1
|
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley MJ, Cardin JA, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cereb Cortex 2024; 34:bhae038. [PMID: 38365273 PMCID: PMC11486687 DOI: 10.1093/cercor/bhae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.
Collapse
Affiliation(s)
- Samantha Bottom-Tanzer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- MD/PhD Program, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Sofia Corella
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
- MD/PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Luis Bolaños
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sadi Quiñones
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Shane Heiney
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew Shtrahman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Michael Whalen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, United States
| | - Rachel Oren
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, United States
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Farzad Noubary
- Department of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
2
|
Nakai N, Sato M, Yamashita O, Sekine Y, Fu X, Nakai J, Zalesky A, Takumi T. Virtual reality-based real-time imaging reveals abnormal cortical dynamics during behavioral transitions in a mouse model of autism. Cell Rep 2023; 42:112258. [PMID: 36990094 DOI: 10.1016/j.celrep.2023.112258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Functional connectivity (FC) can provide insight into cortical circuit dysfunction in neuropsychiatric disorders. However, dynamic changes in FC related to locomotion with sensory feedback remain to be elucidated. To investigate FC dynamics in locomoting mice, we develop mesoscopic Ca2+ imaging with a virtual reality (VR) environment. We find rapid reorganization of cortical FC in response to changing behavioral states. By using machine learning classification, behavioral states are accurately decoded. We then use our VR-based imaging system to study cortical FC in a mouse model of autism and find that locomotion states are associated with altered FC dynamics. Furthermore, we identify FC patterns involving the motor area as the most distinguishing features of the autism mice from wild-type mice during behavioral transitions, which might correlate with motor clumsiness in individuals with autism. Our VR-based real-time imaging system provides crucial information to understand FC dynamics linked to behavioral abnormality of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Masaaki Sato
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo 060-8638, Japan.
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Chuo, Tokyo 103-0027, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Seika, Kyoto 619-0288, Japan
| | - Yukiko Sekine
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Xiaochen Fu
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, Aoba, Sendai 980-8575, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan; RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe 650-0047, Japan.
| |
Collapse
|
3
|
Ashby DM, McGirr A. Selective effects of acute and chronic stress on slow and alpha-theta cortical functional connectivity and reversal with subanesthetic ketamine. Neuropsychopharmacology 2023; 48:642-652. [PMID: 36402835 PMCID: PMC9938145 DOI: 10.1038/s41386-022-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Anxious, depressive, traumatic, and other stress-related disorders are associated with large scale brain network functional connectivity changes, yet the relationship between acute stress effects and the emergence of persistent large scale network reorganization is unclear. Using male Thy 1-jRGECO1a transgenic mice, we repeatedly sampled mesoscale cortical calcium activity across dorsal neocortex. First, mice were imaged in a homecage control condition, followed by an acute foot-shock stress, a chronic variable stress protocol, an acute on chronic foot-shock stress, and finally treatment with the prototype rapid acting antidepressant ketamine or vehicle. We derived functional connectivity metrics and network efficiency in two activity bands, namely slow cortical activity (0.3-4 Hz) and theta-alpha cortical activity (4-15 Hz). Compared to homecage control, an acute foot-shock stress induced widespread increases in cortical functional connectivity and network efficiency in the 4-15 Hz temporal band before normalizing after 24 h. Conversely, chronic stress produced a selective increase in between-module functional connectivity and network efficiency in the 0.3-4 Hz band, which was reversed after treatment with the rapid acting antidepressant ketamine. The functional connectivity changes induced by acute stress in the 4-15 Hz band were strongly related to those in the slow band after chronic stress, as well as the selective effects of subanesthetic ketamine. Together, this data indicates that stress induces functional connectivity changes with spatiotemporal features that link acute stress, persistent network reorganization after chronic stress, and treatment effects.
Collapse
Affiliation(s)
- Donovan M Ashby
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
4
|
O'Connor D, Mandino F, Shen X, Horien C, Ge X, Herman P, Hyder F, Crair M, Papademetris X, Lake E, Constable RT. Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type. Neuroimage 2022; 264:119735. [PMID: 36347441 PMCID: PMC9808917 DOI: 10.1016/j.neuroimage.2022.119735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
To improve 'bench-to-bedside' translation, it is integral that knowledge flows bidirectionally-from animal models to humans, and vice versa. This requires common analytical frameworks, as well as open software and data sharing practices. We share a new pipeline (and test dataset) for the preprocessing of wide-field optical fluorescence imaging data-an emerging mode applicable in animal models-as well as results from a functional connectivity and graph theory analysis inspired by recent work in the human neuroimaging field. The approach is demonstrated using a dataset comprised of two test-cases: (1) data from animals imaged during awake and anesthetized conditions with excitatory neurons labeled, and (2) data from awake animals with different genetically encoded fluorescent labels that target either excitatory neurons or inhibitory interneuron subtypes. Both seed-based connectivity and graph theory measures (global efficiency, transitivity, modularity, and characteristic path-length) are shown to be useful in quantifying differences between wakefulness states and cell populations. Wakefulness state and cell type show widespread effects on canonical network connectivity with variable frequency band dependence. Differences between excitatory neurons and inhibitory interneurons are observed, with somatostatin expressing inhibitory interneurons emerging as notably dissimilar from parvalbumin and vasoactive polypeptide expressing cells. In sum, we demonstrate that our pipeline can be used to examine brain state and cell-type differences in mesoscale imaging data, aiding translational neuroscience efforts. In line with open science practices, we freely release the pipeline and data to encourage other efforts in the community.
Collapse
Affiliation(s)
- D O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - F Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - X Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - C Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - X Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - P Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - F Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - M Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA
| | - X Papademetris
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Emr Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R T Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice. Neuroimage 2021; 245:118740. [PMID: 34808365 DOI: 10.1016/j.neuroimage.2021.118740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Social isolation (SI) leads to various mental health disorders. Despite abundant studies on behavioral and neurobiological changes induced by post-weaning SI, the characterization of its imaging correlates, such as resting-state functional connectivity (RSFC), is critically lacking. In addition, the effects of resocialization after isolation remain unclear. Therefore, this study aimed to explore the effects of 1) SI on cortical functional connectivity and 2) subsequent resocialization on behavior and functional connectivity. METHODS Behavioral tests were conducted to validate the post-weaning SI mouse model, which is isolated during the juvenile period. Wide-field optical mapping was performed to observe both neuronal and hemodynamic signals in the cortex under anesthesia. Using seed-based and graph theoretical analyses, RSFC was analyzed. SI mice were then resocialized and the array of behavior and imaging tests was conducted. RESULTS Behaviorally, SI mice showed elevated anxiety, social preference, and aggression. RSFC analyses using the seed-based approach revealed decreased cortical functional connectivity in SI mice, especially in the frontal region. Graph network analyses demonstrated significant reduction in network segregation measures. After resocialization, mice exhibited recovered anxiogenic and aggressive behavior, but RSFC data did not show significant changes. CONCLUSIONS We observed an overall decrease in functional connectivity in SI mice. Moreover, resocialization restored the disruptions in behavioral patterns but functional connectivity was not recovered. To our knowledge, this is the first study to report that, despite the recovering tendencies of behavior in resocialized mice, similar changes in RSFC were not observed. This suggests that disruptions in functional connectivity caused by social isolation remain as long-term sequelae.
Collapse
|
6
|
Balbi M, Vanni MP, Vega MJ, Silasi G, Sekino Y, Boyd JD, LeDue JM, Murphy TH. Longitudinal monitoring of mesoscopic cortical activity in a mouse model of microinfarcts reveals dissociations with behavioral and motor function. J Cereb Blood Flow Metab 2019; 39:1486-1500. [PMID: 29521138 PMCID: PMC6681536 DOI: 10.1177/0271678x18763428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Small vessel disease is characterized by sporadic obstruction of small vessels leading to neuronal cell death. These microinfarcts often escape detection by conventional magnetic resonance imaging and are identified only upon postmortem examination. Our work explores a brain-wide microinfarct model in awake head-fixed mice, where occlusions of small penetrating arterioles are reproduced by endovascular injection of fluorescent microspheres. Mesoscopic functional connectivity was mapped longitudinally in awake GCaMP6 mice using genetically encoded calcium indicators for transcranial wide-field calcium imaging. Microsphere occlusions were quantified and changes in cerebral blood flow were measured with laser speckle imaging. The neurodeficit score in microinfarct mice was significantly higher than in sham, indicating impairment in motor function. The novel object recognition test showed a reduction in the discrimination index in microinfarct mice compared to sham. Graph-theoretic analysis of functional connectivity did not reveal significant differences in functional connectivity between sham and microinfarct mice. While behavioral tasks revealed impairments following microinfarct induction, the absence of measurable functional alterations in cortical activity has a less straightforward interpretation. The behavioral alterations produced by this model are consistent with alterations observed in human patients suffering from microinfarcts and support the validity of microsphere injection as a microinfarct model.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Matthieu P Vanni
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Max J Vega
- Department of Psychology, Motivated
Cognition Lab, University of British Columbia, Vancouver, British Columbia,
Canada
| | - Gergely Silasi
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Yuki Sekino
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Jamie D Boyd
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
- Djavad Mowafaghian Center for Brain
Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
- Djavad Mowafaghian Center for Brain
Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Bauer AQ, Kraft AW, Baxter GA, Wright PW, Reisman MD, Bice AR, Park JJ, Bruchas MR, Snyder AZ, Lee JM, Culver JP. Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse. Cereb Cortex 2018; 28:370-386. [PMID: 29136125 PMCID: PMC6057523 DOI: 10.1093/cercor/bhx298] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Brain connectomics has expanded from histological assessment of axonal projection connectivity (APC) to encompass resting state functional connectivity (RS-FC). RS-FC analyses are efficient for whole-brain mapping, but attempts to explain aspects of RS-FC (e.g., interhemispheric RS-FC) based on APC have been only partially successful. Neuroimaging with hemoglobin alone lacks specificity for determining how activity in a population of cells contributes to RS-FC. Wide-field mapping of optogenetically defined connectivity could provide insights into the brain's structure-function relationship. We combined optogenetics with optical intrinsic signal imaging to create an efficient, optogenetic effective connectivity (Opto-EC) mapping assay. We examined EC patterns of excitatory neurons in awake, Thy1-ChR2 transgenic mice. These Thy1-based EC (Thy1-EC) patterns were evaluated against RS-FC over the cortex. Compared to RS-FC, Thy1-EC exhibited increased spatial specificity, reduced interhemispheric connectivity in regions with strong RS-FC, and appreciable connection strength asymmetry. Comparing the topography of Thy1-EC and RS-FC patterns to maps of APC revealed that Thy1-EC more closely resembled APC than did RS-FC. The more general method of Opto-EC mapping with hemoglobin can be determined for 100 sites in single animals in under an hour, and is amenable to other neuroimaging modalities. Opto-EC mapping represents a powerful strategy for examining evolving connectivity-related circuit plasticity.
Collapse
Affiliation(s)
- Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Andrew W Kraft
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Grant A Baxter
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Patrick W Wright
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Matthew D Reisman
- Department of Physics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jasmine J Park
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jin-Moo Lee
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph P Culver
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Physics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
8
|
Bermudez-Contreras E, Chekhov S, Sun J, Tarnowsky J, McNaughton BL, Mohajerani MH. High-performance, inexpensive setup for simultaneous multisite recording of electrophysiological signals and mesoscale voltage imaging in the mouse cortex. NEUROPHOTONICS 2018; 5:025005. [PMID: 29651448 PMCID: PMC5874445 DOI: 10.1117/1.nph.5.2.025005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/05/2018] [Indexed: 05/17/2023]
Abstract
Simultaneous recording of optical and electrophysiological signals from multiple cortical areas may provide crucial information to expand our understanding of cortical function. However, the insertion of multiple electrodes into the brain may compromise optical imaging by both restricting the field of view and interfering with the approaches used to stabilize the specimen. Existing methods that combine electrophysiological recording and optical imaging in vivo implement either multiple surface electrodes, silicon probes, or a single electrode for deeper recordings. To address such limitation, we built a microelectrode array (hyperdrive, patent US5928143 A) compatible with wide-field imaging that allows insertion of up to 12 probes into a large brain area (8 mm diameter). The hyperdrive is comprised of a circle of individual microdrives where probes are positioned at an angle leaving a large brain area unobstructed for wide-field imaging. Multiple tetrodes and voltage-sensitive dye imaging were used for acute simultaneous registration of spontaneous and evoked cortical activity in anesthetized mice. The electrophysiological signals were used to extract local field potential (LFP) traces, multiunit, and single-unit spiking activity. To demonstrate our approach, we compared LFP and VSD signals over multiple regions of the cortex and analyzed the relationship between single-unit and global cortical population activities. The study of the interactions between cortical activity at local and global scales, such as the one presented in this work, can help to expand our knowledge of brain function.
Collapse
Affiliation(s)
- Edgar Bermudez-Contreras
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Sergey Chekhov
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Jianjun Sun
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Jennifer Tarnowsky
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Bruce L. McNaughton
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
- University of California at Irvine, Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Irvine, California, United States
- Address all correspondence to: Bruce L. McNaughton, E-mail: ; Majid H. Mohajerani, E-mail:
| | - Majid H. Mohajerani
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
- Address all correspondence to: Bruce L. McNaughton, E-mail: ; Majid H. Mohajerani, E-mail:
| |
Collapse
|
9
|
McGirr A, LeDue J, Chan AW, Xie Y, Murphy TH. Cortical functional hyperconnectivity in a mouse model of depression and selective network effects of ketamine. Brain 2017; 140:2210-2225. [PMID: 28899017 DOI: 10.1093/brain/awx142] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/26/2017] [Indexed: 12/28/2022] Open
Abstract
See Huang and Liston (doi:10.1093/awx166) for a scientific commentary on this article.Human depression is associated with glutamatergic dysfunction and alterations in resting state network activity. However, the indirect nature of human in vivo glutamate and activity assessments obscures mechanistic details. Using the chronic social defeat mouse model of depression, we determine how mesoscale glutamatergic networks are altered after chronic stress, and in response to the rapid acting antidepressant, ketamine. Transgenic mice (Ai85) expressing iGluSnFR (a recombinant protein sensor) permitted real-time in vivo selective characterization of extracellular glutamate and longitudinal imaging of mesoscale cortical glutamatergic functional circuits. Mice underwent chronic social defeat or a control condition, while spontaneous cortical activity was longitudinally sampled. After chronic social defeat, we observed network-wide glutamate functional hyperconnectivity in defeated animals, which was confirmed with voltage sensitive dye imaging in an independent cohort. Subanaesthetic ketamine has unique effects in defeated animals. Acutely, subanaesthetic ketamine induces large global cortical glutamate transients in defeated animals, and an elevated subanaesthetic dose resulted in sustained global increase in cortical glutamate. Local cortical inhibition of glutamate transporters in naïve mice given ketamine produced a similar extracellular glutamate phenotype, with both glutamate transients and a dose-dependent accumulation of glutamate. Twenty-four hours after ketamine, normalization of depressive-like behaviour in defeated animals was accompanied by reduced glutamate functional connectivity strength. Altered glutamate functional connectivity in this animal model confirms the central role of glutamate dynamics as well as network-wide changes after chronic stress and in response to ketamine.
Collapse
Affiliation(s)
- Alexander McGirr
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey LeDue
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Allen W Chan
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yicheng Xie
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Timothy H Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Lee H, Jung S, Lee P, Jeong Y. Altered intrinsic functional connectivity in the latent period of epileptogenesis in a temporal lobe epilepsy model. Exp Neurol 2017; 296:89-98. [PMID: 28729114 DOI: 10.1016/j.expneurol.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/17/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
The latent period, a seizure-free phase, is the duration between brain injury and the onset of spontaneous recurrent seizures (SRSs) during epileptogenesis. The latent period is thought to involve several progressive pathophysiological events that lead to the evolution of the chronic epilepsy phase. Hence, it is vital to investigate the changes in the latent period during epileptogenesis in order to better understand temporal lobe epilepsy (TLE), and to achieve early diagnosis and appropriate management of the condition. Accordingly, recent studies with patients with TLE using resting-state functional magnetic resonance imaging (rs-fMRI) have reported that alterations of resting-state functional connectivity (rsFC) during the chronic period are associated with some clinical manifestations, including learning and memory impairments, emotional instability, and social behavior deficits, in addition to repetitive seizure episodes. In contrast, the changes in the intrinsic rsFC during epileptogenesis, particularly during the latent period, remain unclear. In this study, we investigated the alterations in intrinsic rsFC during the latent and chronic periods in a pilocarpine-induced TLE mouse model using intrinsic optical signal imaging (IOSI). This technique can monitor the changes in the local hemoglobin concentration according to neuronal activity and can help investigate large-scale brain intrinsic networks. After seeding on the anatomical regions of interest (ROIs) and calculating the correlation coefficients between each ROI, we established and compared functional correlation matrices and functional connectivity maps during the latent and chronic periods of epilepsy. We found a decrease in the interhemispheric rsFC at the frontal and temporal regions during both the latent and chronic periods. Furthermore, a significant decrease in the interhemispheric rsFC was observed in the somatosensory area during the chronic period. Changes in network configurations during epileptogenesis were examined by graph theoretical network analysis. Interestingly, increase in the power of low frequency oscillations was observed during the latent period. These results suggest that, even if there are no apparent ictal seizure events during the latent period, there are ongoing changes in the rsFC in the epileptic brain. Furthermore, these results suggest that the pathophysiology of epilepsy may be related to widespread altered intrinsic functional connectivity. These findings can help enhance our understanding of epileptogenesis, and accordingly, changes in intrinsic functional connectivity can serve as an early diagnosis.
Collapse
Affiliation(s)
- Hyoin Lee
- Department of Bio and Brain Engineering, KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Seungmoon Jung
- Department of Bio and Brain Engineering, KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Peter Lee
- Department of Bio and Brain Engineering, KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Haupt D, Vanni MP, Bolanos F, Mitelut C, LeDue JM, Murphy TH. Mesoscale brain explorer, a flexible python-based image analysis and visualization tool. NEUROPHOTONICS 2017; 4:031210. [PMID: 28560240 PMCID: PMC5438099 DOI: 10.1117/1.nph.4.3.031210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.
Collapse
Affiliation(s)
- Dirk Haupt
- University of British Columbia, Kinsmen Laboratory of Neurological Research, Faculty of Medicine, Department of Psychiatry, Vancouver, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Matthieu P. Vanni
- University of British Columbia, Kinsmen Laboratory of Neurological Research, Faculty of Medicine, Department of Psychiatry, Vancouver, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Federico Bolanos
- University of British Columbia, Kinsmen Laboratory of Neurological Research, Faculty of Medicine, Department of Psychiatry, Vancouver, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Catalin Mitelut
- University of British Columbia, Kinsmen Laboratory of Neurological Research, Faculty of Medicine, Department of Psychiatry, Vancouver, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Jeffrey M. LeDue
- University of British Columbia, Kinsmen Laboratory of Neurological Research, Faculty of Medicine, Department of Psychiatry, Vancouver, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Tim H. Murphy
- University of British Columbia, Kinsmen Laboratory of Neurological Research, Faculty of Medicine, Department of Psychiatry, Vancouver, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| |
Collapse
|
12
|
Niranjan A, Christie IN, Solomon SG, Wells JA, Lythgoe MF. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI. Neuroimage 2016; 139:337-345. [PMID: 27296012 PMCID: PMC4988789 DOI: 10.1016/j.neuroimage.2016.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022] Open
Abstract
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI.
Collapse
Affiliation(s)
- Arun Niranjan
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, UK
| | - Isabel N Christie
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, UK; Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Samuel G Solomon
- Department of Experimental Psychology, University College London, London, UK
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, UK
| |
Collapse
|
13
|
Wang F, Bélanger E, Paquet ME, Côté DC, De Koninck Y. Probing pain pathways with light. Neuroscience 2016; 338:248-271. [PMID: 27702648 DOI: 10.1016/j.neuroscience.2016.09.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
We have witnessed an accelerated growth of photonics technologies in recent years to enable not only monitoring the activity of specific neurons, while animals are performing certain types of behavior, but also testing whether specific cells, circuits, and regions are sufficient or necessary for initiating, maintaining, or altering this or that behavior. Compared to other sensory systems, however, such as the visual or olfactory system, photonics applications in pain research are only beginning to emerge. One reason pain studies have lagged behind is that many of the techniques originally developed cannot be directly implemented to study key relay sites within pain pathways, such as the skin, dorsal root ganglia, spinal cord, and brainstem. This is due, in part, to difficulties in accessing these structures with light. Here we review a number of recent advances in design and delivery of light-sensitive molecular probes (sensors and actuators) into pain relay circuits to help decipher their structural and functional organization. We then discuss several challenges that have hampered hardware access to specific structures including light scattering, tissue movement and geometries. We review a number of strategies to circumvent these challenges, by delivering light into, and collecting it from the different key sites to unravel how nociceptive signals are encoded at each level of the neuraxis. We conclude with an outlook on novel imaging modalities for label-free chemical detection and opportunities for multimodal interrogation in vivo. While many challenges remain, these advances offer unprecedented opportunities to bridge cellular approaches with context-relevant behavioral testing, an essential step toward improving translation of basic research findings into clinical applications.
Collapse
Affiliation(s)
- Feng Wang
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada
| | - Erik Bélanger
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada
| | - Marie-Eve Paquet
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Département de biochimie, microbiologie et bioinformatique, Université Laval, Québec, QC, Canada
| | - Daniel C Côté
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada; Département de physique, de génie physique et d'optique, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada; Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
14
|
Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2. Neuron 2016; 91:1052-1068. [DOI: 10.1016/j.neuron.2016.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022]
|