1
|
Li Z, Gao Y, Chen X, Xu L, Li Z, Chai R. Study on Recovery Strategy of Hearing Loss & SGN Regeneration Under Physical Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410919. [PMID: 39716878 PMCID: PMC11791950 DOI: 10.1002/advs.202410919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Indexed: 12/25/2024]
Abstract
The World Health Organization (WHO) reports that by 2050, nearly 2.5 billion people are expected to have some degree of hearing loss (HL) and at least 700 million will need hearing rehabilitation. Therefore, there is an urgent need to develop treatment strategies for HL. At present, the main treatment strategies for HL are hearing aids and cochlear implants (CIs), which cannot achieve a radical cure for HL. Relevant studies have shown that the most fundamental treatment strategy for sensorineural hearing loss (SNHL) is to regenerate hair cells and spiral ganglion neurons (SGNs) through stem cells to repair the structure and function of cochlea. In addition, physical stimulation strategies, such as electricity, light, and magnetism have also been used to promote SGN regeneration. This review systematically introduces the classification, principle and latest progress of the existing hearing treatment strategies and summarizes the advantages and disadvantages of each strategy. The research progress of physical regulation mechanism is discussed in detail. Finally, the problems in HL repair strategies are summarized and the future development direction is prospected, which could provide new ideas and technologies for the optimization of hearing treatment strategies and the research of SGN repair and regeneration through physical regulation.
Collapse
Affiliation(s)
- Zhe Li
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Yijia Gao
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Xingyu Chen
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Renjie Chai
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| |
Collapse
|
2
|
Xu Y, Yang X, Liang Z, Lin L, Zhao W, Wang L, Xia Y, Lin X, Vai MI, Pun SH, Zhang B. An Integrated Neural Optrode with Modification of Polymer-Carbon Composite Films for Suppression of the Photoelectric Artifacts. ACS OMEGA 2024; 9:33119-33129. [PMID: 39100334 PMCID: PMC11292809 DOI: 10.1021/acsomega.4c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Optogenetics-based integrated photoelectrodes with high spatiotemporal resolution play an important role in studying complex neural activities. However, the photostimulation artifacts caused by the high level of integration and the high impedance of metal recording electrodes still hinder the application of photoelectrodes for optogenetic studies of neural circuits. In this study, a neural optrode fabricated on sapphire GaN material was proposed, and 4 μLEDs and 14 recording microelectrodes were monolithically integrated on a shank. Poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate and multiwalled carbon nanotubes (PEDOT:PSS-MWCNT) and poly(3,4-ethylenedioxythiophene) and graphene oxide (PEDOT-GO) composite films were deposited on the surface of the recording microelectrode by electrochemical deposition. The results demonstrate that compared with the gold microelectrode, the impedances of both composite films reduced by more than 98%, and the noise amplitudes decreased by 70.73 and 87.15%, respectively, when exposed to light stimulation. Adjusting the high and low levels, we further reduced the noise amplitude by 48.3%. These results indicate that modifying the electrode surface by a polymer composite film can effectively enhance the performance of the microelectrode and further promote the application of the optrode in the field of neuroscience.
Collapse
Affiliation(s)
- Yanyan Xu
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xien Yang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwen Liang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lizhang Lin
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenbo Zhao
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liyang Wang
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Yu Xia
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Xudong Lin
- School
of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mang I. Vai
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Sio Hang Pun
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Baijun Zhang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Deng X, Peng D, Yao Y, Huang K, Wang J, Ma Z, Fu J, Xu Y. Optogenetic therapeutic strategies for diabetes mellitus. J Diabetes 2024; 16:e13557. [PMID: 38751366 PMCID: PMC11096815 DOI: 10.1111/1753-0407.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
Collapse
Affiliation(s)
- Xin Deng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Dandan Peng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yuanfa Yao
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Ke Huang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Jinling Wang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Zhihao Ma
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Junfen Fu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yingke Xu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Sander MY, Zhu X. Infrared neuromodulation-a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066701. [PMID: 38701769 DOI: 10.1088/1361-6633/ad4729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.
Collapse
Affiliation(s)
- Michelle Y Sander
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| | - Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| |
Collapse
|
5
|
Barros BJ, Cunha JPS. Neurophotonics: a comprehensive review, current challenges and future trends. Front Neurosci 2024; 18:1382341. [PMID: 38765670 PMCID: PMC11102054 DOI: 10.3389/fnins.2024.1382341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
The human brain, with its vast network of billions of neurons and trillions of synapses (connections) between diverse cell types, remains one of the greatest mysteries in science and medicine. Despite extensive research, an understanding of the underlying mechanisms that drive normal behaviors and response to disease states is still limited. Advancement in the Neuroscience field and development of therapeutics for related pathologies requires innovative technologies that can provide a dynamic and systematic understanding of the interactions between neurons and neural circuits. In this work, we provide an up-to-date overview of the evolution of neurophotonic approaches in the last 10 years through a multi-source, literature analysis. From an initial corpus of 243 papers retrieved from Scopus, PubMed and WoS databases, we have followed the PRISMA approach to select 56 papers in the area. Following a full-text evaluation of these 56 scientific articles, six main areas of applied research were identified and discussed: (1) Advanced optogenetics, (2) Multimodal neural interfaces, (3) Innovative therapeutics, (4) Imaging devices and probes, (5) Remote operations, and (6) Microfluidic platforms. For each area, the main technologies selected are discussed according to the photonic principles applied, the neuroscience application evaluated and the more indicative results of efficiency and scientific potential. This detailed analysis is followed by an outlook of the main challenges tackled over the last 10 years in the Neurophotonics field, as well as the main technological advances regarding specificity, light delivery, multimodality, imaging, materials and system designs. We conclude with a discussion of considerable challenges for future innovation and translation in Neurophotonics, from light delivery within the brain to physical constraints and data management strategies.
Collapse
Affiliation(s)
- Beatriz Jacinto Barros
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - João P. S. Cunha
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Khurana L, Harczos T, Moser T, Jablonski L. En route to sound coding strategies for optical cochlear implants. iScience 2023; 26:107725. [PMID: 37720089 PMCID: PMC10502376 DOI: 10.1016/j.isci.2023.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Hearing loss is the most common human sensory deficit. Severe-to-complete sensorineural hearing loss is often treated by electrical cochlear implants (eCIs) bypassing dysfunctional or lost hair cells by direct stimulation of the auditory nerve. The wide current spread from each intracochlear electrode array contact activates large sets of tonotopically organized neurons limiting spectral selectivity of sound coding. Despite many efforts, an increase in the number of independent eCI stimulation channels seems impossible to achieve. Light, which can be better confined in space than electric current may help optical cochlear implants (oCIs) to overcome eCI shortcomings. In this review, we present the current state of the optogenetic sound encoding. We highlight optical sound coding strategy development capitalizing on the optical stimulation that requires fine-grained, fast, and power-efficient real-time sound processing controlling dozens of microscale optical emitters as an emerging research area.
Collapse
Affiliation(s)
- Lakshay Khurana
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Junior Research Group “Computational Neuroscience and Neuroengineering”, Göttingen, Germany
- The Doctoral Program “Sensory and Motor Neuroscience”, Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tamas Harczos
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Lukasz Jablonski
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Junior Research Group “Computational Neuroscience and Neuroengineering”, Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Tian L, Zeng M, Tian G, Xu J. In-vitro quantitative measurement and analysis of the photosensitivity of cells to a weak pulse laser. BIOMEDICAL OPTICS EXPRESS 2023; 14:3584-3596. [PMID: 37497496 PMCID: PMC10368051 DOI: 10.1364/boe.494620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023]
Abstract
Light can trigger electrical activity in certain types of cells, and is considered to be a better means of biological regulation than electrical stimulation in the future. Due to the specificity and selectivity of natural cells' photoresponse to optical signals, constructing an applicable method to explore which kinds of cells have photosensitivity and which bands of light could induce its photoresponse most effectively, is of great significance for lights' medical applications. This paper firstly proposed a universal and operable system and corresponding method to quantitatively measure and analyze photosensitivity of cells in vitro to weak pulse laser, which is constructed with Ca2+ imaging module, adjustable laser lights module and laser positioning module. With the measurement system and method, the photosensitive effects of the natural spiral ganglion cells (SGCs) of mice are tested systemantically. Then a new photoresponse band of light (453 nm, 300 µs) is found for SGCs, and its minimum threshold is measured as 5.3 mJ/cm2. The results verify that the proposed method is applicable to screen the cells with photosensitive response, as well as to measure and analyze the working optical parameters, thus is beneficial for the optical biophysics and photobiology.
Collapse
Affiliation(s)
- Lan Tian
- School of Microelectronics, Shandong University, Jinan 250100, Shandong, China
| | - Ming Zeng
- School of Microelectronics, Shandong University, Jinan 250100, Shandong, China
| | - Geng Tian
- School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Jingjing Xu
- School of Microelectronics, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
9
|
Ping A, Pan L, Zhang J, Xu K, Schriver KE, Zhu J, Roe AW. Targeted Optical Neural Stimulation: A New Era for Personalized Medicine. Neuroscientist 2023; 29:202-220. [PMID: 34865559 DOI: 10.1177/10738584211057047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Targeted optical neural stimulation comprises infrared neural stimulation and optogenetics, which affect the nervous system through induced thermal transients and activation of light-sensitive proteins, respectively. The main advantage of this pair of optical tools is high functional selectivity, which conventional electrical stimulation lacks. Over the past 15 years, the mechanism, safety, and feasibility of optical stimulation techniques have undergone continuous investigation and development. When combined with other methods like optical imaging and high-field functional magnetic resonance imaging, the translation of optical stimulation to clinical practice adds high value. We review the theoretical foundations and current state of optical stimulation, with a particular focus on infrared neural stimulation as a potential bridge linking optical stimulation to personalized medicine.
Collapse
Affiliation(s)
- An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Li Pan
- Qiushi Academy for Advanced Studies (QAAS), Key Laboratory of Biomedical Engineering of Education Ministry & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Key Laboratory of Biomedical Engineering of Education Ministry & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Kenneth E Schriver
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Wang Roe
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Begeng JM, Tong W, Rosal BD, Ibbotson M, Kameneva T, Stoddart PR. Activity of Retinal Neurons Can Be Modulated by Tunable Near-Infrared Nanoparticle Sensors. ACS NANO 2023; 17:2079-2088. [PMID: 36724043 DOI: 10.1021/acsnano.2c07663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The vision of patients rendered blind by photoreceptor degeneration can be partially restored by exogenous stimulation of surviving retinal ganglion cells (RGCs). Whereas conventional electrical stimulation techniques have failed to produce naturalistic visual percepts, nanoparticle-based optical sensors have recently received increasing attention as a means to artificially stimulate the RGCs. In particular, nanoparticle-enhanced infrared neural modulation (NINM) is a plasmonically mediated photothermal neuromodulation technique that has a demonstrated capacity for both stimulation and inhibition, which is essential for the differential modulation of ON-type and OFF-type RGCs. Gold nanorods provide tunable absorption through the near-infrared wavelength window, which reduces interference with any residual vision. Therefore, NINM may be uniquely well-suited to retinal prosthesis applications but, to our knowledge, has not previously been demonstrated in RGCs. In the present study, NINM laser pulses of 100 μs, 500 μs and 200 ms were applied to RGCs in explanted rat retinae, with single-cell responses recorded via patch-clamping. The shorter laser pulses evoked robust RGC stimulation by capacitive current generation, while the long laser pulses are capable of inhibiting spontaneous action potentials by thermal block. Importantly, an implicit bias toward OFF-type inhibition is observed, which may have important implications for the feasibility of future high-acuity retinal prosthesis design based on nanoparticle sensors.
Collapse
Affiliation(s)
- James M Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, John Street, Hawthorn, VictoriaAustralia3122
- The Australian College of Optometry, The National Vision Research Institute, 386 Cardigan Street, Carlton, VictoriaAustralia3053
| | - Wei Tong
- The Australian College of Optometry, The National Vision Research Institute, 386 Cardigan Street, Carlton, VictoriaAustralia3053
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia3010
- School of Physics, The University of Melbourne, Parkville, Melbourne, Victoria, Australia3010
| | - Blanca Del Rosal
- School of Science, RMIT University, Melbourne, Victoria, Australia3000
| | - Michael Ibbotson
- The Australian College of Optometry, The National Vision Research Institute, 386 Cardigan Street, Carlton, VictoriaAustralia3053
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia3010
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, John Street, Hawthorn, VictoriaAustralia3122
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, John Street, Hawthorn, VictoriaAustralia3122
| |
Collapse
|
11
|
Uenaka M, Nagamura H, Okamoto A, Hiryu S, Kobayasi KI, Tamai Y. Feasibility evaluation of transtympanic laser stimulation of the cochlea from the outer ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:1850. [PMID: 36182303 DOI: 10.1121/10.0014241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Infrared laser stimulation has been studied as an alternative approach to auditory prostheses. This study evaluated the feasibility of infrared laser stimulation of the cochlea from the outer ear, bypassing the middle ear function. An optic fiber was inserted into the ear canal, and a laser was used to irradiate the cochlea through the tympanic membrane in Mongolian gerbils. A pulsed infrared laser (6.9 mJ/cm2) and clicking sound (70 peak-to-peak equivalent sound pressure level) were presented to the animals. The amplitude of the laser-evoked cochlear response was systematically decreased following insertion of a filter between the tympanic membrane and cochlea; however, the auditory-evoked cochlear response did not decrease. The filter was removed, and the laser-evoked response returned to around the original level. The amplitude ratio and the relative change in response amplitude before and during filter insertion significantly decreased as the absorbance of the infrared filter increased. These results indicate that laser irradiation could bypass the function of the middle ear and directly activate the cochlea. Therefore, laser irradiation from the outer ear is a possible alternative for stimulating the cochlea, circumventing the middle ear.
Collapse
Affiliation(s)
- Miku Uenaka
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Hidekazu Nagamura
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Aya Okamoto
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Shizuko Hiryu
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kohta I Kobayasi
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yuta Tamai
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
12
|
Horváth ÁC, Borbély S, Mihók F, Fürjes P, Barthó P, Fekete Z. Histological and electrophysiological evidence on the safe operation of a sharp-tip multimodal optrode during infrared neuromodulation of the rat cortex. Sci Rep 2022; 12:11434. [PMID: 35794160 PMCID: PMC9259743 DOI: 10.1038/s41598-022-15367-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Infrared neuromodulation is an emerging technology in neuroscience that exploits the inherent thermal sensitivity of neurons to excite or inhibit cellular activity. Since there is limited information on the physiological response of intracortical cell population in vivo including evidence on cell damage, we aimed to create and to validate the safe operation of a microscale sharp-tip implantable optrode that can be used to suppress the activity of neuronal population with low optical power continuous wave irradiation. Effective thermal cross-section and electric properties of the multimodal microdevice was characterized in bench-top tests. The evoked multi-unit activity was monitored in the rat somatosensory cortex, and using NeuN immunocytochemistry method, quantitative analysis of neuronal density changes due to the stimulation trials was evaluated. The sharp tip implant was effectively used to suppress the firing rate of neuronal populations. Histological staining showed that neither the probe insertion nor the heating protocols alone lead to significant changes in cell density in the close vicinity of the implant with respect to the intact control region. Our study shows that intracortical stimulation with continuous-wave infrared light at 1550 nm using a sharp tip implantable optical microdevice is a safe approach to modulate the firing rate of neurons.
Collapse
Affiliation(s)
- Á Cs Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, PPKE, Budapest, Hungary
| | - S Borbély
- Sleep Oscillations Research Group, Institute of Cognitive Neuroscience and Psychology, RCNS, ELKH, Budapest, Hungary
- Neuronal Network and Behavior Research Group, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - F Mihók
- Department of Control Engineering and Information Technology, BUTE, Budapest, Hungary
| | - P Fürjes
- Microsystems Laboratory, Centre for Energy Research, ELKH, Budapest, Hungary
| | - P Barthó
- Sleep Oscillations Research Group, Institute of Cognitive Neuroscience and Psychology, RCNS, ELKH, Budapest, Hungary
| | - Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, PPKE, Budapest, Hungary.
| |
Collapse
|
13
|
Zhu X, Lin JW, Turnali A, Sander MY. Single infrared light pulses induce excitatory and inhibitory neuromodulation. BIOMEDICAL OPTICS EXPRESS 2022; 13:374-388. [PMID: 35154878 PMCID: PMC8803021 DOI: 10.1364/boe.444577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The excitatory and inhibitory effects of single and brief infrared (IR) light pulses (2 µm) with millisecond durations and various power levels are investigated with a custom-built fiber amplification system. Intracellular recordings from motor axons of the crayfish opener neuromuscular junction are performed ex vivo. Single IR light pulses induce a membrane depolarization during the light pulses, which is followed by a hyperpolarization that can last up to 100 ms. The depolarization amplitude is dependent on the optical pulse duration, total energy deposition and membrane potential, but is insensitive to tetrodotoxin. The hyperpolarization reverses its polarity near the potassium equilibrium potential and is barium-sensitive. The membrane depolarization activates an action potential (AP) when the axon is near firing threshold, while the hyperpolarization reversibly inhibits rhythmically firing APs. In summary, we demonstrate for the first time that single and brief IR light pulses can evoke initial depolarization followed by hyperpolarization on individual motor axons. The corresponding mechanisms and functional outcomes of the dual effects are investigated.
Collapse
Affiliation(s)
- Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ahmet Turnali
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Michelle Y. Sander
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary’s Street, Brookline, MA 02446, USA
| |
Collapse
|
14
|
Keppeler D, Kampshoff CA, Thirumalai A, Duque-Afonso CJ, Schaeper JJ, Quilitz T, Töpperwien M, Vogl C, Hessler R, Meyer A, Salditt T, Moser T. Multiscale photonic imaging of the native and implanted cochlea. Proc Natl Acad Sci U S A 2021; 118:e2014472118. [PMID: 33903231 PMCID: PMC8106341 DOI: 10.1073/pnas.2014472118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cochlea of our auditory system is an intricate structure deeply embedded in the temporal bone. Compared with other sensory organs such as the eye, the cochlea has remained poorly accessible for investigation, for example, by imaging. This limitation also concerns the further development of technology for restoring hearing in the case of cochlear dysfunction, which requires quantitative information on spatial dimensions and the sensorineural status of the cochlea. Here, we employed X-ray phase-contrast tomography and light-sheet fluorescence microscopy and their combination for multiscale and multimodal imaging of cochlear morphology in species that serve as established animal models for auditory research. We provide a systematic reference for morphological parameters relevant for cochlear implant development for rodent and nonhuman primate models. We simulate the spread of light from the emitters of the optical implants within the reconstructed nonhuman primate cochlea, which indicates a spatially narrow optogenetic excitation of spiral ganglion neurons.
Collapse
Affiliation(s)
- Daniel Keppeler
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christoph A Kampshoff
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Anupriya Thirumalai
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Carlos J Duque-Afonso
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jannis J Schaeper
- Institute for X-ray Physics, University of Göttingen, 37075 Göttingen, Germany
| | - Tabea Quilitz
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Mareike Töpperwien
- Institute for X-ray Physics, University of Göttingen, 37075 Göttingen, Germany
| | - Christian Vogl
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | | | - Alexander Meyer
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, 37075 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany;
- InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37075 Göttingen, Germany
| |
Collapse
|
15
|
Agarwal A, Tan X, Xu Y, Richter CP. Channel Interaction During Infrared Light Stimulation in the Cochlea. Lasers Surg Med 2021; 53:986-997. [PMID: 33476051 DOI: 10.1002/lsm.23360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES The number of perceptually independent channels to encode acoustic information is limited in contemporary cochlear implants (CIs) because of the current spread in the tissue. It has been suggested that neighboring electrodes have to be separated in humans by a distance of more than 2 mm to eliminate significant overlap of the electric current fields and subsequent interaction between the channels. It has also been argued that an increase in the number of independent channels could improve CI user performance in challenging listening environments, such as speech in noise, tonal languages, or music perception. Optical stimulation has been suggested as an alternative modality for neural stimulation because it is spatially selective. This study reports the results of experiments designed to quantify the interaction between neighboring optical sources in the cochlea during stimulation with infrared radiation. STUDY DESIGN/MATERIALS AND METHODS In seven adult albino guinea pigs, a forward masking method was used to quantify the interaction between two neighboring optical sources during stimulation. Two optical fibers were placed through cochleostomies into the scala tympani of the basal cochlear turn. The radiation beams were directed towards different neuron populations along the spiral ganglion. Optically evoked compound action potentials were recorded for different radiant energies and distances between the optical fibers. The outcome measure was the radiant energy of a masker pulse delivered 3 milliseconds before a probe pulse to reduce the response evoked by the probe pulse by 3 dB. Results were compared for different distances between the fibers placed along the cochlea. RESULTS The energy required to reduce the probe's response by 3 dB increased by 20.4 dB/mm and by 26.0 dB/octave. The inhibition was symmetrical for the masker placed basal to the probe (base-to-apex) and the masker placed apical to the probe (apex-to-base). CONCLUSION The interaction between neighboring optical sources during infrared laser stimulation is less than the interaction between neighboring electrical contacts during electrical stimulation. Previously published data for electrical stimulation reported an average current spread in human and cat cochleae of 2.8 dB/mm. With the increased number of independent channels for optical stimulation, it is anticipated that speech and music performance will improve. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Aditi Agarwal
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 12-561, Chicago, Illinois, 60611
| | - Xiaodong Tan
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 12-561, Chicago, Illinois, 60611
| | - Yingyue Xu
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 12-561, Chicago, Illinois, 60611
| | - Claus-Peter Richter
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 12-561, Chicago, Illinois, 60611.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois, 60208.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, 60208.,Department of Communication Sciences and Disorders, The Hugh Knowles Center, Northwestern University, Evanston, Illinois, 60208
| |
Collapse
|
16
|
Fekete Z, Horváth ÁC, Zátonyi A. Infrared neuromodulation:a neuroengineering perspective. J Neural Eng 2020; 17:051003. [PMID: 33055373 DOI: 10.1088/1741-2552/abb3b2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infrared neuromodulation (INM) is a branch of photobiomodulation that offers direct or indirect control of cellular activity through elevation of temperature in a spatially confined region of the target tissue. Research on INM started about 15 ago and is gradually attracting the attention of the neuroscience community, as numerous experimental studies have provided firm evidence on the safe and reproducible excitation and inhibition of neuronal firing in both in vitro and in vivo conditions. However, its biophysical mechanism is not fully understood and several engineered interfaces have been created to investigate infrared stimulation in both the peripheral and central nervous system. In this review, recent applications and present knowledge on the effects of INM on cellular activity are summarized, and an overview of the technical approaches to deliver infrared light to cells and to interrogate the optically evoked response is provided. The micro- and nanoengineered interfaces used to investigate the influence of INM are described in detail.
Collapse
Affiliation(s)
- Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
17
|
Zhu X, Lin JW, Sander MY. Infrared inhibition impacts on locally initiated and propagating action potentials and the downstream synaptic transmission. NEUROPHOTONICS 2020; 7:045003. [PMID: 33094124 PMCID: PMC7554448 DOI: 10.1117/1.nph.7.4.045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 05/15/2023]
Abstract
Significance: Systematic studies of the physiological outputs induced by infrared (IR)-mediated inhibition of motor nerves can provide guidance for therapeutic applications and offer critical insights into IR light modulation of complex neural networks. Aim: We explore the IR-mediated inhibition of action potentials (APs) that either propagate along single axons or are initiated locally and their downstream synaptic transmission responses. Approach: APs were evoked locally by two-electrode current clamp or at a distance for propagating APs. The neuromuscular transmission was recorded with intracellular electrodes in muscle cells or macro-patch pipettes on terminal bouton clusters. Results: IR light pulses completely and reversibly terminate the locally initiated APs firing at low frequencies, which leads to blocking of the synaptic transmission. However, IR light pulses only suppress but do not block the amplitude and duration of propagating APs nor locally initiated APs firing at high frequencies. Such suppressed APs do not influence the postsynaptic responses at a distance. While the suppression of AP amplitude and duration is similar for propagating and locally evoked APs, only the former exhibits a 7% to 21% increase in the maximum time derivative of the AP rising phase. Conclusions: The suppressed APs of motor axons can resume their waveforms after passing the localized IR light illumination site, leaving the muscular and synaptic responses unchanged. IR-mediated modulation on propagating and locally evoked APs should be considered as two separate models for axonal and somatic modulations.
Collapse
Affiliation(s)
- Xuedong Zhu
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, Photonics Center, Boston, Massachusetts, United States
| | - Jen-Wei Lin
- Boston University, Department of Biology, Boston, Massachusetts, United States
| | - Michelle Y. Sander
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, Photonics Center, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Division of Materials Science and Engineering, Brookline, Massachusetts, United States
- Address all correspondence to Michelle Y. Sander,
| |
Collapse
|
18
|
Dieter A, Klein E, Keppeler D, Jablonski L, Harczos T, Hoch G, Rankovic V, Paul O, Jeschke M, Ruther P, Moser T. μLED-based optical cochlear implants for spectrally selective activation of the auditory nerve. EMBO Mol Med 2020; 12:e12387. [PMID: 32596983 PMCID: PMC7411546 DOI: 10.15252/emmm.202012387] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Electrical cochlear implants (eCIs) partially restore hearing and enable speech comprehension to more than half a million users, thereby re-connecting deaf patients to the auditory scene surrounding them. Yet, eCIs suffer from limited spectral selectivity, resulting from current spread around each electrode contact and causing poor speech recognition in the presence of background noise. Optogenetic stimulation of the auditory nerve might overcome this limitation as light can be conveniently confined in space. Here, we combined virus-mediated optogenetic manipulation of cochlear spiral ganglion neurons (SGNs) and microsystems engineering to establish acute multi-channel optical cochlear implant (oCI) stimulation in adult Mongolian gerbils. oCIs based on 16 microscale thin-film light-emitting diodes (μLEDs) evoked tonotopic activation of the auditory pathway with high spectral selectivity and modest power requirements in hearing and deaf gerbils. These results prove the feasibility of μLED-based oCIs for spectrally selective activation of the auditory nerve.
Collapse
Affiliation(s)
- Alexander Dieter
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Graduate School for Neurosciences and Molecular BiosciencesUniversity of GöttingenGöttingenGermany
- Present address:
Synaptic Wiring LabCenter for Molecular Neurobiology HamburgUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eric Klein
- Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
| | - Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
| | - Lukasz Jablonski
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
| | - Tamas Harczos
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
| | - Gerhard Hoch
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
- Restorative Cochlear Genomics GroupAuditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
| | - Oliver Paul
- Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
- BrainLinks‐BrainToolsCluster of ExcellenceUniversity of FreiburgFreiburgGermany
| | - Marcus Jeschke
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
- Cognitive Hearing in Primates GroupAuditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
- BrainLinks‐BrainToolsCluster of ExcellenceUniversity of FreiburgFreiburgGermany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Graduate School for Neurosciences and Molecular BiosciencesUniversity of GöttingenGöttingenGermany
- Auditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
- Auditory Neuroscience GroupMax Planck Institute for Experimental MedicineGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GoettingenGoettingenGermany
| |
Collapse
|
19
|
Moser T, Dieter A. Towards optogenetic approaches for hearing restoration. Biochem Biophys Res Commun 2020; 527:337-342. [DOI: 10.1016/j.bbrc.2019.12.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023]
|
20
|
Dieter A, Keppeler D, Moser T. Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO Mol Med 2020; 12:e11618. [PMID: 32227585 PMCID: PMC7136966 DOI: 10.15252/emmm.201911618] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cochlear implants (CIs) are considered the most successful neuroprosthesis as they enable speech comprehension in the majority of half a million CI users suffering from sensorineural hearing loss. By electrically stimulating the auditory nerve, CIs constitute an interface re-connecting the brain and the auditory scene, providing the patient with information regarding the latter. However, since electric current is hard to focus in conductive environments such as the cochlea, the precision of electrical sound encoding-and thus quality of artificial hearing-is limited. Recently, optogenetic stimulation of the cochlea has been suggested as an alternative approach for hearing restoration. Cochlear optogenetics promises increased spectral selectivity of artificial sound encoding, hence improved hearing, as light can conveniently be confined in space to activate the auditory nerve within smaller tonotopic ranges. In this review, we discuss the latest experimental and technological developments of cochlear optogenetics and outline the remaining challenges on the way to clinical translation.
Collapse
Affiliation(s)
- Alexander Dieter
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Graduate School for NeurosciencesBiophysics and Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
- Auditory Neuroscience GroupMax Planck Institute of Experimental MedicineGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| |
Collapse
|
21
|
Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiol Rev 2020; 100:1467-1525. [DOI: 10.1152/physrev.00035.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For long, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved and undergoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e. controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems. Multiple efforts have been undertaken to restore lost or hampered function in eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims at providing a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.
Collapse
Affiliation(s)
| | | | | | | | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Goettingen, Germany
| |
Collapse
|