1
|
Wang Y, Zeng W, Zou L, Wang Q, Ren B, Xiong Q, Bai Y, Feng Z. Detecting cognitive motor dissociation by functional near-infrared spectroscopy. Front Neurol 2025; 16:1532804. [PMID: 40236893 PMCID: PMC11997382 DOI: 10.3389/fneur.2025.1532804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Background Behavioral assessment based on external manifestations of consciousness fails for patients with cognitive motor dissociation (CMD). Functional near-infrared spectroscopy (fNIRS) is an emerging neuroimaging technique that can detect internal brain functional activities. However, the extent to which fNIRS can help identify CMD patients among those with disorders of consciousness (DOC) remains unclear. Objective To identify CMD patients among DOC patients using fNIRS with a command-driven hand-open-close motor imagery task. Methods fNIRS was used to measure the hemodynamic responses of 70 prolonged DOC patients, including 30 with vegetative state/unresponsive wakefulness syndrome (VS/UWS), 20 with minimally conscious state minus (MCS-), and 20 with minimally conscious state plus (MCS+), during a command-driven hand-open-close motor imagery task. Seven features of hemodynamic responses were extracted during the task and the rest conditions. The support vector machine combined with genetic algorithm was employed to classify and predict the brain's response to spoken commands and to identify CMD patients among prolonged DOC individuals. Results We identified seven CMD patients using fNIRS, of whom four were in VS/UWS and three were in MCS-. Six months after fNIRS examination, the seven identified CMD patients were more likely to have a favorable outcome (3/4 vs. 1/31, P = 0.014, Fisher's exact test) compared with non-CMD patients. Conclusions CMD patients can be identified through fNIRS combined with a command-driven motor imagery task, which will aid in the accurate diagnosis of DOC patients.
Collapse
Affiliation(s)
- Yan Wang
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Wentao Zeng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Leyao Zou
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Qijun Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bingkai Ren
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Qi Xiong
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Wang N, He Y, Zhu S, Liu D, Chai X, He Q, Cao T, He J, Li J, Si J, Yang Y, Zhao J. Functional near-infrared spectroscopy for the assessment and treatment of patients with disorders of consciousness. Front Neurol 2025; 16:1524806. [PMID: 39963381 PMCID: PMC11830608 DOI: 10.3389/fneur.2025.1524806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background Advances in neuroimaging have significantly enhanced our understanding of brain function, providing critical insights into the diagnosis and management of disorders of consciousness (DoC). Functional near-infrared spectroscopy (fNIRS), with its real-time, portable, and noninvasive imaging capabilities, has emerged as a promising tool for evaluating functional brain activity and nonrecovery potential in DoC patients. This review explores the current applications of fNIRS in DoC research, identifies its limitations, and proposes future directions to optimize its clinical utility. Aim This review examines the clinical application of fNIRS in monitoring DoC. Specifically, it investigates the potential value of combining fNIRS with brain-computer interfaces (BCIs) and closed-loop neuromodulation systems for patients with DoC, aiming to elucidate mechanisms that promote neurological recovery. Methods A systematic analysis was conducted on 155 studies published between January 1993 and October 2024, retrieved from the Web of Science Core Collection database. Results Analysis of 21 eligible studies on neurological diseases involving 262 DoC patients revealed significant findings. The prefrontal cortex was the most frequently targeted brain region. fNIRS has proven crucial in assessing brain functional connectivity and activation, facilitating the diagnosis of DoC. Furthermore, fNIRS plays a pivotal role in diagnosis and treatment through its application in neuromodulation techniques such as deep brain stimulation (DBS) and spinal cord stimulation (SCS). Conclusion As a noninvasive, portable, and real-time neuroimaging tool, fNIRS holds significant promise for advancing the assessment and treatment of DoC. Despite limitations such as low spatial resolution and the need for standardized protocols, fNIRS has demonstrated its utility in evaluating residual brain activity, detecting covert consciousness, and monitoring therapeutic interventions. In addition to assessing consciousness levels, fNIRS offers unique advantages in tracking hemodynamic changes associated with neuroregulatory treatments, including DBS and SCS. By providing real-time feedback on cortical activation, fNIRS facilitates optimizing therapeutic strategies and supports individualized treatment planning. Continued research addressing its technical and methodological challenges will further establish fNIRS as an indispensable tool in the diagnosis, prognosis, and treatment monitoring of DoC patients.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yifang He
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Sipeng Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongsheng Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingqi Li
- Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Juanning Si
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- National Research Center for Rehabilitation Technical Aids, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
3
|
Laforge G, Kolisnyk M, Novi S, Kazazian K, Ardakani M, Abdalmalak A, Debicki D, Gofton T, Owen AM, Norton L. Parallel EEG-fNIRS assessments of covert cognition in behaviorally non-responsive ICU patients: A multi-task feasibility study in a case of acute motor sensory axonal neuropathy. J Neurol 2025; 272:148. [PMID: 39812850 DOI: 10.1007/s00415-024-12735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Repeat neurological assessment is standard in cases of severe acute brain injury. However, conventional measures rely on overt behavior. Unfortunately, behavioral responses may be difficult or impossible for some patients. As a result, patients who recover consciousness before the ability to express so may go undetected. Recent studies have demonstrated the efficacy of incorporating functional neuroimaging into clinical assessment protocols. The objective of the current study is to assess the feasibility of a multi-task, multimodal bedside technique to evaluate sensory and cognitive function in behaviorally non-responsive patients. METHODS We deployed a novel assessment paradigm to evaluate sensory and cognitive processing in one 63-year-old unresponsive patient with acute motor sensory axonal neuropathy (AMSAN). We collected parallel bedside EEG-fNIRS activity during hierarchical auditory processing, movie listening, and motor imagery. RESULTS We found appropriate hemodynamic activation in the patient's middle and superior temporal gyri to simple sounds and activation in their superior temporal gyrus, left angular and precentral gyri during speech. During movie listening, the patient produced patterns of EEG and fNIRS activity that were statistically indistinguishable from healthy controls. The patient also showed appropriate fNIRS and source-localized EEG activation of motor areas during motor imagery. Upon recovering, the patient correctly recalled multiple aspects of our assessment procedures. CONCLUSION In sum, our assessment protocol effectively captures neural markers of sensory and cognitive function in behaviorally non-responsive patients. Crucially, while AMSAN is distinct from brain injury, the patient's assumed dissociation between behavior and awareness provided an ideal test case to validate our protocol.
Collapse
Affiliation(s)
- G Laforge
- Department of Neurology, University of Utah, Salt Lake City, USA.
- Western Institute of Neuroscience, Western University, London, Canada.
- Department of Psychology, Western University, London, Canada.
- Department of Physiology and Pharmacology, Western University, London, Canada.
| | - M Kolisnyk
- Western Institute of Neuroscience, Western University, London, Canada
- Department of Psychology, Western University, London, Canada
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - S Novi
- Western Institute of Neuroscience, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - K Kazazian
- Western Institute of Neuroscience, Western University, London, Canada
| | - M Ardakani
- Western Institute of Neuroscience, Western University, London, Canada
| | - A Abdalmalak
- Western Institute of Neuroscience, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - D Debicki
- Western Institute of Neuroscience, Western University, London, Canada
- Clinical Neurological Sciences, London Health Sciences Center, London, Canada
| | - T Gofton
- Western Institute of Neuroscience, Western University, London, Canada
- Clinical Neurological Sciences, London Health Sciences Center, London, Canada
| | - A M Owen
- Western Institute of Neuroscience, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - L Norton
- Western Institute of Neuroscience, Western University, London, Canada
- Clinical Neurological Sciences, London Health Sciences Center, London, Canada
- Department of Psychology, King's University College at Western University, London, Canada
| |
Collapse
|
4
|
Tripathy K, Markow ZE, Fogarty M, Schroeder ML, Svoboda AM, Eggebrecht AT, Schlaggar BL, Trobaugh JW, Culver JP. Multisensory naturalistic decoding with high-density diffuse optical tomography. NEUROPHOTONICS 2025; 12:015002. [PMID: 39850351 PMCID: PMC11755382 DOI: 10.1117/1.nph.12.1.015002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 01/25/2025]
Abstract
Significance Decoding naturalistic content from brain activity has important neuroscience and clinical implications. Information about visual scenes and intelligible speech has been decoded from cortical activity using functional magnetic resonance imaging (fMRI) and electrocorticography, but widespread applications are limited by the logistics of these technologies. Aim High-density diffuse optical tomography (HD-DOT) offers image quality approaching that of fMRI but with the silent, open scanning environment afforded by optical methods, thus opening the door to more naturalistic research and applications. Although early visual decoding studies with HD-DOT have been promising, decoding of naturalistic auditory and multisensory stimulus information from HD-DOT data has not been established. Approach Audiovisual decoding was investigated using HD-DOT data collected from participants who viewed a library of movie clips. A template-matching strategy was used to decode which movie clip a participant viewed based on their HD-DOT data. Factors affecting decoding performance-including trial duration and number of decoding choices-were systematically evaluated. Results Decoding accuracy was 94.2% for four-way decoding utilizing 4 min of data per trial as a starting point. As parameters were made more stringent, decoding performance remained significantly above chance with strong effect sizes down to 15-s trials and up to 32 choices. Comparable decoding accuracies were obtained when cortical sampling was confined to visual and auditory regions and when participants were presented with purely auditory or visual clips. Conclusions HD-DOT data sample cortical hemodynamics with sufficient resolution and fidelity to support decoding complex, naturalistic, multisensory stimuli via template matching. These results provide a foundation for future studies on more intricate decoding algorithms to reconstruct diverse features of novel naturalistic stimuli from HD-DOT data.
Collapse
Affiliation(s)
- Kalyan Tripathy
- Washington University in St. Louis, Division of Biological and Biomedical Sciences, St. Louis, Missouri, United States
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
- University of Pittsburgh Medical Center, Western Psychiatric Hospital, Pittsburgh, Pennsylvania, United States
| | - Zachary E. Markow
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Morgan Fogarty
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
- Washington University in St. Louis, Imaging Science Program, St. Louis, Missouri, United States
| | - Mariel L. Schroeder
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Alexa M. Svoboda
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Division of Biological and Biomedical Sciences, St. Louis, Missouri, United States
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University in St. Louis, Imaging Science Program, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Physics, St. Louis, Missouri, United States
| | - Bradley L. Schlaggar
- Kennedy Krieger Institute, Baltimore, Maryland, United States
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, Maryland, United States
- Johns Hopkins University School of Medicine, Departments of Pediatrics, Baltimore, Maryland, United States
| | - Jason W. Trobaugh
- Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University in St. Louis, Imaging Science Program, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Physics, St. Louis, Missouri, United States
| |
Collapse
|
5
|
He Y, Wang N, Liu D, Peng H, Yin S, Wang X, Wang Y, Yang Y, Si J. Assessment of residual awareness in patients with disorders of consciousness using functional near-infrared spectroscopy-based connectivity: a pilot study. NEUROPHOTONICS 2024; 11:045013. [PMID: 39668847 PMCID: PMC11635295 DOI: 10.1117/1.nph.11.4.045013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Significance The accurate assessment and classification of residual consciousness are crucial for optimizing therapeutic interventions in patients with disorders of consciousness (DOCs). However, there remains an absence of effective and definitive diagnostic methods for DOC in clinical practice. Aim The primary objective was to investigate the feasibility of utilizing resting state functional near-infrared spectroscopy (rs-fNIRS) for evaluating residual consciousness. The secondary objective was to explore the distinguishing characteristics that are more effective in differentiating between the unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS) and to identify the machine learning model that offers superior classification accuracy. Approach We utilized rs-fNIRS to evaluate the residual consciousness in patients with DOC. Specifically, rs-fNIRS was used to construct functional brain networks, and graph theory analysis was conducted to quantify the topological differences within these brain networks between MCS and UWS. After that, two classifiers were used to distinguish MCS from UWS. Results The graph theory results showed that the MCS group ( n = 8 ) exhibited significantly higher global efficiency (E g ) and smaller characteristic path length (L p ) than the UWS group ( n = 10 ). The functional connectivity results showed that the correlation within the left occipital cortex (L_OC) was significantly lower in the MCS group than in the UWS group. By using the indicators with significant differences as features for further classification, the accuracy for K -nearest neighbors and linear discriminant analysis classifiers was improved by 0.89 and 0.83, respectively. Conclusions The resting state functional connectivity and graph theory analysis based on fNIRS has the potential to enhance the classification accuracy, providing valuable insights into the diagnosis of patients with DOC.
Collapse
Affiliation(s)
- Yifang He
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Nan Wang
- Capital Medical University, Beijing Tiantan Hospital, Department of Neurosurgery, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Neurosurgery, Beijing, China
| | - Dongsheng Liu
- Tianjin Medical University, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin, China
- Tianjin Huanhu Hospital, Department of Neurosurgery, Tianjin, China
- Aviation General Hospital, Department of Neurosurgery, Beijing, China
| | - Hao Peng
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Shaoya Yin
- Tianjin Medical University, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin, China
- Tianjin Huanhu Hospital, Department of Neurosurgery, Tianjin, China
- Tianjin Huanhu Hospital, Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China
| | | | - Yong Wang
- Aviation General Hospital, Beijing, China
| | - Yi Yang
- Capital Medical University, Beijing Tiantan Hospital, Department of Neurosurgery, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
| | - Juanning Si
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| |
Collapse
|
6
|
Kazazian K, Abdalmalak A, Novi SL, Norton L, Moulavi-Ardakani R, Kolisnyk M, Gofton TE, Mesquita RC, Owen AM, Debicki DB. Functional near-infrared spectroscopy: A novel tool for detecting consciousness after acute severe brain injury. Proc Natl Acad Sci U S A 2024; 121:e2402723121. [PMID: 39186658 PMCID: PMC11388405 DOI: 10.1073/pnas.2402723121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Recent advancements in functional neuroimaging have demonstrated that some unresponsive patients in the intensive care unit retain a level of consciousness that is inconsistent with their behavioral diagnosis of awareness. Functional near-infrared spectroscopy (fNIRS) is a portable optical neuroimaging method that can be used to measure neural activity with good temporal and spatial resolution. However, the reliability of fNIRS for detecting the neural correlates of consciousness remains to be established. In a series of studies, we evaluated whether fNIRS can record sensory, perceptual, and command-driven neural processing in healthy participants and in behaviorally nonresponsive patients. At the individual healthy subject level, we demonstrate that fNIRS can detect commonly studied resting state networks, sensorimotor processing, speech-specific auditory processing, and volitional command-driven brain activity to a motor imagery task. We then tested fNIRS with three acutely brain injured patients and found that one could willfully modulate their brain activity when instructed to imagine playing a game of tennis-providing evidence of preserved consciousness despite no observable behavioral signs of awareness. The successful application of fNIRS for detecting preserved awareness among behaviorally nonresponsive patients highlights its potential as a valuable tool for uncovering hidden cognitive states in critical care settings.
Collapse
Affiliation(s)
- Karnig Kazazian
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Androu Abdalmalak
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Sergio L Novi
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Loretta Norton
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Psychology, King's University College at Western University, London N6A 2M3, Canada
| | | | - Matthew Kolisnyk
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
| | - Teneille E Gofton
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Rickson C Mesquita
- School of Computer Science, University of Birmingham, Birmingham B15 2SQ, United Kingdom
- Gleb Wataghin Institute of Physics, University of Campinas, Campinas 13083-970, Brazil
| | - Adrian M Owen
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
- Department of Psychology, Faculty of Social Science, Western University, London N6A 3K7, Canada
| | - Derek B Debicki
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| |
Collapse
|
7
|
Kamar F, Shoemaker LN, Eskandari R, Milej D, Drosdowech D, Murkin JM, St. Lawrence K, Chui J, Diop M. Assessing changes in regional cerebral hemodynamics in adults with a high-density full-head coverage time-resolved near-infrared spectroscopy device. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S33302. [PMID: 38707651 PMCID: PMC11068267 DOI: 10.1117/1.jbo.29.s3.s33302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
Significance Cerebral oximeters have the potential to detect abnormal cerebral blood oxygenation to allow for early intervention. However, current commercial systems have two major limitations: (1) spatial coverage of only the frontal region, assuming that surgery-related hemodynamic effects are global and (2) susceptibility to extracerebral signal contamination inherent to continuous-wave near-infrared spectroscopy (NIRS). Aim This work aimed to assess the feasibility of a high-density, time-resolved (tr) NIRS device (Kernel Flow) to monitor regional oxygenation changes across the cerebral cortex during surgery. Approach The Flow system was assessed using two protocols. First, digital carotid compression was applied to healthy volunteers to cause a rapid oxygenation decrease across the ipsilateral hemisphere without affecting the contralateral side. Next, the system was used on patients undergoing shoulder surgery to provide continuous monitoring of cerebral oxygenation. In both protocols, the improved depth sensitivity of trNIRS was investigated by applying moment analysis. A dynamic wavelet filtering approach was also developed to remove observed temperature-induced signal drifts. Results In the first protocol (28 ± 5 years; five females, five males), hair significantly impacted regional sensitivity; however, the enhanced depth sensitivity of trNIRS was able to separate brain and scalp responses in the frontal region. Regional sensitivity was improved in the clinical study given the age-related reduction in hair density of the patients (65 ± 15 years; 14 females, 13 males). In five patients who received phenylephrine to treat hypotension, different scalp and brain oxygenation responses were apparent, although no regional differences were observed. Conclusions The Kernel Flow has promise as an intraoperative neuromonitoring device. Although regional sensitivity was affected by hair color and density, enhanced depth sensitivity of trNIRS was able to resolve differences in scalp and brain oxygenation responses in both protocols.
Collapse
Affiliation(s)
- Farah Kamar
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Leena N. Shoemaker
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Rasa Eskandari
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Daniel Milej
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Darren Drosdowech
- Lawson Health Research Institute, London, Ontario, Canada
- Western University, Department of Orthopaedic Surgery, London, Ontario, Canada
| | - John M. Murkin
- Lawson Health Research Institute, London, Ontario, Canada
- Western University, Department of Anesthesia and Perioperative Medicine, London, Ontario, Canada
| | - Keith St. Lawrence
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Jason Chui
- Lawson Health Research Institute, London, Ontario, Canada
- Western University, Department of Anesthesia and Perioperative Medicine, London, Ontario, Canada
| | - Mamadou Diop
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
8
|
Canny E, Vansteensel MJ, van der Salm SMA, Müller-Putz GR, Berezutskaya J. Boosting brain-computer interfaces with functional electrical stimulation: potential applications in people with locked-in syndrome. J Neuroeng Rehabil 2023; 20:157. [PMID: 37980536 PMCID: PMC10656959 DOI: 10.1186/s12984-023-01272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
Individuals with a locked-in state live with severe whole-body paralysis that limits their ability to communicate with family and loved ones. Recent advances in brain-computer interface (BCI) technology have presented a potential alternative for these people to communicate by detecting neural activity associated with attempted hand or speech movements and translating the decoded intended movements to a control signal for a computer. A technique that could potentially enrich the communication capacity of BCIs is functional electrical stimulation (FES) of paralyzed limbs and face to restore body and facial movements of paralyzed individuals, allowing to add body language and facial expression to communication BCI utterances. Here, we review the current state of the art of existing BCI and FES work in people with paralysis of body and face and propose that a combined BCI-FES approach, which has already proved successful in several applications in stroke and spinal cord injury, can provide a novel promising mode of communication for locked-in individuals.
Collapse
Affiliation(s)
- Evan Canny
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra M A van der Salm
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Graz, Austria
| | - Julia Berezutskaya
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Vorreuther A, Bastian L, Benitez Andonegui A, Evenblij D, Riecke L, Lührs M, Sorger B. It takes two (seconds): decreasing encoding time for two-choice functional near-infrared spectroscopy brain-computer interface communication. NEUROPHOTONICS 2023; 10:045005. [PMID: 37928600 PMCID: PMC10620514 DOI: 10.1117/1.nph.10.4.045005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 11/07/2023]
Abstract
Significance Brain-computer interfaces (BCIs) can provide severely motor-impaired patients with a motor-independent communication channel. Functional near-infrared spectroscopy (fNIRS) constitutes a promising BCI-input modality given its high mobility, safety, user comfort, cost-efficiency, and relatively low motion sensitivity. Aim The present study aimed at developing an efficient and convenient two-choice fNIRS communication BCI by implementing a relatively short encoding time (2 s), considerably increasing communication speed, and decreasing the cognitive load of BCI users. Approach To encode binary answers to 10 biographical questions, 10 healthy adults repeatedly performed a combined motor-speech imagery task within 2 different time windows guided by auditory instructions. Each answer-encoding run consisted of 10 trials. Answers were decoded during the ongoing experiment from the time course of the individually identified most-informative fNIRS channel-by-chromophore combination. Results The answers of participants were decoded online with an accuracy of 85.8% (run-based group mean). Post-hoc analysis yielded an average single-trial accuracy of 68.1%. Analysis of the effect of number of trial repetitions showed that the best information-transfer rate could be obtained by combining four encoding trials. Conclusions The study demonstrates that an encoding time as short as 2 s can enable immediate, efficient, and convenient fNIRS-BCI communication.
Collapse
Affiliation(s)
- Anna Vorreuther
- Maastricht University, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- University of Stuttgart, Institute of Human Factors and Technology Management IAT, Applied Neurocognitive Systems, Stuttgart, Germany
| | - Lisa Bastian
- Maastricht University, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- University of Tübingen, Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, Tübingen, Germany
| | - Amaia Benitez Andonegui
- Maastricht University, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- NIH, MEG Core Facility National Institute of Mental Health, Bethesda, Maryland, United States
| | - Danielle Evenblij
- Maastricht University, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| | - Lars Riecke
- Maastricht University, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| | - Michael Lührs
- Maastricht University, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - Bettina Sorger
- Maastricht University, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
10
|
Van de Wauw C, Riecke L, Goebel R, Kaas A, Sorger B. Talking with hands and feet: Selective somatosensory attention and fMRI enable robust and convenient brain-based communication. Neuroimage 2023; 276:120172. [PMID: 37230207 DOI: 10.1016/j.neuroimage.2023.120172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
In brain-based communication, voluntarily modulated brain signals (instead of motor output) are utilized to interact with the outside world. The possibility to circumvent the motor system constitutes an important alternative option for severely paralyzed. Most communication brain-computer interface (BCI) paradigms require intact visual capabilities and impose a high cognitive load, but for some patients, these requirements are not given. In these situations, a better-suited, less cognitively demanding information-encoding approach may exploit auditorily-cued selective somatosensory attention to vibrotactile stimulation. Here, we propose, validate and optimize a novel communication-BCI paradigm using differential fMRI activation patterns evoked by selective somatosensory attention to tactile stimulation of the right hand or left foot. Using cytoarchitectonic probability maps and multi-voxel pattern analysis (MVPA), we show that the locus of selective somatosensory attention can be decoded from fMRI-signal patterns in (especially primary) somatosensory cortex with high accuracy and reliability, with the highest classification accuracy (85.93%) achieved when using Brodmann area 2 (SI-BA2) at a probability level of 0.2. Based on this outcome, we developed and validated a novel somatosensory attention-based yes/no communication procedure and demonstrated its high effectiveness even when using only a limited amount of (MVPA) training data. For the BCI user, the paradigm is straightforward, eye-independent, and requires only limited cognitive functioning. In addition, it is BCI-operator friendly given its objective and expertise-independent procedure. For these reasons, our novel communication paradigm has high potential for clinical applications.
Collapse
Affiliation(s)
- Cynthia Van de Wauw
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Amanda Kaas
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Si J, Yang Y, Xu L, Xu T, Liu H, Zhang Y, Jing R, Li J, Wang D, Wu S, He J. Evaluation of residual cognition in patients with disorders of consciousness based on functional near-infrared spectroscopy. NEUROPHOTONICS 2023; 10:025003. [PMID: 37064779 PMCID: PMC10091901 DOI: 10.1117/1.nph.10.2.025003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/26/2023] [Indexed: 06/06/2023]
Abstract
SIGNIFICANCE Accurate evaluation of consciousness in patients with prolonged disorders of consciousness (DOC) is critical for designing therapeutic plans, determining rehabilitative services, and predicting prognosis. Effective ways for detecting consciousness in patients with DOC are still needed. AIM Evaluation of the residual awareness in patients with DOC and investigation of the spatiotemporal differences in the hemodynamic responses between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS) groups using active command-driven motor imagery (MI) tasks. APPROACH In this study, functional near-infrared spectroscopy (fNIRS) was used to measure the changes of hemodynamic responses in 19 patients with DOC (9 MCS and 10 UWS) using active command-driven MI tasks. The characteristics of the hemodynamic responses were extracted to compare the differences between the MCS and UWS groups. Moreover, the correlations between the hemodynamic responses and the clinical behavioral evaluations were also studied. RESULTS The results showed significant differences in the spatiotemporal distribution of the hemodynamic responses between the MCS and UWS groups. For the patients with MCS, significant increases in task-evoked hemodynamic responses occurred during the "YES" questions of the command-driven MI tasks. Importantly, these changes were significantly correlated with their coma-recovery scale-revised (CRS-R) scores. However, for the patients with UWS, no significant changes of the hemodynamic responses were found. Additionally, the results did not show any statistical correlation between the hemodynamic responses and their CRS-R scores. CONCLUSIONS The fNIRS-based command-driven MI tasks can be used as a promising tool for detecting residual awareness in patients with DOC. We hope that the findings and the active paradigm used in this study will provide useful insights into the diagnosis, therapy, and prognosis of this challenging patient population.
Collapse
Affiliation(s)
- Juanning Si
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Yi Yang
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| | - Long Xu
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| | - Tianshuai Xu
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Hao Liu
- Chinese Academy of Sciences, Institute of Automation, Brainnetome Center, Beijing, China
- Chinese Academy of Sciences, Institute of Automation, National Laboratory of Pattern Recognition, Beijing, China
| | - Yujin Zhang
- Chinese Academy of Sciences, Institute of Automation, Brainnetome Center, Beijing, China
- Chinese Academy of Sciences, Institute of Automation, National Laboratory of Pattern Recognition, Beijing, China
| | - Rixing Jing
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Jinglian Li
- Sanhe Yanjiao Fuhe First Hospital, Department of Neurosurgery, Langfang, China
| | - Dongdong Wang
- Sanhe Yanjiao Fuhe First Hospital, Department of Neurosurgery, Langfang, China
| | - Sijin Wu
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Jianghong He
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| |
Collapse
|
12
|
Norton L, Graham M, Kazazian K, Gofton T, Weijer C, Debicki D, Fernandez-Espejo D, Thenayan EA, Owen AM. Use of functional magnetic resonance imaging to assess cognition and consciousness in severe Guillain-Barré syndrome. Int J Clin Health Psychol 2023; 23:100347. [DOI: 10.1016/j.ijchp.2022.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
|
13
|
Zhang J, Zhang E, Yuan C, Zhang H, Wang X, Yan F, Pei Y, Li Y, Wei M, Yang Z, Wang X, Dong L. Abnormal default mode network could be a potential prognostic marker in patients with disorders of consciousness. Clin Neurol Neurosurg 2022; 218:107294. [PMID: 35597165 DOI: 10.1016/j.clineuro.2022.107294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The study aimed to investigate disorders of consciousness (DOC) mechanisms of patients with severe traumatic brain injury (sTBI) related to default mode network (DMN) and to introduce a machine learning model that predicts the prognosis of these patients for 6 months. METHODS The sTBI patients suffering from DOC and healthy controls underwent functional magnetic resonance imaging. We defined patients with Extended Glasgow Outcome Score ≥ 5 as good outcome group, otherwise they were poor outcome group. The differences of DMN between sTBI and healthy controls and between good and poor outcome groups were compared. Based on the brain regions with altered functional connectivity between good and poor outcome groups, they were divided into 8 regions of interests according to side. The Z values of the regions of interests were extracted by Rest 1.8. Based on Z values, the Subspace K-Nearest Neighbor (Subspace KNN) was conducted to classify prognosis of sTBI patients suffering from DOC. RESULTS A total of 84 DMNs derived from patients and 45 DMNs from healthy controls were finally analyzed. The connectivity of the DMN was significantly decreased in sTBI patients suffering from DOC (Alphasim corrected, P < 0.05). In addition, compared with the poor outcome group (DMN samples = 60), the brain regions of DMN with decreased functional connectivity in the good outcome group (DMN samples = 24) the following bilateral areas: brodman Area 11, anterior cingulate and paracingulate gyri, brodman Area 25, olfactory cortex (Alphasim corrected, P < 0.05). The ability of Subspace KNN machine learning to distinguish the prognosis of patients (area under curve) was 0.97. CONCLUSIONS The interruption of DMN may be one of the reasons for DOC in patients with sTBI. Furthermore, based on early DMN (1-4 weeks), Subspace KNN machine learning has the potential value to distinguish the prognosis (6 months after brain trauma) of sTBI patients suffering from DOC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China
| | - Enpeng Zhang
- Department of Neurosurgery, Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou 225000, China
| | - Cong Yuan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China
| | - Xingdong Wang
- Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China
| | - Fuli Yan
- Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China
| | - Yunlong Pei
- Department of Neurosurgery, Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou 225000, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China
| | - Min Wei
- Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China
| | - Zhijie Yang
- Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China
| | - Xiaodong Wang
- Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China.
| | - Lun Dong
- Department of Neurosurgery, Clinical Medical College,Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
14
|
Abdalmalak A, Novi SL, Kazazian K, Norton L, Benaglia T, Slessarev M, Debicki DB, Lawrence KS, Mesquita RC, Owen AM. Effects of Systemic Physiology on Mapping Resting-State Networks Using Functional Near-Infrared Spectroscopy. Front Neurosci 2022; 16:803297. [PMID: 35350556 PMCID: PMC8957952 DOI: 10.3389/fnins.2022.803297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Resting-state functional connectivity (rsFC) has gained popularity mainly due to its simplicity and potential for providing insights into various brain disorders. In this vein, functional near-infrared spectroscopy (fNIRS) is an attractive choice due to its portability, flexibility, and low cost, allowing for bedside imaging of brain function. While promising, fNIRS suffers from non-neural signal contaminations (i.e., systemic physiological noise), which can increase correlation across fNIRS channels, leading to spurious rsFC networks. In the present work, we hypothesized that additional measurements with short channels, heart rate, mean arterial pressure, and end-tidal CO2 could provide a better understanding of the effects of systemic physiology on fNIRS-based resting-state networks. To test our hypothesis, we acquired 12 min of resting-state data from 10 healthy participants. Unlike previous studies, we investigated the efficacy of different pre-processing approaches in extracting resting-state networks. Our results are in agreement with previous studies and reinforce the fact that systemic physiology can overestimate rsFC. We expanded on previous work by showing that removal of systemic physiology decreases intra- and inter-subject variability, increasing the ability to detect neural changes in rsFC across groups and over longitudinal studies. Our results show that by removing systemic physiology, fNIRS can reproduce resting-state networks often reported with functional magnetic resonance imaging (fMRI). Finally, the present work details the effects of systemic physiology and outlines how to remove (or at least ameliorate) their contributions to fNIRS signals acquired at rest.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
- *Correspondence: Androu Abdalmalak,
| | - Sergio L. Novi
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas, Brazil
- *Correspondence: Androu Abdalmalak,
| | - Karnig Kazazian
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King’s University College at Western University, London, ON, Canada
| | - Tatiana Benaglia
- Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, Campinas, Brazil
| | - Marat Slessarev
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Derek B. Debicki
- Brain and Mind Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Rickson C. Mesquita
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas, Brazil
| | - Adrian M. Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| |
Collapse
|
15
|
Kazazian K, Norton L, Laforge G, Abdalmalak A, Gofton TE, Debicki D, Slessarev M, Hollywood S, Lawrence KS, Owen AM. Improving Diagnosis and Prognosis in Acute Severe Brain Injury: A Multimodal Imaging Protocol. Front Neurol 2021; 12:757219. [PMID: 34938260 PMCID: PMC8685572 DOI: 10.3389/fneur.2021.757219] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Multi-modal neuroimaging techniques have the potential to dramatically improve the diagnosis of the level consciousness and prognostication of neurological outcome for patients with severe brain injury in the intensive care unit (ICU). This protocol describes a study that will utilize functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and functional Near Infrared Spectroscopy (fNIRS) to measure and map the brain activity of acute critically ill patients. Our goal is to investigate whether these modalities can provide objective and quantifiable indicators of good neurological outcome and reliably detect conscious awareness. To this end, we will conduct a prospective longitudinal cohort study to validate the prognostic and diagnostic utility of neuroimaging techniques in the ICU. We will recruit 350 individuals from two ICUs over the course of 7 years. Participants will undergo fMRI, EEG, and fNIRS testing several times over the first 10 days of care to assess for residual cognitive function and evidence of covert awareness. Patients who regain behavioral awareness will be asked to complete web-based neurocognitive tests for 1 year, as well as return for follow up neuroimaging to determine which acute imaging features are most predictive of cognitive and functional recovery. Ultimately, multi-modal neuroimaging techniques may improve the clinical assessments of patients' level of consciousness, aid in the prediction of outcome, and facilitate efforts to find interventional methods that improve recovery and quality of life.
Collapse
Affiliation(s)
- Karnig Kazazian
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's University College at Western University, London, ON, Canada
| | - Geoffrey Laforge
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Androu Abdalmalak
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Teneille E Gofton
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Derek Debicki
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marat Slessarev
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarah Hollywood
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
16
|
Nagels-Coune L, Riecke L, Benitez-Andonegui A, Klinkhammer S, Goebel R, De Weerd P, Lührs M, Sorger B. See, Hear, or Feel - to Speak: A Versatile Multiple-Choice Functional Near-Infrared Spectroscopy-Brain-Computer Interface Feasible With Visual, Auditory, or Tactile Instructions. Front Hum Neurosci 2021; 15:784522. [PMID: 34899223 PMCID: PMC8656940 DOI: 10.3389/fnhum.2021.784522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Severely motor-disabled patients, such as those suffering from the so-called "locked-in" syndrome, cannot communicate naturally. They may benefit from brain-computer interfaces (BCIs) exploiting brain signals for communication and therewith circumventing the muscular system. One BCI technique that has gained attention recently is functional near-infrared spectroscopy (fNIRS). Typically, fNIRS-based BCIs allow for brain-based communication via voluntarily modulation of brain activity through mental task performance guided by visual or auditory instructions. While the development of fNIRS-BCIs has made great progress, the reliability of fNIRS-BCIs across time and environments has rarely been assessed. In the present fNIRS-BCI study, we tested six healthy participants across three consecutive days using a straightforward four-choice fNIRS-BCI communication paradigm that allows answer encoding based on instructions using various sensory modalities. To encode an answer, participants performed a motor imagery task (mental drawing) in one out of four time periods. Answer encoding was guided by either the visual, auditory, or tactile sensory modality. Two participants were tested outside the laboratory in a cafeteria. Answers were decoded from the time course of the most-informative fNIRS channel-by-chromophore combination. Across the three testing days, we obtained mean single- and multi-trial (joint analysis of four consecutive trials) accuracies of 62.5 and 85.19%, respectively. Obtained multi-trial accuracies were 86.11% for visual, 80.56% for auditory, and 88.89% for tactile sensory encoding. The two participants that used the fNIRS-BCI in a cafeteria obtained the best single- (72.22 and 77.78%) and multi-trial accuracies (100 and 94.44%). Communication was reliable over the three recording sessions with multi-trial accuracies of 86.11% on day 1, 86.11% on day 2, and 83.33% on day 3. To gauge the trade-off between number of optodes and decoding accuracy, averaging across two and three promising fNIRS channels was compared to the one-channel approach. Multi-trial accuracy increased from 85.19% (one-channel approach) to 91.67% (two-/three-channel approach). In sum, the presented fNIRS-BCI yielded robust decoding results using three alternative sensory encoding modalities. Further, fNIRS-BCI communication was stable over the course of three consecutive days, even in a natural (social) environment. Therewith, the developed fNIRS-BCI demonstrated high flexibility, reliability and robustness, crucial requirements for future clinical applicability.
Collapse
Affiliation(s)
- Laurien Nagels-Coune
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
- Zorggroep Sint-Kamillus, Bierbeek, Belgium
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
| | - Amaia Benitez-Andonegui
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
- MEG Core Facility, National Institutes of Mental Health, Bethesda, MD, United States
| | - Simona Klinkhammer
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
- Brain Innovation B.V., Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands
| | | | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
| |
Collapse
|
17
|
Gomez A, Sainbhi AS, Froese L, Batson C, Alizadeh A, Mendelson AA, Zeiler FA. Near Infrared Spectroscopy for High-Temporal Resolution Cerebral Physiome Characterization in TBI: A Narrative Review of Techniques, Applications, and Future Directions. Front Pharmacol 2021; 12:719501. [PMID: 34803673 PMCID: PMC8602694 DOI: 10.3389/fphar.2021.719501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Multimodal monitoring has been gaining traction in the critical care of patients following traumatic brain injury (TBI). Through providing a deeper understanding of the individual patient's comprehensive physiologic state, or "physiome," following injury, these methods hold the promise of improving personalized care and advancing precision medicine. One of the modalities being explored in TBI care is near-infrared spectroscopy (NIRS), given it's non-invasive nature and ability to interrogate microvascular and tissue oxygen metabolism. In this narrative review, we begin by discussing the principles of NIRS technology, including spatially, frequency, and time-resolved variants. Subsequently, the applications of NIRS in various phases of clinical care following TBI are explored. These applications include the pre-hospital, intraoperative, neurocritical care, and outpatient/rehabilitation setting. The utility of NIRS to predict functional outcomes and evaluate dysfunctional cerebrovascular reactivity is also discussed. Finally, future applications and potential advancements in NIRS-based physiologic monitoring of TBI patients are presented, with a description of the potential integration with other omics biomarkers.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Asher A Mendelson
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Ioussoufovitch S, Cohen DJF, Milej D, Diop M. Compressed sensing time-resolved spectrometer for quantification of light absorbers in turbid media. BIOMEDICAL OPTICS EXPRESS 2021; 12:6442-6460. [PMID: 34745748 PMCID: PMC8547999 DOI: 10.1364/boe.433427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Time-resolved (TR) spectroscopy is well-suited to address the challenges of quantifying light absorbers in highly scattering media such as living tissue; however, current TR spectrometers are either based on expensive array detectors or rely on wavelength scanning. Here, we introduce a TR spectrometer architecture based on compressed sensing (CS) and time-correlated single-photon counting. Using both CS and basis scanning, we demonstrate that-in homogeneous and two-layer tissue-mimicking phantoms made of Intralipid and Indocyanine Green-the CS method agrees with or outperforms uncompressed approaches. Further, we illustrate the superior depth sensitivity of TR spectroscopy and highlight the potential of the device to quantify absorption changes in deeper (>1 cm) tissue layers.
Collapse
Affiliation(s)
- Seva Ioussoufovitch
- Western University, Faculty of Engineering, School of Biomedical Engineering, Collaborative Training Program in Musculoskeletal Health Research, Bone & Joint Institute, 1151 Richmond St., London, N6A 5C1, Canada
| | - David Jonathan Fulop Cohen
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
| | - Daniel Milej
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
- Lawson Health Research Institute, Imaging Program, 268 Grosvenor St., London, N6A 4V2, Canada
| | - Mamadou Diop
- Western University, Faculty of Engineering, School of Biomedical Engineering, Collaborative Training Program in Musculoskeletal Health Research, Bone & Joint Institute, 1151 Richmond St., London, N6A 5C1, Canada
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
- Lawson Health Research Institute, Imaging Program, 268 Grosvenor St., London, N6A 4V2, Canada
| |
Collapse
|
19
|
Li M, Yang Y, Zhang Y, Gao Y, Jing R, Dang Y, Chen X, He J, Si J. Detecting Residual Awareness in Patients With Prolonged Disorders of Consciousness: An fNIRS Study. Front Neurol 2021; 12:618055. [PMID: 34393964 PMCID: PMC8355369 DOI: 10.3389/fneur.2021.618055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in neuroimaging technologies have provided insights into detecting residual consciousness and assessing cognitive abilities in patients with disorders of consciousness (DOC). Functional near-infrared spectroscopy (fNIRS) is non-invasive and portable and can be used for longitudinal bedside monitoring, making it uniquely suited for evaluating brain function in patients with DOC at appropriate spatiotemporal resolutions. In this pilot study, an active command-driven motor imagery (MI) paradigm based on fNIRS was used to detect residual consciousness in patients with prolonged DOC. A support vector machine (SVM) classifier was used to classify yes-or-no responses. The results showed that relatively reliable responses were detected from three out of five patients in a minimally consciousness state (MCS). One of the patients answered all the questions accurately when assessed according to this method. This study confirmed the feasibility of using portable fNIRS technology to detect residual cognitive ability in patients with prolonged DOC by active command-driven motor imagery. We hope to detect the exact level of consciousness in DOC patients who may have a higher level of consciousness.
Collapse
Affiliation(s)
- Meng Li
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yujin Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuhang Gao
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Rixing Jing
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yuanyuan Dang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Juanning Si
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
20
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Owen AM, Lawrence KS. The Potential Role of fNIRS in Evaluating Levels of Consciousness. Front Hum Neurosci 2021; 15:703405. [PMID: 34305558 PMCID: PMC8296905 DOI: 10.3389/fnhum.2021.703405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's College, Western University, London, ON, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, ON, Canada.,Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
21
|
Chen T, Zhao C, Pan X, Qu J, Wei J, Li C, Liang Y, Zhang X. Decoding different working memory states during an operation span task from prefrontal fNIRS signals. BIOMEDICAL OPTICS EXPRESS 2021; 12:3495-3511. [PMID: 34221675 PMCID: PMC8221954 DOI: 10.1364/boe.426731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We propose an effective and practical decoding method of different mental states for potential applications for the design of brain-computer interfaces, prediction of cognitive behaviour, and investigation of cognitive mechanism. Functional near infrared spectroscopy (fNIRS) signals that interrogated the prefrontal and parietal cortices and were evaluated by generalized linear model were recorded when nineteen healthy adults performed the operation span (OSPAN) task. The oxygenated hemoglobin changes during OSPAN, response, and rest periods were classified with a support vector machine (SVM). The relevance vector regression algorithm was utilized for prediction of cognitive performance based on multidomain features of fNIRS signals from the OSPAN task. We acquired decent classification accuracies for OSPAN vs. response (above 91.2%) and for OSPAN vs. rest (above 94.7%). Eight of the ten cognitive testing scores could be predicted from the combination of OSPAN and response features, which indicated the brain hemodynamic responses contain meaningful information suitable for predicting cognitive performance.
Collapse
Affiliation(s)
- Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Cui Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xingyu Pan
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Junda Qu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Lu H, Gong Y, Huang P, Zhang Y, Guo Z, Zhu X, You X. Effect of Repeated Anodal HD-tDCS on Executive Functions: Evidence From a Pilot and Single-Blinded fNIRS Study. Front Hum Neurosci 2021; 14:583730. [PMID: 33536886 PMCID: PMC7847848 DOI: 10.3389/fnhum.2020.583730] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/17/2020] [Indexed: 12/01/2022] Open
Abstract
Executive functions are of vital importance in the process of active cognition, which is thought to be associated with the dorsolateral prefrontal cortex (DLPFC). As a valid brain stimulation technology, high-definition transcranial direct current stimulation (HD-tDCS) has been used to optimize cognitive function in healthy adults. Substantial evidence indicates that short-term or single anodal tDCS sessions over the left DLPFC will enhance the performance of executive functions. However, the changes in performance and cortical activation of executive functions after modulation by repeated anodal HD-tDCS is as yet unexplored. This study aims to examine changes in three core components of executive functions (inhibitory control, working memory, and cognitive flexibility) produced by nine HD-tDCS sessions (1.5 mA, over left DLPFC, 20 min per session), and to use functional near-infrared spectroscopy (fNIRS) to bilaterally record DLPFC neural activity. A total of 43 participants were divided randomly into two study groups (anodal group vs. sham group) to complete nine interventions. Our results demonstrate that the enhancement of cognitive flexibility in the anodal group was significantly better than that in the sham group. Additionally, a Stroop effect-related decrease in oxygenated hemoglobin (HbO) concentration in the DLPFC was observed in the anodal group but not the sham group. In conclusion, our study found that repeated anodal HD-tDCS sessions can significantly promote cognitive flexibility, one of the core components of executive function, and that alterations in DLPFC activation can enhance our understanding of the neuroplastic modifications modulated by HD-tDCS.
Collapse
Affiliation(s)
- Hongliang Lu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yue Gong
- School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Peng Huang
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yajuan Zhang
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Zhihua Guo
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xia Zhu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
23
|
Nazeer H, Naseer N, Mehboob A, Khan MJ, Khan RA, Khan US, Ayaz Y. Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method. SENSORS 2020; 20:s20236995. [PMID: 33297516 PMCID: PMC7730208 DOI: 10.3390/s20236995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023]
Abstract
A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel’s correlation coefficients’ maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems’ performance.
Collapse
Affiliation(s)
- Hammad Nazeer
- Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan;
| | - Noman Naseer
- Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan;
- Correspondence:
| | - Aakif Mehboob
- School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan; (A.M.); (M.J.K.); (Y.A.)
| | - Muhammad Jawad Khan
- School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan; (A.M.); (M.J.K.); (Y.A.)
- National Centre of Artificial Intelligence (NCAI), Islamabad 44000, Pakistan
| | - Rayyan Azam Khan
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9, Canada;
| | - Umar Shahbaz Khan
- Department of Mechatronics Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan;
- National Centre of Robotics and Automation (NCRA), Rawalpindi 46000, Pakistan
| | - Yasar Ayaz
- School of Mechanical and Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan; (A.M.); (M.J.K.); (Y.A.)
- National Centre of Artificial Intelligence (NCAI), Islamabad 44000, Pakistan
| |
Collapse
|
24
|
Karunakaran KD, Peng K, Berry D, Green S, Labadie R, Kussman B, Borsook D. NIRS measures in pain and analgesia: Fundamentals, features, and function. Neurosci Biobehav Rev 2020; 120:335-353. [PMID: 33159918 DOI: 10.1016/j.neubiorev.2020.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Current pain assessment techniques based only on clinical evaluation and self-reports are not objective and may lead to inadequate treatment. Having a functional biomarker will add to the clinical fidelity, diagnosis, and perhaps improve treatment efficacy in patients. While many approaches have been deployed in pain biomarker discovery, functional near-infrared spectroscopy (fNIRS) is a technology that allows for non-invasive measurement of cortical hemodynamics. The utility of fNIRS is especially attractive given its ability to detect specific changes in the somatosensory and high-order cortices as well as its ability to measure (1) brain function similar to functional magnetic resonance imaging, (2) graded responses to noxious and innocuous stimuli, (3) analgesia, and (4) nociception under anesthesia. In this review, we evaluate the utility of fNIRS in nociception/pain with particular focus on its sensitivity and specificity, methodological advantages and limitations, and the current and potential applications in various pain conditions. Everything considered, fNIRS technology could enhance our ability to evaluate evoked and persistent pain across different age groups and clinical populations.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| | - Ke Peng
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States; Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, QC, Canada
| | - Delany Berry
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Stephen Green
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Robert Labadie
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Barry Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
25
|
Hernandez-Martin E, Marcano F, Modroño C, Janssen N, González-Mora JL. Diffuse optical tomography to measure functional changes during motor tasks: a motor imagery study. BIOMEDICAL OPTICS EXPRESS 2020; 11:6049-6067. [PMID: 33282474 PMCID: PMC7687968 DOI: 10.1364/boe.399907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/03/2023]
Abstract
The present work shows the spatial reliability of the diffuse optical tomography (DOT) system in a group of healthy subjects during a motor imagery task. Prior to imagery task performance, the subjects executed a motor task based on the finger to thumb opposition for motor training, and to corroborate the DOT spatial localization during the motor execution. DOT technology and data treatment allows us to distinguish oxy- and deoxyhemoglobin at the cerebral gyri level unlike the cerebral activations provided by fMRI series that were processed using different approaches. Here we show the DOT reliability showing functional activations at the cerebral gyri level during motor execution and motor imagery, which provide subtler cerebral activations than the motor execution. These results will allow the use of the DOT system as a monitoring device in a brain computer interface.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
| | - Francisco Marcano
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Cristian Modroño
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Niels Janssen
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
- Psychology Department, Universidad de La Laguna 38071, Spain
| | - Jose Luis González-Mora
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| |
Collapse
|
26
|
Decoding visual information from high-density diffuse optical tomography neuroimaging data. Neuroimage 2020; 226:117516. [PMID: 33137479 PMCID: PMC8006181 DOI: 10.1016/j.neuroimage.2020.117516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Neural decoding could be useful in many ways, from serving as a neuroscience research tool to providing a means of augmented communication for patients with neurological conditions. However, applications of decoding are currently constrained by the limitations of traditional neuroimaging modalities. Electrocorticography requires invasive neurosurgery, magnetic resonance imaging (MRI) is too cumbersome for uses like daily communication, and alternatives like functional near-infrared spectroscopy (fNIRS) offer poor image quality. High-density diffuse optical tomography (HD-DOT) is an emerging modality that uses denser optode arrays than fNIRS to combine logistical advantages of optical neuroimaging with enhanced image quality. Despite the resulting promise of HD-DOT for facilitating field applications of neuroimaging, decoding of brain activity as measured by HD-DOT has yet to be evaluated. Objective: To assess the feasibility and performance of decoding with HD-DOT in visual cortex. Methods and Results: To establish the feasibility of decoding at the single-trial level with HD-DOT, a template matching strategy was used to decode visual stimulus position. A receiver operating characteristic (ROC) analysis was used to quantify the sensitivity, specificity, and reproducibility of binary visual decoding. Mean areas under the curve (AUCs) greater than 0.97 across 10 imaging sessions in a highly sampled participant were observed. ROC analyses of decoding across 5 participants established both reproducibility in multiple individuals and the feasibility of inter-individual decoding (mean AUCs > 0.7), although decoding performance varied between individuals. Phase-encoded checkerboard stimuli were used to assess more complex, non-binary decoding with HD-DOT. Across 3 highly sampled participants, the phase of a 60° wide checkerboard wedge rotating 10° per second through 360° was decoded with a within-participant error of 25.8±24.7°. Decoding between participants was also feasible based on permutation-based significance testing. Conclusions: Visual stimulus information can be decoded accurately, reproducibly, and across a range of detail (for both binary and non-binary outcomes) at the single-trial level (without needing to block-average test data) using HD-DOT data. These results lay the foundation for future studies of more complex decoding with HD-DOT and applications in clinical populations.
Collapse
|
27
|
Laforge G, Gonzalez-Lara LE, Owen AM, Stojanoski B. Individualized assessment of residual cognition in patients with disorders of consciousness. Neuroimage Clin 2020; 28:102472. [PMID: 33395966 PMCID: PMC7652775 DOI: 10.1016/j.nicl.2020.102472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/02/2022]
Abstract
Patients diagnosed with disorders of consciousness show minimal or inconsistent behavioural evidence of conscious awareness. However, using functional neuroimaging, recent research in clinical neuroscience has identified a subpopulation of these patients who reliably produce neural markers indicative of awareness. In this study, we recorded electroencephalograms during a response-free movie task to assess narrative processing in patients with disorders of consciousness. Thirteen patients diagnosed with a disorder of consciousness and 28 healthy controls participated in this study. We designed a movie-watching/listening paradigm involving two suspenseful movie clips, one audiovisual and one audio-only, and used electroencephalography to extract patterns of brain activity that were maximally correlated between subjects. These activity patterns served as electrophysiological indices of narrative processing, which were compared to the neural responses of patients during the same movies. Our analysis revealed two patterns of neural activity, one for each movie condition, that were significantly and reliably correlated between healthy participants. Of the twelve patients who watched the audiovisual movie, 25% produced a pattern of activity that was significantly correlated with the healthy group, while of the ten who listened to the audio narrative, 30% produced electrophysiological patterns similar to controls (one patient responded appropriately to both). The method presented here allows for rapid bedside assessment of higher-order cognitive processing in patients with disorders of consciousness. By leveraging the common neural response to movie stimuli, we were able to identify comparable patterns of brain activity in individual, behaviourally non-responsive patients, reflecting a capacity for narrative processing.
Collapse
Affiliation(s)
- Geoffrey Laforge
- The Brain and Mind Institute, The University of Western Ontario, London ON N6A 5B7, Canada.
| | - Laura E Gonzalez-Lara
- The Brain and Mind Institute, The University of Western Ontario, London ON N6A 5B7, Canada
| | - Adrian M Owen
- The Brain and Mind Institute, The University of Western Ontario, London ON N6A 5B7, Canada; The Department of Psychology, The University of Western Ontario, London ON N6A 5B7, Canada; The Department of Physiology and Pharmacology, The University of Western Ontario, London ON N6A 5B7, Canada
| | - Bobby Stojanoski
- The Brain and Mind Institute, The University of Western Ontario, London ON N6A 5B7, Canada; The Department of Psychology, The University of Western Ontario, London ON N6A 5B7, Canada
| |
Collapse
|
28
|
Nazeer H, Naseer N, Khan RA, Noori FM, Qureshi NK, Khan US, Khan MJ. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis. J Neural Eng 2020; 17:056025. [DOI: 10.1088/1741-2552/abb417] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Milej D, Abdalmalak A, Rajaram A, St. Lawrence K. Direct assessment of extracerebral signal contamination on optical measurements of cerebral blood flow, oxygenation, and metabolism. NEUROPHOTONICS 2020; 7:045002. [PMID: 33062801 PMCID: PMC7540337 DOI: 10.1117/1.nph.7.4.045002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 05/08/2023]
Abstract
Significance: Near-infrared spectroscopy (NIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), oxygenation, and oxygen metabolism. However, these methods are vulnerable to signal contamination from the scalp. Our work evaluated methods of reducing the impact of this contamination using time-resolved (TR) NIRS and multidistance (MD) DCS. Aim: The magnitude of scalp contamination was evaluated by measuring the flow, oxygenation, and metabolic responses to a global hemodynamic challenge. Contamination was assessed by collecting data with and without impeding scalp blood flow. Approach: Experiments involved healthy participants. A pneumatic tourniquet was used to cause scalp ischemia, as confirmed by contrast-enhanced NIRS, and a computerized gas system to generate a hypercapnic challenge. Results: Comparing responses acquired with and without the tourniquet demonstrated that the TR-NIRS technique could reduce scalp contributions in hemodynamic signals up to 4 times (r SD = 3 cm ) and 6 times (r SD = 4 cm ). Similarly, blood flow responses from the scalp and brain could be separated by analyzing MD DCS data with a multilayer model. Using these techniques, there was no change in metabolism during hypercapnia, as expected, despite large increases in CBF and oxygenation. Conclusion: NIRS/DCS can accurately monitor CBF and metabolism with the appropriate enhancement to depth sensitivity, highlighting the potential of these techniques for neuromonitoring.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Androu Abdalmalak
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ajay Rajaram
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
30
|
Milej D, Shahid M, Abdalmalak A, Rajaram A, Diop M, St. Lawrence K. Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4571-4585. [PMID: 32923065 PMCID: PMC7449704 DOI: 10.1364/boe.392113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
This study presents the characterization of dynamic cerebrovascular reactivity (CVR) in healthy adults by a hybrid optical system combining time-resolved (TR) near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS). Blood flow and oxygenation (oxy- and deoxy-hemoglobin) responses to a step hypercapnic challenge were recorded to characterize dynamic and static components of CVR. Data were acquired at short and long source-detector separations (r SD) to assess the impact of scalp hemodynamics, and moment analysis applied to the TR-NIRS to further enhance the sensitivity to the brain. Comparing blood flow and oxygenation responses acquired at short and long r SD demonstrated that scalp contamination distorted the CVR time courses, particularly for oxyhemoglobin. This effect was significantly diminished by the greater depth sensitivity of TR NIRS and less evident in the DCS data due to the higher blood flow in the brain compared to the scalp. The reactivity speed was similar for blood flow and oxygenation in the healthy brain. Given the ease-of-use, portability, and non-invasiveness of this hybrid approach, it is well suited to investigate if the temporal relationship between CBF and oxygenation is altered by factors such as age and cerebrovascular disease.
Collapse
Affiliation(s)
- Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Marwan Shahid
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
31
|
Hramov AE, Grubov V, Badarin A, Maksimenko VA, Pisarchik AN. Functional Near-Infrared Spectroscopy for the Classification of Motor-Related Brain Activity on the Sensor-Level. SENSORS 2020; 20:s20082362. [PMID: 32326270 PMCID: PMC7219246 DOI: 10.3390/s20082362] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022]
Abstract
Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement. The recognition accuracy of real movements is close to 100%, while the classification accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of the proposed method is its ability to classify real and imaginary movements with sufficiently high efficiency without the need for recalculating parameters. The proposed system can serve as a sensor of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas and strokes.
Collapse
Affiliation(s)
- Alexander E. Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
- Saratov State Medical University, Bolshaya Kazachya Str., 112, 410012 Saratov, Russia
- Correspondence: ; Tel.: +7-927-123-3294
| | - Vadim Grubov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
| | - Artem Badarin
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
| | - Vladimir A. Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
| | - Alexander N. Pisarchik
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
32
|
Nagels-Coune L, Benitez-Andonegui A, Reuter N, Lührs M, Goebel R, De Weerd P, Riecke L, Sorger B. Brain-Based Binary Communication Using Spatiotemporal Features of fNIRS Responses. Front Hum Neurosci 2020; 14:113. [PMID: 32351371 PMCID: PMC7174771 DOI: 10.3389/fnhum.2020.00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
“Locked-in” patients lose their ability to communicate naturally due to motor system dysfunction. Brain-computer interfacing offers a solution for their inability to communicate by enabling motor-independent communication. Straightforward and convenient in-session communication is essential in clinical environments. The present study introduces a functional near-infrared spectroscopy (fNIRS)-based binary communication paradigm that requires limited preparation time and merely nine optodes. Eighteen healthy participants performed two mental imagery tasks, mental drawing and spatial navigation, to answer yes/no questions during one of two auditorily cued time windows. Each of the six questions was answered five times, resulting in five trials per answer. This communication paradigm thus combines both spatial (two different mental imagery tasks, here mental drawing for “yes” and spatial navigation for “no”) and temporal (distinct time windows for encoding a “yes” and “no” answer) fNIRS signal features for information encoding. Participants’ answers were decoded in simulated real-time using general linear model analysis. Joint analysis of all five encoding trials resulted in an average accuracy of 66.67 and 58.33% using the oxygenated (HbO) and deoxygenated (HbR) hemoglobin signal respectively. For half of the participants, an accuracy of 83.33% or higher was reached using either the HbO signal or the HbR signal. For four participants, effective communication with 100% accuracy was achieved using either the HbO or HbR signal. An explorative analysis investigated the differentiability of the two mental tasks based solely on spatial fNIRS signal features. Using multivariate pattern analysis (MVPA) group single-trial accuracies of 58.33% (using 20 training trials per task) and 60.56% (using 40 training trials per task) could be obtained. Combining the five trials per run using a majority voting approach heightened these MVPA accuracies to 62.04 and 75%. Additionally, an fNIRS suitability questionnaire capturing participants’ physical features was administered to explore its predictive value for evaluating general data quality. Obtained questionnaire scores correlated significantly (r = -0.499) with the signal-to-noise of the raw light intensities. While more work is needed to further increase decoding accuracy, this study shows the potential of answer encoding using spatiotemporal fNIRS signal features or spatial fNIRS signal features only.
Collapse
Affiliation(s)
- Laurien Nagels-Coune
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands.,University Psychiatric Centre Sint-Kamillus, Bierbeek, Belgium
| | - Amaia Benitez-Andonegui
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands
| | - Niels Reuter
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | | | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands.,Brain Innovation B.V., Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands
| |
Collapse
|
33
|
Brain–machine interfaces using functional near-infrared spectroscopy: a review. ARTIFICIAL LIFE AND ROBOTICS 2020. [DOI: 10.1007/s10015-020-00592-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Abdalmalak A, Milej D, Yip LCM, Khan AR, Diop M, Owen AM, St Lawrence K. Assessing Time-Resolved fNIRS for Brain-Computer Interface Applications of Mental Communication. Front Neurosci 2020; 14:105. [PMID: 32132894 PMCID: PMC7040089 DOI: 10.3389/fnins.2020.00105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Brain-computer interfaces (BCIs) are becoming increasingly popular as a tool to improve the quality of life of patients with disabilities. Recently, time-resolved functional near-infrared spectroscopy (TR-fNIRS) based BCIs are gaining traction because of their enhanced depth sensitivity leading to lower signal contamination from the extracerebral layers. This study presents the first account of TR-fNIRS based BCI for “mental communication” on healthy participants. Twenty-one (21) participants were recruited and were repeatedly asked a series of questions where they were instructed to imagine playing tennis for “yes” and to stay relaxed for “no.” The change in the mean time-of-flight of photons was used to calculate the change in concentrations of oxy- and deoxyhemoglobin since it provides a good compromise between depth sensitivity and signal-to-noise ratio. Features were extracted from the average oxyhemoglobin signals to classify them as “yes” or “no” responses. Linear-discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the responses using the leave-one-out cross-validation method. The overall accuracies achieved for all participants were 75% and 76%, using LDA and SVM, respectively. The results also reveal that there is no significant difference in accuracy between questions. In addition, physiological parameters [heart rate (HR) and mean arterial pressure (MAP)] were recorded on seven of the 21 participants during motor imagery (MI) and rest to investigate changes in these parameters between conditions. No significant difference in these parameters was found between conditions. These findings suggest that TR-fNIRS could be suitable as a BCI for patients with brain injuries.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Daniel Milej
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Lawrence C M Yip
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
35
|
Bayne T, Seth AK, Massimini M. Are There Islands of Awareness? Trends Neurosci 2020; 43:6-16. [DOI: 10.1016/j.tins.2019.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
|
36
|
Owen AM. The Search for Consciousness. Neuron 2019; 102:526-528. [PMID: 31071287 DOI: 10.1016/j.neuron.2019.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 10/26/2022]
Abstract
In recent years, rapid technological developments in the field of neuroimaging have provided new methods for assessing residual cognition, detecting consciousness, and even communicating with patients who clinically appear to be in a vegetative state. Here, I highlight some of the major implications of these developments, discuss their scientific, clinical, legal, and ethical relevance, and make my own recommendations for future directions in this field.
Collapse
Affiliation(s)
- Adrian M Owen
- The Brain and Mind Institute, the Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada.
| |
Collapse
|
37
|
Abdalmalak A, Milej D, Cohen DJ, Anazodo U, Ssali T, Diop M, Owen AM, St Lawrence K. Using fMRI to investigate the potential cause of inverse oxygenation reported in fNIRS studies of motor imagery. Neurosci Lett 2019; 714:134607. [PMID: 31693928 DOI: 10.1016/j.neulet.2019.134607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
Motor imagery (MI) is a commonly used cognitive task in brain-computer interface (BCI) applications because it produces reliable activity in motor-planning regions. However, a number of functional near-infrared spectroscopy (fNIRS) studies have reported the unexpected finding of inverse oxygenation: increased deoxyhemoglobin and decreased oxyhemoglobin during task periods. This finding questions the reliability of fNIRS for BCI applications given that MI activation should result in a focal increase in blood oxygenation. In an attempt to elucidate this phenomenon, fMRI and fNIRS data were acquired on 15 healthy participants performing a MI task. The fMRI data provided global coverage of brain activity, thus allowing visualization of all potential brain regions activated and deactivated during task periods. Indeed, fMRI results from seven subjects included activation in the primary motor cortex and/or the pre-supplementary motor area during the rest periods in addition to the expected activation in the supplementary motor and premotor areas. Of these seven subjects, two showed inverse oxygenation with fNIRS. The proximity of the regions showing inverse oxygenation to the motor planning regions suggests that inverse activation detected by fNIRS may likely be a consequence of partial volume errors due to the sensitivity of the optodes to both primary motor and motor planning regions.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada.
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - David J Cohen
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - Udunna Anazodo
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - Tracy Ssali
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - Adrian M Owen
- The Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| |
Collapse
|
38
|
Kewin M, Rajaram A, Milej D, Abdalmalak A, Morrison L, Diop M, St Lawrence K. Evaluation of hyperspectral NIRS for quantitative measurements of tissue oxygen saturation by comparison to time-resolved NIRS. BIOMEDICAL OPTICS EXPRESS 2019; 10:4789-4802. [PMID: 31565525 PMCID: PMC6757477 DOI: 10.1364/boe.10.004789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 05/17/2023]
Abstract
Near-infrared spectroscopy (NIRS) is considered ideal for brain monitoring during preterm infancy because it is non-invasive and provides a continuous measure of tissue oxygen saturation (StO2). Hyperspectral NIRS (HS NIRS) is an inexpensive, quantitative modality that can measure tissue optical properties and oxygen saturation (StO2) by differential spectroscopy. In this study, experiments were conducted using newborn piglets to measure StO2 across a range of oxygenation levels from hyperoxia to hypoxia by HS and time-resolved (TR) NIRS for validation. A strong correlation between StO2 measurements from the two techniques was observed (R2 = 0.98, average slope of 1.02 ± 0.28); however, the HS-NIRS estimates were significantly higher than the corresponding TR-NIRS values. These regression results indicate that HS NIRS could become a clinically feasible method for monitoring StO2 in preterm infants.
Collapse
Affiliation(s)
- Matthew Kewin
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Laura Morrison
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
39
|
Sudakou A, Wojtkiewicz S, Lange F, Gerega A, Sawosz P, Tachtsidis I, Liebert A. Depth-resolved assessment of changes in concentration of chromophores using time-resolved near-infrared spectroscopy: estimation of cytochrome-c-oxidase uncertainty by Monte Carlo simulations. BIOMEDICAL OPTICS EXPRESS 2019; 10:4621-4635. [PMID: 31565513 PMCID: PMC6757481 DOI: 10.1364/boe.10.004621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Time-resolved near-infrared spectroscopy (TR-NIRS) measurements can be used to recover changes in concentrations of tissue constituents ( Δ C ) by applying the moments method and the Beer-Lambert law. In this work we carried out the error propagation analysis allowing to calculate the standard deviations of uncertainty in estimation of the Δ C . Here, we show the process of choosing wavelengths for the evaluation of hemodynamic (oxy-, deoxyhemoglobin) and metabolic (cytochrome-c-oxidase (CCO)) responses within the brain tissue as measured with an in-house developed TR-NIRS multi-wavelength system, which measures at 16 consecutive wavelengths separated by 12.5 nm and placed between 650 and 950 nm. Data generated with Monte Carlo simulations on three-layered model (scalp, skull, brain) for wavelengths range from 650 to 950 nm were used to carry out the error propagation analysis for varying choices of wavelengths. For a detector with a spectrally uniform responsivity, the minimal standard deviation of the estimated changes in CCO within the brain layer, σ Δ C CCO brain = 0.40 µM, was observed for the 16 consecutive wavelengths from 725 to 912.5 nm. For realistic a detector model, i.e. the spectral responsivity characteristic is considered, the minimum, σ Δ C CCO brain = 0.47 µM, was observed at the 16 consecutive wavelengths from 688 to 875 nm. We introduce the method of applying the error propagation analysis to data as measured with spectral TR-NIRS systems to calculate uncertainty of recovery of tissue constituents concentrations.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
40
|
Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081612] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Near-infrared spectroscopy (NIRS) is an optical technique that can measure brain tissue oxygenation and haemodynamics in real-time and at the patient bedside allowing medical doctors to access important physiological information. However, despite this, the use of NIRS in a clinical environment is hindered due to limitations, such as poor reproducibility, lack of depth sensitivity and poor brain-specificity. Time domain NIRS (or TD-NIRS) can resolve these issues and offer detailed information of the optical properties of the tissue, allowing better physiological information to be retrieved. This is achieved at the cost of increased instrument complexity, operation complexity and price. In this review, we focus on brain monitoring clinical applications of TD-NIRS. A total of 52 publications were identified, spanning the fields of neonatal imaging, stroke assessment, traumatic brain injury (TBI) assessment, brain death assessment, psychiatry, peroperative care, neuronal disorders assessment and communication with patient with locked-in syndrome. In all the publications, the advantages of the TD-NIRS measurement to (1) extract absolute values of haemoglobin concentration and tissue oxygen saturation, (2) assess the reduced scattering coefficient, and (3) separate between extra-cerebral and cerebral tissues, are highlighted; and emphasize the utility of TD-NIRS in a clinical context. In the last sections of this review, we explore the recent developments of TD-NIRS, in terms of instrumentation and methodologies that might impact and broaden its use in the hospital.
Collapse
|
41
|
Rupawala M, Dehghani H, Lucas SJE, Tino P, Cruse D. Shining a Light on Awareness: A Review of Functional Near-Infrared Spectroscopy for Prolonged Disorders of Consciousness. Front Neurol 2018; 9:350. [PMID: 29872420 PMCID: PMC5972220 DOI: 10.3389/fneur.2018.00350] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Qualitative clinical assessments of the recovery of awareness after severe brain injury require an assessor to differentiate purposeful behavior from spontaneous behavior. As many such behaviors are minimal and inconsistent, behavioral assessments are susceptible to diagnostic errors. Advanced neuroimaging tools can bypass behavioral responsiveness and reveal evidence of covert awareness and cognition within the brains of some patients, thus providing a means for more accurate diagnoses, more accurate prognoses, and, in some instances, facilitated communication. The majority of reports to date have employed the neuroimaging methods of functional magnetic resonance imaging, positron emission tomography, and electroencephalography (EEG). However, each neuroimaging method has its own advantages and disadvantages (e.g., signal resolution, accessibility, etc.). Here, we describe a burgeoning technique of non-invasive optical neuroimaging—functional near-infrared spectroscopy (fNIRS)—and review its potential to address the clinical challenges of prolonged disorders of consciousness. We also outline the potential for simultaneous EEG to complement the fNIRS signal and suggest the future directions of research that are required in order to realize its clinical potential.
Collapse
Affiliation(s)
- Mohammed Rupawala
- Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, United Kingdom
| | - Hamid Dehghani
- Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, United Kingdom.,School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Tino
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Damian Cruse
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|