zebrafish multiple organs during their growth, utilizing Mueller matrix optical coherence tomography (Mueller matrix OCT) in combination with deep learning. Firstly, Mueller matrix OCT was employed to acquire 3D images of zebrafish during development. Subsequently, a deep learning based U-Net network was applied to segment various anatomical structures, including the body, eyes, spine, yolk sac, and swim bladder of the zebrafish. Following segmentation, the volume of each organ was calculated. Finally, the development and proportional trends of zebrafish embryos and organs from day 1 to day 19 were quantitatively analyzed. The obtained quantitative results revealed that the volume development of the fish body and individual organs exhibited a steady growth trend. Additionally, smaller organs, such as the spine and swim bladder, were successfully quantified during the growth process. Our findings demonstrate that the combination of Mueller matrix OCT and deep learning effectively quantify the development of various organs throughout zebrafish embryonic development. This approach offers a more intuitive and efficient monitoring method for clinical medicine and developmental biology studies.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Bin Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zaifan Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Hui Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Shulian Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Bionovel Lab, Guangzhou, Guangdong, 510407, China
| |
Collapse
|
5
|
Kim J, Kim S, Choi WJ. Non-Invasive Monitoring of Cutaneous Wound Healing in Non-Diabetic and Diabetic Model of Adult Zebrafish Using OCT Angiography. Bioengineering (Basel) 2023; 10:bioengineering10050538. [PMID: 37237607 DOI: 10.3390/bioengineering10050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A diabetic wound presents a severe risk of infections and other complications because of its slow healing. Evaluating the pathophysiology during wound healing is imperative for wound care, necessitating a proper diabetic wound model and assay for monitoring. The adult zebrafish is a rapid and robust model for studying human cutaneous wound healing because of its fecundity and high similarities to human wound repair. OCTA as an assay can provide three-dimensional (3D) imaging of the tissue structure and vasculature in the epidermis, enabling monitoring of the pathophysiologic alterations in the zebrafish skin wound. We present a longitudinal study for assessing the cutaneous wound healing of the diabetic adult zebrafish model using OCTA, which is of importance for the diabetes research using the alternative animal models. We used non-diabetic (n = 9) and type 1 diabetes mellitus (DM) adult zebrafish models (n = 9). The full-thickness wound was generated on the fish skin, and the wound healing was monitored with OCTA for 15 days. The OCTA results demonstrated significant differences between diabetic and non-diabetic wound healing, involving delayed tissue remodeling and impaired angiogenesis for the diabetic wound, leading to slow wound recovery. The adult zebrafish model and OCTA technique may benefit long-term metabolic disease studies using zebrafish for drug development.
Collapse
Affiliation(s)
- Jaeyoung Kim
- Research Institute for Skin Image, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Departments of Cancer Control Research and Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suhyun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Zebrafish Translational Medical Research Center, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research-A Review. Bioengineering (Basel) 2022; 10:5. [PMID: 36671577 PMCID: PMC9854701 DOI: 10.3390/bioengineering10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is an established vertebrae model in the field of biomedical research. With its small size, rapid maturation time and semi-transparency at early development stages, it has proven to be an important animal model, especially for high-throughput studies. Three-dimensional, high-resolution, non-destructive and label-free imaging techniques are perfectly suited to investigate these animals over various development stages. Optical coherence tomography (OCT) is an interferometric-based optical imaging technique that has revolutionized the diagnostic possibilities in the field of ophthalmology and has proven to be a powerful tool for many microscopic applications. Recently, OCT found its way into state-of-the-art zebrafish-based research. This review article gives an overview and a discussion of the relevant literature and an outlook for this emerging field.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
7
|
Li K, Wang Y, Liu Y, Li W, Weng Z, Li H, He Y, Li Z. Morphological characteristics of zebrafish's yolk sac for malformation based on orthogonal-polarization-gating optical coherence tomography. JOURNAL OF BIOPHOTONICS 2022; 15:e202200098. [PMID: 35701385 DOI: 10.1002/jbio.202200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, an automatic algorithm combining an ellipsoid approximation and U-net has been presented for the characterization of a zebrafish's yolk sac. The polarization-difference-balanced-detection image of zebrafish was obtained based on orthogonal-polarization-gating optical coherence tomography and used to segment the yolk sac region. And ellipsoid can approximate the shape of the three-dimensional yolk sac, and the multiple parameters of volume and the three principal axes (k, l and m) can be used to quantify the yolk sac. In addition, the multiple parameters of two principal axes (l and m) and volume can distinguish the malformation from the normal controlled group. Finally, the volume malformation of the yolk sac calculated by the proposed algorithm ranges from 16.55% to 46.05%. Thus, the degree of malformation can be applied for toxicity analysis. And this method provides a potential application for an accurate judgment index for biotoxicological testing.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Yi Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Yujia Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Wangbiao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Hui Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Youwu He
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Lichtenegger A, Tamaoki J, Licandro R, Mori T, Mukherjee P, Bian L, Greutter L, Makita S, Wöhrer A, Matsusaka S, Kobayashi M, Baumann B, Yasuno Y. Longitudinal investigation of a xenograft tumor zebrafish model using polarization-sensitive optical coherence tomography. Sci Rep 2022; 12:15381. [PMID: 36100620 PMCID: PMC9470556 DOI: 10.1038/s41598-022-19483-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 01/19/2023] Open
Abstract
Breast cancer is a leading cause of death in female patients worldwide. Further research is needed to get a deeper insight into the mechanisms involved in the development of this devastating disease and to find new therapy strategies. The zebrafish is an established animal model, especially in the field of oncology, which has shown to be a promising candidate for pre-clinical research and precision-based medicine. To investigate cancer growth in vivo in zebrafish, one approach is to explore xenograft tumor models. In this article, we present the investigation of a juvenile xenograft zebrafish model using a Jones matrix optical coherence tomography (JM-OCT) prototype. Immunosuppressed wild-type fish at 1-month post-fertilization were injected with human breast cancer cells and control animals with phosphate buffered saline in the tail musculature. In a longitudinal study, the scatter, polarization, and vasculature changes over time were investigated and quantified in control versus tumor injected animals. A significant decrease in birefringence and an increase in scattering signal was detected in tumor injected zebrafish in comparison to the control once. This work shows the potential of JM-OCT as a non-invasive, label-free, three-dimensional, high-resolution, and tissue-specific imaging tool in pre-clinical cancer research based on juvenile zebrafish models.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan.
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Roxane Licandro
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Lixuan Bian
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Lisa Greutter
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| | - Adelheid Wöhrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Lichtenegger A, Mukherjee P, Zhu L, Morishita R, Tomita K, Oida D, Leskovar K, Abd El-Sadek I, Makita S, Kirchberger S, Distel M, Baumann B, Yasuno Y. Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2202-2223. [PMID: 35519284 PMCID: PMC9045912 DOI: 10.1364/boe.455876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The zebrafish is a valuable vertebrate animal model in pre-clinical cancer research. A Jones matrix optical coherence tomography (JM-OCT) prototype operating at 1310 nm and an intensity-based spectral-domain OCT setup at 840 nm were utilized to investigate adult wildtype and a tumor-developing zebrafish model. Various anatomical features were characterized based on their inherent scattering and polarization signature. A motorized translation stage in combination with the JM-OCT prototype enabled large field-of-view imaging to investigate adult zebrafish in a non-destructive way. The diseased animals exhibited tumor-related abnormalities in the brain and near the eye region. The scatter intensity, the attenuation coefficients and local polarization parameters such as the birefringence and the degree of polarization uniformity were analyzed to quantify differences in tumor versus control regions. The proof-of-concept study in a limited number of animals revealed a significant decrease in birefringence in tumors found in the brain and near the eye compared to control regions. The presented work showed the potential of OCT and JM-OCT as non-destructive, high-resolution, and real-time imaging modalities for pre-clinical research based on zebrafish.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Lida Zhu
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Rion Morishita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Kiriko Tomita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Daisuke Oida
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Konrad Leskovar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
- Department of Physics, Faculty of Science, Damietta University, Egypt
| | - Shuichi Makita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | | | - Martin Distel
- St. Anna Children’s Cancer Research Institute (CCRI), Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| |
Collapse
|