1
|
Curic D, Singh S, Nazari M, Mohajerani MH, Davidsen J. Spatial-Temporal Analysis of Neural Desynchronization in Sleeplike States Reveals Critical Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:218403. [PMID: 38856286 DOI: 10.1103/physrevlett.132.218403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 06/11/2024]
Abstract
Sleep is characterized by nonrapid eye movement sleep, originating from widespread neuronal synchrony, and rapid eye movement sleep, with neuronal desynchronization akin to waking behavior. While these were thought to be global brain states, recent research suggests otherwise. Using time-frequency analysis of mesoscopic voltage-sensitive dye recordings of mice in a urethane-anesthetized model of sleep, we find transient neural desynchronization occurring heterogeneously across the cortex within a background of synchronized neural activity, in a manner reminiscent of a critical spreading process and indicative of an "edge-of-synchronization" phase transition.
Collapse
Affiliation(s)
- Davor Curic
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Surjeet Singh
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
2
|
Pedrosa R, Nazari M, Kergoat L, Bernard C, Mohajerani M, Stella F, Battaglia F. Hippocampal ripples coincide with "up-state" and spindles in retrosplenial cortex. Cereb Cortex 2024; 34:bhae083. [PMID: 38494417 DOI: 10.1093/cercor/bhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, "up-states" and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial-hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Loig Kergoat
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
- Panaxium SAS, Aix-en-Provence 13100, France
| | - Christophe Bernard
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Francesco Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
3
|
Bermudez-Contreras E, Schjetnan AGP, Luczak A, Mohajerani MH. Sensory experience selectively reorganizes the late component of evoked responses. Cereb Cortex 2023; 33:2626-2640. [PMID: 35704850 PMCID: PMC10016043 DOI: 10.1093/cercor/bhac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/13/2022] Open
Abstract
In response to sensory stimulation, the cortex exhibits an early transient response followed by late and slower activation. Recent studies suggest that the early component represents features of the stimulus while the late component is associated with stimulus perception. Although very informative, these studies only focus on the amplitude of the evoked responses to study its relationship with sensory perception. In this work, we expand upon the study of how patterns of evoked and spontaneous activity are modified by experience at the mesoscale level using voltage and extracellular glutamate transient recordings over widespread regions of mouse dorsal neocortex. We find that repeated tactile or auditory stimulation selectively modifies the spatiotemporal patterns of cortical activity, mainly of the late evoked response in anesthetized mice injected with amphetamine and also in awake mice. This modification lasted up to 60 min and results in an increase in the amplitude of the late response after repeated stimulation and in an increase in the similarity between the spatiotemporal patterns of the late early evoked response. This similarity increase occurs only for the evoked responses of the sensory modality that received the repeated stimulation. Thus, this selective long-lasting spatiotemporal modification of the cortical activity patterns might provide evidence that evoked responses are a cortex-wide phenomenon. This work opens new questions about how perception-related cortical activity changes with sensory experience across the cortex.
Collapse
Affiliation(s)
- Edgar Bermudez-Contreras
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Majid H Mohajerani
- Corresponding author: Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
4
|
Pedrosa R, Nazari M, Mohajerani MH, Knöpfel T, Stella F, Battaglia FP. Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Proc Natl Acad Sci U S A 2022; 119:e2204959119. [PMID: 36279469 PMCID: PMC9636925 DOI: 10.1073/pnas.2204959119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Hippocampus-neocortex interactions during sleep are critical for memory processes: Hippocampally initiated replay contributes to memory consolidation in the neocortex and hippocampal sharp wave/ripples modulate cortical activity. Yet, the spatial and temporal patterns of this interaction are unknown. With voltage imaging, electrocorticography, and laminarly resolved hippocampal potentials, we characterized cortico-hippocampal signaling during anesthesia and nonrapid eye movement sleep. We observed neocortical activation transients, with statistics suggesting a quasi-critical regime, may be helpful for communication across remote brain areas. From activity transients, we identified, in a data-driven fashion, three functional networks. A network overlapping with the default mode network and centered on retrosplenial cortex was the most associated with hippocampal activity. Hippocampal slow gamma rhythms were strongly associated to neocortical transients, even more than ripples. In fact, neocortical activity predicted hippocampal slow gamma and followed ripples, suggesting that consolidation processes rely on bidirectional signaling between hippocampus and neocortex.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6 3M4, Canada
| | - Majid H. Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6 3M4, Canada
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| | - Francesco P. Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
5
|
Brondi M, Bruzzone M, Lodovichi C, dal Maschio M. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022; 11:1848. [PMID: 35681542 PMCID: PMC9180859 DOI: 10.3390/cells11111848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Investigating the neuronal dynamics supporting brain functions and understanding how the alterations in these mechanisms result in pathological conditions represents a fundamental challenge. Preclinical research on model organisms allows for a multiscale and multiparametric analysis in vivo of the neuronal mechanisms and holds the potential for better linking the symptoms of a neurological disorder to the underlying cellular and circuit alterations, eventually leading to the identification of therapeutic/rescue strategies. In recent years, brain research in model organisms has taken advantage, along with other techniques, of the development and continuous refinement of methods that use light and optical approaches to reconstruct the activity of brain circuits at the cellular and system levels, and to probe the impact of the different neuronal components in the observed dynamics. These tools, combining low-invasiveness of optical approaches with the power of genetic engineering, are currently revolutionizing the way, the scale and the perspective of investigating brain diseases. The aim of this review is to describe how brain functions can be investigated with optical approaches currently available and to illustrate how these techniques have been adopted to study pathological alterations of brain physiology.
Collapse
Affiliation(s)
- Marco Brondi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Claudia Lodovichi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Marco dal Maschio
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| |
Collapse
|
6
|
Bermudez Contreras E, Sutherland RJ, Mohajerani MH, Whishaw IQ. Challenges of a small world analysis for the continuous monitoring of behavior in mice. Neurosci Biobehav Rev 2022; 136:104621. [PMID: 35307475 DOI: 10.1016/j.neubiorev.2022.104621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
Documenting a mouse's "real world" behavior in the "small world" of a laboratory cage with continuous video recordings offers insights into phenotypical expression of mouse genotypes, development and aging, and neurological disease. Nevertheless, there are challenges in the design of a small world, the behavior selected for analysis, and the form of the analysis used. Here we offer insights into small world analyses by describing how acute behavioral procedures can guide continuous behavioral methodology. We show how algorithms can identify behavioral acts including walking and rearing, circadian patterns of action including sleep duration and waking activity, and the organization of patterns of movement into home base activity and excursions, and how they are altered with aging. We additionally describe how specific tests can be incorporated within a mouse's living arrangement. We emphasize how machine learning can condense and organize continuous activity that extends over extended periods of time.
Collapse
Affiliation(s)
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada.
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada
| |
Collapse
|
7
|
Rezaei Z, Jafari Z, Afrashteh N, Torabi R, Singh S, Kolb BE, Davidsen J, Mohajerani MH. Prenatal stress dysregulates resting-state functional connectivity and sensory motifs. Neurobiol Stress 2021; 15:100345. [PMID: 34124321 PMCID: PMC8173309 DOI: 10.1016/j.ynstr.2021.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal stress (PS) can impact fetal brain structure and function and contribute to higher vulnerability to neurodevelopmental and neuropsychiatric disorders. To understand how PS alters evoked and spontaneous neocortical activity and intrinsic brain functional connectivity, mesoscale voltage imaging was performed in adult C57BL/6NJ mice that had been exposed to auditory stress on gestational days 12-16, the age at which neocortex is developing. PS mice had a four-fold higher basal corticosterone level and reduced amplitude of cortical sensory-evoked responses to visual, auditory, whisker, forelimb, and hindlimb stimuli. Relative to control animals, PS led to a general reduction of resting-state functional connectivity, as well as reduced inter-modular connectivity, enhanced intra-modular connectivity, and altered frequency of auditory and forelimb spontaneous sensory motifs. These resting-state changes resulted in a cortical connectivity pattern featuring disjoint but tight modules and a decline in network efficiency. The findings demonstrate that cortical connectivity is sensitive to PS and exposed offspring may be at risk for adult stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Navvab Afrashteh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Reza Torabi
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Surjeet Singh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Bryan E. Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
8
|
Bermudez-Contreras E. Deep reinforcement learning to study spatial navigation, learning and memory in artificial and biological agents. BIOLOGICAL CYBERNETICS 2021; 115:131-134. [PMID: 33564968 DOI: 10.1007/s00422-021-00862-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Despite the recent advancements and popularity of deep learning that has resulted from the advent of numerous industrial applications, artificial neural networks (ANNs) still lack crucial features from their biological counterparts that could improve their performance and their potential to advance our understanding of how the brain works. One avenue that has been proposed to change this is to strengthen the interaction between artificial intelligence (AI) research and neuroscience. Since their historical beginnings, ANNs and AI, in general, have developed in close alignment with both neuroscience and psychology. In addition to deep learning, reinforcement learning (RL) is another approach that is strongly linked to AI and neuroscience to understand how learning is implemented in the brain. In a recently published article, Botvinick et al. (Neuron, 107:603-616, 2020) explain why deep reinforcement learning (DRL) is important for neuroscience as a framework to study learning, representations and decision making. Here, I summarise Botvinick et al.'s main arguments and frame them in the context of the study of learning, memory and spatial navigation. I believe that applying this approach to study spatial navigation can provide useful insights for the understanding of how the brain builds, processes and stores representations of the outside world to extract knowledge.
Collapse
|
9
|
Karimi Abadchi J, Nazari-Ahangarkolaee M, Gattas S, Bermudez-Contreras E, Luczak A, McNaughton BL, Mohajerani MH. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. eLife 2020; 9:51972. [PMID: 32167467 PMCID: PMC7096182 DOI: 10.7554/elife.51972] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
A prevalent model is that sharp-wave ripples (SWR) arise ‘spontaneously’ in CA3 and propagate recent memory traces outward to the neocortex to facilitate memory consolidation there. Using voltage and extracellular glutamate transient recording over widespread regions of mice dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR, we find that the largest SWR-related modulation occurs in retrosplenial cortex; however, contrary to the unidirectional hypothesis, neocortical activation exhibited a continuum of activation timings relative to SWRs, varying from leading to lagging. Thus, contrary to the model in which SWRs arise ‘spontaneously’ in the hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’. This timing continuum is consistent with a dynamics in which older, more consolidated memories may in fact initiate the hippocampal-neocortical dialog, whereas reactivation of newer memories may be initiated predominantly in the hippocampus.
Collapse
Affiliation(s)
- J Karimi Abadchi
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| | | | - Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of California, Irvine, United States.,Medical Scientist Training Program, University of California, Irvine, United States
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada.,Department of Neurobiology and Behavior, University of California, Irvine, United States
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
10
|
van Daal RJJ, Sun JJ, Ceyssens F, Michon F, Kraft M, Puers R, Kloosterman F. System for recording from multiple flexible polyimide neural probes in freely behaving animals. J Neural Eng 2020; 17:016046. [DOI: 10.1088/1741-2552/ab5e19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Singh S, Bermudez-Contreras E, Nazari M, Sutherland RJ, Mohajerani MH. Low-cost solution for rodent home-cage behaviour monitoring. PLoS One 2019; 14:e0220751. [PMID: 31374097 PMCID: PMC6677321 DOI: 10.1371/journal.pone.0220751] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
In the current research on measuring complex behaviours/phenotyping in rodents, most of the experimental design requires the experimenter to remove the animal from its home-cage environment and place it in an unfamiliar apparatus (novel environment). This interaction may influence behaviour, general well-being, and the metabolism of the animal, affecting the phenotypic outcome even if the data collection method is automated. Most of the commercially available solutions for home-cage monitoring are expensive and usually lack the flexibility to be incorporated with existing home-cages. Here we present a low-cost solution for monitoring home-cage behaviour of rodents that can be easily incorporated to practically any available rodent home-cage. To demonstrate the use of our system, we reliably predict the sleep/wake state of mice in their home-cage using only video. We validate these results using hippocampal local field potential (LFP) and electromyography (EMG) data. Our approach provides a low-cost flexible methodology for high-throughput studies of sleep, circadian rhythm and rodent behaviour with minimal experimenter interference.
Collapse
Affiliation(s)
- Surjeet Singh
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Edgar Bermudez-Contreras
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Mojtaba Nazari
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. Sutherland
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- * E-mail: (RJS); (MHM)
| | - Majid H. Mohajerani
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- * E-mail: (RJS); (MHM)
| |
Collapse
|
12
|
Is play a behavior system, and, if so, what kind? Behav Processes 2019; 160:1-9. [DOI: 10.1016/j.beproc.2018.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022]
|
13
|
Kratzer S, Mattusch C, Garcia PS, Schmid S, Kochs E, Rammes G, Schneider G, Kreuzer M, Haseneder R. Propofol and Sevoflurane Differentially Modulate Cortical Depolarization following Electric Stimulation of the Ventrobasal Thalamus. Front Comput Neurosci 2017; 11:109. [PMID: 29321737 PMCID: PMC5732174 DOI: 10.3389/fncom.2017.00109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
Abstract
The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated. Here we investigated the effect of the anesthetic agents sevoflurane and propofol on thalamocortical network activity in vitro. We used voltage-sensitive dye imaging techniques to analyze the cortical depolarization in response to stimulation of the thalamic ventrobasal nucleus in brain slices from mice. Exposure to sevoflurane globally decreased cortical depolarization in a dose-dependent manner. Sevoflurane reduced the intensity and extent of cortical depolarization and delayed thalamocortical signal propagation. In contrast, propofol neither affected area nor amplitude of cortical depolarization. However, propofol exposure resulted in regional changes in spatial distribution of maximum fluorescence intensity in deep regions of the cortex. In summary, our experiments revealed substance-specific effects on the thalamocortical network. Functional changes of the neuronal network are known to be pivotally involved in the anesthetic-induced loss of consciousness. Our findings provide further evidence that the mechanisms of anesthetic-mediated loss of consciousness are drug- and pathway-specific.
Collapse
Affiliation(s)
- Stephan Kratzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Corinna Mattusch
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Paul S Garcia
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Sebastian Schmid
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eberhard Kochs
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Rainer Haseneder
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|