1
|
Wu C, Su B, Xin N, Tang J, Xiao J, Luo H, Wei D, Luo F, Sun J, Fan H. An upconversion nanoparticle-integrated fibrillar scaffold combined with a NIR-optogenetic strategy to regulate neural cell performance. J Mater Chem B 2023; 11:430-440. [PMID: 36524427 DOI: 10.1039/d2tb02327j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Optogenetics using light-sensitive proteins such as calcium transport channel rhodopsin (CatCh) opens up new possibilities for non-invasive remote manipulation of neural function. However, current optogenetic approaches for neurological disorder therapies rely on visible light excitation and are rarely applied to neurogenesis and nerve regeneration. Herein, we propose a new strategy for tissue engineering which combines optogenetic technology and biomimetic nerve scaffolds. Upconversion nanoparticles (UCNPs) were synthesized and integrated with oriented fibrillar PCL membranes with a collagen coating to establish neuro-matrix interfaces. Benefiting from the excellent bioactivity, oriented fibrillation and NIR-photoresponsivity, the CatCh-transfected PC12 cells on these interfaces exhibited enhanced cell elongation and neurite extension, as well as upregulated neurogenesis upon NIR excitation. Furthermore, a UCNP-integrated scaffold as an optogenetic actuator allowed NIR to penetrate dermal tissues to mediate neural activation, with an efficiency comparable to that of a 470 nm blue light. Compared with current visible light-excited optogenetics, our composite scaffold-mediated NIR stimulation addresses the problem of tissue penetration and will enable less-invasive neurofunctional manipulation, with the potential for remote therapy.
Collapse
Affiliation(s)
- Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China. .,Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Jiajia Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Jiamei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
2
|
Wang W, Kim CK, Ting AY. Molecular tools for imaging and recording neuronal activity. Nat Chem Biol 2019; 15:101-110. [PMID: 30659298 DOI: 10.1038/s41589-018-0207-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022]
Abstract
To understand how the brain relates to behavior, it is essential to record neural activity in awake, behaving animals. To achieve this goal, a large variety of genetically encoded sensors have been developed to monitor and record the series of events following neuronal firing, including action potentials, intracellular calcium rise, neurotransmitter release and immediate early gene expression. In this Review, we discuss the existing genetically encoded tools for detecting and integrating neuronal activity in animals and highlight the remaining challenges and future opportunities for molecular biologists.
Collapse
Affiliation(s)
- Wenjing Wang
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Christina K Kim
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Albers F, Wachsmuth L, van Alst TM, Faber C. Multimodal Functional Neuroimaging by Simultaneous BOLD fMRI and Fiber-Optic Calcium Recordings and Optogenetic Control. Mol Imaging Biol 2019; 20:171-182. [PMID: 29027094 DOI: 10.1007/s11307-017-1130-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent developments of optogenetic tools and fluorescence-based calcium recording techniques enable the manipulation and monitoring of neural circuits on a cellular level. Non-invasive imaging of brain networks, however, requires the application of methods such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), which is commonly used for functional neuroimaging. While BOLD fMRI provides brain-wide non-invasive reading of the hemodynamic response, it is only an indirect measure of neural activity. Direct observation of neural responses requires electrophysiological or optical methods. The latter can be combined with optogenetic control of neuronal circuits and are MRI compatible. Yet, simultaneous optical recordings are still limited to fiber-optic-based approaches. Here, we review the integration of optical recordings and optogenetic manipulation into fMRI experiments. As a practical example, we describe how BOLD fMRI in a 9.4-T small animal MR scanner can be combined with in vivo fiber-optic calcium recordings and optogenetic control in a multimodal setup. We present simultaneous BOLD fMRI and calcium recordings under optogenetic control in rat. We outline details about MR coil configuration, choice, and usage of opsins and chemically and genetically encoded calcium sensors, fiber implantation, appropriate light power for stimulation, and calcium signal detection, to provide a glimpse into challenges and opportunities of this multimodal molecular neuroimaging approach.
Collapse
Affiliation(s)
- Franziska Albers
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | | | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
4
|
Song C, Barnes S, Knöpfel T. Mammalian cortical voltage imaging using genetically encoded voltage indicators: a review honoring professor Amiram Grinvald. NEUROPHOTONICS 2017; 4:031214. [PMID: 28491906 PMCID: PMC5416838 DOI: 10.1117/1.nph.4.3.031214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
The pioneering work of Amiram Grinvald established voltage-sensitive dye imaging (VSDI) in the mammalian cortex in the 1980s and inspired decades of cortical voltage imaging and the associated technological developments. The recent conception and development of genetically encoded voltage indicators (GEVIs) overcome many of the limitations of classical VSDI, and open experimental approaches that provide accruing support for orchestrated neuronal circuit dynamics of spatially distributed neuronal circuit underlying behaviors. We will review recent achievements using GEVIs to optically monitor the cortical activity in mammalian brains in vivo and provide a perspective for potential future directions.
Collapse
Affiliation(s)
- Chenchen Song
- Imperial College London, Laboratory for Neuronal Circuit Dynamics, London, United Kingdom
| | - Samuel Barnes
- Imperial College London, Laboratory for Neuronal Circuit Dynamics, London, United Kingdom
- Imperial College London, Division of Brain Sciences, London, United Kingdom
| | - Thomas Knöpfel
- Imperial College London, Laboratory for Neuronal Circuit Dynamics, London, United Kingdom
- Imperial College London, Division of Brain Sciences, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, Centre for Neurotechnology, South Kensington, London, United Kingdom
| |
Collapse
|
5
|
Frostig RD, Chen-Bee CH, Johnson BA, Jacobs NS. Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship. NEUROPHOTONICS 2017; 4:031217. [PMID: 28630879 PMCID: PMC5467767 DOI: 10.1117/1.nph.4.3.031217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/12/2017] [Indexed: 06/17/2023]
Abstract
This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.
Collapse
Affiliation(s)
- Ron D. Frostig
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| | - Cynthia H. Chen-Bee
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Brett A. Johnson
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Nathan S. Jacobs
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| |
Collapse
|
6
|
Hempel CM, Werley CA, Dempsey GT, Gerber DJ. Targeting neuronal function for CNS drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017. [PMID: 28647082 DOI: 10.1016/j.ddtec.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is a pressing need for new and more effective treatments for central nervous system (CNS) disorders. A large body of evidence now suggests that alterations in synaptic transmission and neuronal excitability represent underlying factors for many neurological and psychiatric diseases. However, it has been challenging to target these complex functional domains for therapeutic discovery using traditional neuronal assay methods. Here we review advances in neuronal screening technologies and cellular model systems that enable phenotypic screening of neuronal function as a basis for novel CNS drug discovery approaches.
Collapse
Affiliation(s)
- Chris M Hempel
- Q-State Biosciences, 179 Sidney Street, Cambridge, MA 02139, USA
| | | | - Graham T Dempsey
- Q-State Biosciences, 179 Sidney Street, Cambridge, MA 02139, USA
| | - David J Gerber
- Q-State Biosciences, 179 Sidney Street, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Nakajima R, Jung A, Yoon BJ, Baker BJ. Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators. Front Synaptic Neurosci 2016; 8:22. [PMID: 27547183 PMCID: PMC4974255 DOI: 10.3389/fnsyn.2016.00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges—optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Center for Functional Connectomics, Korea Institute of Science and Technology Seongbuk-gu, Seoul, South Korea
| | - Arong Jung
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; College of Life Sciences and Biotechnology, Korea UniversitySeongbuk-gu, Seoul, South Korea
| | - Bong-June Yoon
- College of Life Sciences and Biotechnology, Korea University Seongbuk-gu, Seoul, South Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; Department of Neuroscience, Korea University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
8
|
Antic SD, Empson RM, Knöpfel T. Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol 2016; 116:135-52. [PMID: 27075539 DOI: 10.1152/jn.00226.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/11/2016] [Indexed: 12/30/2022] Open
Abstract
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems.
Collapse
Affiliation(s)
- Srdjan D Antic
- Stem Cell Institute, Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| | - Ruth M Empson
- Department of Physiology, Brain Research New Zealand, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand; and
| | - Thomas Knöpfel
- Division of Brain Sciences, Department of Medicine and Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Watanabe M, Rollins AM, Polo-Parada L, Ma P, Gu S, Jenkins MW. Probing the Electrophysiology of the Developing Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3010010. [PMID: 29367561 PMCID: PMC5715694 DOI: 10.3390/jcdd3010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes.
Collapse
Affiliation(s)
- Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65201, USA.
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Soto-Cerrato V, Manuel-Manresa P, Hernando E, Calabuig-Fariñas S, Martínez-Romero A, Fernández-Dueñas V, Sahlholm K, Knöpfel T, García-Valverde M, Rodilla AM, Jantus-Lewintre E, Farràs R, Ciruela F, Pérez-Tomás R, Quesada R. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells. J Am Chem Soc 2015; 137:15892-8. [DOI: 10.1021/jacs.5b09970] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Vanessa Soto-Cerrato
- Cancer
Cell Biology Research Group, Department of Pathology and Experimental
Therapeutics, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
| | - Pilar Manuel-Manresa
- Cancer
Cell Biology Research Group, Department of Pathology and Experimental
Therapeutics, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
| | - Elsa Hernando
- Departmento
de Química, Universidad de Burgos, 09001 Burgos, Spain
| | - Silvia Calabuig-Fariñas
- Fundación de Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department
of Pathology, Universitat de València, 46010 Valencia, Spain
| | | | - Víctor Fernández-Dueñas
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, 08007 Barcelona, Spain
| | - Kristoffer Sahlholm
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, 08007 Barcelona, Spain
- Department
of Neuroscience, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Thomas Knöpfel
- Division
of Brain Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Ananda M. Rodilla
- Cancer
Cell Biology Research Group, Department of Pathology and Experimental
Therapeutics, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
| | - Eloisa Jantus-Lewintre
- Fundación de Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department
of Biotechnology, Universitat Politècnica de València, 46022 Valencia,Spain
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Francisco Ciruela
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, 08007 Barcelona, Spain
- Department
of Biochemistry and Microbiology, Faculty of Sciences, University of Ghent, 9000 Gent, Belgium
| | - Ricardo Pérez-Tomás
- Cancer
Cell Biology Research Group, Department of Pathology and Experimental
Therapeutics, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
| | - Roberto Quesada
- Departmento
de Química, Universidad de Burgos, 09001 Burgos, Spain
| |
Collapse
|
11
|
Song C, Knöpfel T. Optogenetics enlightens neuroscience drug discovery. Nat Rev Drug Discov 2015; 15:97-109. [DOI: 10.1038/nrd.2015.15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|