1
|
Akbari F, Liu X, Hamedi F, Mohtasebi M, Chen L, Chen L, Yu G. Programmable scanning diffuse speckle contrast imaging of cerebral blood flow. NEUROPHOTONICS 2025; 12:015006. [PMID: 39872020 PMCID: PMC11770344 DOI: 10.1117/1.nph.12.1.015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
Significance Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside. Aim We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents. Approach The PS-DSCI employed a programmable digital micromirror device (DMD) for remote line-shaped laser (785 nm) scanning on tissue surface and synchronized a 2D camera for capturing boundary diffuse laser speckle contrasts. New algorithms were developed to address deformations of line-shaped scanning, thus minimizing CBF reconstruction artifacts. The PS-DSCI was examined in head-simulating phantoms and adult mice. Results The PS-DSCI enables resolving intralipid particle flow contrasts at different tissue depths. In vivo experiments in adult mice demonstrated the capability of PS-DSCI to image global/regional CBF variations induced by 8%CO 2 inhalation and transient carotid artery ligations. Conclusions Compared with conventional point scanning, line scanning in PS-DSCI significantly increases spatiotemporal resolution. The high sampling rate of PS-DSCI is crucial for capturing rapid CBF changes while high spatial resolution is important for visualizing brain vasculature.
Collapse
Affiliation(s)
- Faezeh Akbari
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Xuhui Liu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Fatemeh Hamedi
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Mehrana Mohtasebi
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Li Chen
- University of Kentucky, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, Lexington, Kentucky, United States
| | - Lei Chen
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Department of Physiology, Lexington, Kentucky, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| |
Collapse
|
2
|
Akbari F, Liu X, Hamedi F, Mohtasebi M, Chen L, Yu G. Programmable scanning diffuse speckle contrast imaging of cerebral blood flow. ARXIV 2024:arXiv:2408.12715v1. [PMID: 39253639 PMCID: PMC11383439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Significance Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside. Aim This study aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents. Approach The PS-DSCI employed a programmable digital micromirror device (DMD) for remote line-shape laser (785 nm) scanning on tissue surface and synchronized a 2D camera for capturing boundary diffuse laser speckle contrasts. New algorithms were developed to address deformations of line-shape scanning, thus minimizing CBF reconstruction artifacts. The PS-DSCI was examined in head-simulating phantoms and adult mice. Results The PS-DSCI enables resolving Intralipid particle flow contrasts at different tissue depths. In vivo experiments in adult mice demonstrated the capability of PS-DSCI to image global/regional CBF variations induced by 8% CO2 inhalation and transient carotid artery ligations. Conclusions Compared to conventional point scanning, the line scanning in PS-DSCI significantly increases spatiotemporal resolution. The high sampling rate of PS-DSCI is crucial for capturing rapid CBF changes while high spatial resolution is important for visualizing brain vasculature.
Collapse
Affiliation(s)
- Faezeh Akbari
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| | - Xuhui Liu
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| | - Fatemeh Hamedi
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| | - Mehrana Mohtasebi
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| | - Lei Chen
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Department of Physiology, Lexington, KY, USA
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| |
Collapse
|
3
|
Kobayashi Frisk L, Verma M, Bešlija F, Lin CHP, Patil N, Chetia S, Trobaugh JW, Culver JP, Durduran T. Comprehensive workflow and its validation for simulating diffuse speckle statistics for optical blood flow measurements. BIOMEDICAL OPTICS EXPRESS 2024; 15:875-899. [PMID: 38404339 PMCID: PMC10890893 DOI: 10.1364/boe.502421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/27/2024]
Abstract
Diffuse optical methods including speckle contrast optical spectroscopy and tomography (SCOS and SCOT), use speckle contrast (κ) to measure deep blood flow. In order to design practical systems, parameters such as signal-to-noise ratio (SNR) and the effects of limited sampling of statistical quantities, should be considered. To that end, we have developed a method for simulating speckle contrast signals including effects of detector noise. The method was validated experimentally, and the simulations were used to study the effects of physical and experimental parameters on the accuracy and precision of κ. These results revealed that systematic detector effects resulted in decreased accuracy and precision of κ in the regime of low detected signals. The method can provide guidelines for the design and usage of SCOS and/or SCOT instruments.
Collapse
Affiliation(s)
- Lisa Kobayashi Frisk
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Manish Verma
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Faruk Bešlija
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Chen-Hao P. Lin
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nishighanda Patil
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Sumana Chetia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Jason W. Trobaugh
- Department of Electrical and Systems Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Joseph P. Culver
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Maity AK, Sharma MK, Veeraraghavan A, Sabharwal A. SpeckleCam: high-resolution computational speckle contrast tomography for deep blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:5316-5337. [PMID: 37854569 PMCID: PMC10581815 DOI: 10.1364/boe.498900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023]
Abstract
Laser speckle contrast imaging is widely used in clinical studies to monitor blood flow distribution. Speckle contrast tomography, similar to diffuse optical tomography, extends speckle contrast imaging to provide deep tissue blood flow information. However, the current speckle contrast tomography techniques suffer from poor spatial resolution and involve both computation and memory intensive reconstruction algorithms. In this work, we present SpeckleCam, a camera-based system to reconstruct high resolution 3D blood flow distribution deep inside the skin. Our approach replaces the traditional forward model using diffuse approximations with Monte-Carlo simulations-based convolutional forward model, which enables us to develop an improved deep tissue blood flow reconstruction algorithm. We show that our proposed approach can recover complex structures up to 6 mm deep inside a tissue-like scattering medium in the reflection geometry. We also conduct human experiments to demonstrate that our approach can detect reduced flow in major blood vessels during vascular occlusion.
Collapse
Affiliation(s)
- Akash Kumar Maity
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Manoj Kumar Sharma
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Ashok Veeraraghavan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Ashutosh Sabharwal
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
5
|
Mohtasebi M, Singh D, Liu X, Fathi F, Haratbar SR, Saatman KE, Chen L, Yu G. Depth-sensitive diffuse speckle contrast topography for high-density mapping of cerebral blood flow in rodents. NEUROPHOTONICS 2023; 10:045007. [PMID: 38076725 PMCID: PMC10704187 DOI: 10.1117/1.nph.10.4.045007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024]
Abstract
Significance Frequent assessment of cerebral blood flow (CBF) is crucial for the diagnosis and management of cerebral vascular diseases. In contrast to large and expensive imaging modalities, such as nuclear medicine and magnetic resonance imaging, optical imaging techniques are portable and inexpensive tools for continuous measurements of cerebral hemodynamics. The recent development of an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) enables three-dimensional (3D) imaging of CBF distributions. However, scDCT requires complex and time-consuming 3D reconstruction, which limits its ability to achieve high spatial resolution without sacrificing temporal resolution and computational efficiency. Aim We investigate a new diffuse speckle contrast topography (DSCT) method with parallel computation for analyzing scDCT data to achieve fast and high-density two-dimensional (2D) mapping of CBF distributions at different depths without the need for 3D reconstruction. Approach A new moving window method was adapted to improve the sampling rate of DSCT. A fast computation method utilizing MATLAB functions in the Image Processing Toolbox™ and Parallel Computing Toolbox™ was developed to rapidly generate high-density CBF maps. The new DSCT method was tested for spatial resolution and depth sensitivity in head-simulating layered phantoms and in-vivo rodent models. Results DSCT enables 2D mapping of the particle flow in the phantom at different depths through the top layer with varied thicknesses. Both DSCT and scDCT enable the detection of global and regional CBF changes in deep brains of adult rats. However, DSCT achieves fast and high-density 2D mapping of CBF distributions at different depths without the need for complex and time-consuming 3D reconstruction. Conclusions The depth-sensitive DSCT method has the potential to be used as a noninvasive, noncontact, fast, high resolution, portable, and inexpensive brain imager for basic neuroscience research in small animal models and for translational studies in human neonates.
Collapse
Affiliation(s)
- Mehrana Mohtasebi
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Dara Singh
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Xuhui Liu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Faraneh Fathi
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | | | - Kathryn E. Saatman
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Department of Physiology, Lexington, Kentucky, United States
| | - Lei Chen
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Department of Physiology, Lexington, Kentucky, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| |
Collapse
|
6
|
Lin CHP, Orukari I, Tracy C, Frisk LK, Verma M, Chetia S, Durduran T, Trobaugh JW, Culver JP. Multi-mode fiber-based speckle contrast optical spectroscopy: analysis of speckle statistics. OPTICS LETTERS 2023; 48:1427-1430. [PMID: 36946944 DOI: 10.1364/ol.478956] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Speckle contrast optical spectroscopy/tomography (SCOS/T) provides a real-time, non-invasive, and cost-efficient optical imaging approach to mapping of cerebral blood flow. By measuring many speckles (n>>10), SCOS/T has an increased signal-to-noise ratio relative to diffuse correlation spectroscopy, which measures one or a few speckles. However, the current free-space SCOS/T designs are not ideal for large field-of-view imaging in humans because the curved head contour cannot be readily imaged with a single flat sensor and hair obstructs optical access. Herein, we evaluate the feasibility of using cost-efficient multi-mode fiber (MMF) bundles for use in SCOS/T systems. One challenge with speckle contrast measurements is the potential for confounding noise sources (e.g., shot noise, readout noise) which contribute to the standard deviation measure and corrupt the speckle contrast measure that is central to the SCOS/T systems. However, for true speckle measurements, the histogram of pixel intensities from light interference follows a non-Gaussian distribution, specifically a gamma distribution with non-zero skew, whereas most noise sources have pixel intensity distributions that are Gaussian. By evaluating speckle data from static and dynamic targets imaged through an MMF, we use histograms and statistical analysis of pixel histograms to evaluate whether the statistical properties of the speckles are retained. We show that flow-based speckle can be distinguished from static speckle and from sources of system noise through measures of skew in the pixel intensity histograms. Finally, we illustrate in humans that MMF bundles relay blood flow information.
Collapse
|
7
|
Synthetic exposure with a CMOS camera for multiple exposure speckle imaging of blood flow. Sci Rep 2022; 12:4708. [PMID: 35304556 PMCID: PMC8933569 DOI: 10.1038/s41598-022-08647-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Speckle contrast imaging is an established technique to obtain relative blood flow maps over wide fields of view. A major improvement of the method relies on the acquisition of raw speckle images at different exposure times but requires simultaneous modulation of a laser pulse in duration and intensity and precise synchronization with a camera. This complex instrumentation has limited the use of multiple exposure speckle imaging. We evaluate here the use of a CMOS camera for a simplified approach based on synthetic exposure images created from the sum of successive frames acquired at a 1 ms exposure time. Both methods have been applied to evaluate controlled flows in micro-channels. The contribution of noises to the speckle contrast have been quantified and compared. Dark, readout and shot noise contributions to the total contrast remain constant for modulated exposure, while all these contributions decrease with increasing exposure time for synthetic exposure. The relative contribution of noises to speckle contrast depends on the level of illumination and the exposure time. Guidelines for flow measurements and limitations of the use of a CMOS camera with a limited frame rate for synthetic exposure acquisition scheme are discussed. The synthetic exposure method is simple to implement and should facilitate the translation of multiple exposure speckle imaging to clinical set-ups.
Collapse
|
8
|
Jafari CZ, Mihelic SA, Engelmann S, Dunn AK. High-resolution three-dimensional blood flow tomography in the subdiffuse regime using laser speckle contrast imaging. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210364SSR. [PMID: 35362273 PMCID: PMC8968074 DOI: 10.1117/1.jbo.27.8.083011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Visualizing high-resolution hemodynamics in cerebral tissue over a large field of view (FOV), provides important information in studying disease states affecting the brain. Current state-of-the-art optical blood flow imaging techniques either lack spatial resolution or are too slow to provide high temporal resolution reconstruction of flow map over a large FOV. AIM We present a high spatial resolution computational optical imaging technique based on principles of laser speckle contrast imaging (LSCI) for reconstructing the blood flow maps in complex tissue over a large FOV provided that the three-dimensional (3D) vascular structure is known or assumed. APPROACH Our proposed method uses a perturbation Monte Carlo simulation of the high-resolution 3D geometry for both accurately deriving the speckle contrast forward model and calculating the Jacobian matrix used in our reconstruction algorithm to achieve high resolution. Given the convex nature of our highly nonlinear problem, we implemented a mini-batch gradient descent with an adaptive learning rate optimization method to iteratively reconstruct the blood flow map. Specifically, we implemented advanced optimization techniques combined with efficient parallelization and vectorization of the forward and derivative calculations to make reconstruction of the blood flow map feasible with reconstruction times on the order of tens of minutes. RESULTS We tested our reconstruction algorithm through simulation of both a flow phantom model as well as an anatomically correct murine cerebral tissue and vasculature captured via two-photon microscopy. Additionally, we performed a noise study, examining the robustness of our inverse model in presence of 0.1% and 1% additive noise. In all cases, the blood flow reconstruction error was <2 % for most of the vasculature, except for the peripheral vasculature which suffered from insufficient photon sampling. Descending vasculature and deeper structures showed slightly higher sensitivity to noise compared with vasculature with a horizontal orientation at the more superficial layers. Our results show high-resolution reconstruction of the blood flow map in tissue down to 500 μm and beyond. CONCLUSIONS We have demonstrated a high-resolution computational imaging technique for visualizing blood flow map in complex tissue over a large FOV. Once a high-resolution structural image is captured, our reconstruction algorithm only requires a few LSCI images captured through a camera to reconstruct the blood flow map computationally at a high resolution. We note that the combination of high temporal and spatial resolution of our reconstruction algorithm makes the solution well-suited for applications involving fast monitoring of flow dynamics over a large FOV, such as in functional neural imaging.
Collapse
Affiliation(s)
- Chakameh Z. Jafari
- The University of Texas at Austin, Department of Electrical and Computer Engineering, Austin, Texas, United States
| | - Samuel A. Mihelic
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Shaun Engelmann
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Andrew K. Dunn
- The University of Texas at Austin, Department of Electrical and Computer Engineering, Austin, Texas, United States
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| |
Collapse
|
9
|
Zhao M, Huang C, Mazdeyasna S, Yu G. Extraction of tissue optical property and blood flow from speckle contrast diffuse correlation tomography (scDCT) measurements. BIOMEDICAL OPTICS EXPRESS 2021; 12:5894-5908. [PMID: 34692223 PMCID: PMC8515985 DOI: 10.1364/boe.429890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Measurement of blood flow in tissue provides vital information for the diagnosis and therapeutic monitoring of various vascular diseases. A noncontact, camera-based, near-infrared speckle contrast diffuse correlation tomography (scDCT) technique has been recently developed for 3D imaging of blood flow index (αDB) distributions in deep tissues up to a centimeter. A limitation with the continuous-wave scDCT measurement of blood flow is the assumption of constant and homogenous tissue absorption coefficient (μ a ). The present study took the advantage of rapid, high-density, noncontact scDCT measurements of both light intensities and diffuse speckle contrast at multiple source-detector distances and developed two-step fitting algorithms for extracting both μ a and αDB. The new algorithms were tested in tissue-simulating phantoms with known optical properties and human forearms. Measurement results were compared against established near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) techniques. The accuracies of our new fitting algorithms with scDCT measurements in phantoms (up to 16% errors) and forearms (up to 23% errors) are comparable to relevant study results (up to 25% errors). Knowledge of μ a not only improved the accuracy in calculating αDB but also provided the potential for quantifying tissue blood oxygenation via spectral measurements. A multiple-wavelength scDCT system with new algorithms is currently developing to fit multi-wavelength and multi-distance data for 3D imaging of both blood flow and oxygenation distributions in deep tissues.
Collapse
|
10
|
Guan C, Yi M, Du Q, Xiong H, Tan H, Wang M, Zeng Y. Full-field optical multi-functional angiography based on endogenous hemodynamic characteristics. JOURNAL OF BIOPHOTONICS 2021; 14:e202000411. [PMID: 33449425 DOI: 10.1002/jbio.202000411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Blood flow functional imaging is widely applied in biological research to provide vascular morphological and statistical parameters. It relies on the absorption difference and is, therefore, easily affected by complex biological structures, and it cannot accommodate abundant functional information. We propose a full-field multi-functional angiography method to classify arteriovenous vessels and to display flow velocity and vascular diameter distribution simultaneously. Unlike previous methods, an under-sampled laser Doppler acquisition mode is used to record the low-coherence speckle, and multi-functional angiography is achieved by modulating the endogenous hemodynamic characteristics from low-coherence speckle. To demonstrate the combination of classified angiography, blood flow velocity measurement, and vascular diameter measurement realized using our method, we performed experiments on the flow phantom and living chicken embryos and generated multi-functional angiograms. The proposed method can be used as a label-free multi-functional angiography technique in which red blood cells provide a strong endogenous source of naturally hemodynamic characteristics.
Collapse
Affiliation(s)
- Caizhong Guan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Min Yi
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Qianyi Du
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Honglian Xiong
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Haishu Tan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Mingyi Wang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| | - Yaguang Zeng
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
| |
Collapse
|
11
|
Huang C, Mazdeyasna S, Mohtasebi M, Saatman KE, Cheng Q, Yu G, Chen L. Speckle contrast diffuse correlation tomography of cerebral blood flow in perinatal disease model of neonatal piglets. JOURNAL OF BIOPHOTONICS 2021; 14:e202000366. [PMID: 33295142 PMCID: PMC8833087 DOI: 10.1002/jbio.202000366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 05/11/2023]
Abstract
We adapted and tested an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) system for 3D imaging of cerebral blood flow (CBF) variations in perinatal disease models utilizing neonatal piglets, which closely resemble human neonates. CBF variations were concurrently measured by the scDCT and an established diffuse correlation spectroscopy (DCS) during global ischemia, intraventricular hemorrhage, and asphyxia; significant correlations were observed. Moreover, CBF variations associated reasonably with vital pathophysiological changes. In contrast to DCS measurements of mixed signals from local scalp, skull and brain, scDCT generates 3D images of CBF distributions at prescribed depths within the head, thus enabling specific determination of regional cerebral ischemia. With further optimization and validation in animals and human neonates, scDCT has the potential to be a noninvasive imaging tool for both basic neuroscience research in laboratories and clinical applications in neonatal intensive care units.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Siavash Mazdeyasna
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Mehrana Mohtasebi
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Kathryn E. Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Qiang Cheng
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Jang JH, Solarana K, Hammer DX, Fisher JAN. Dissecting the microvascular contributions to diffuse correlation spectroscopy measurements of cerebral hemodynamics using optical coherence tomography angiography. NEUROPHOTONICS 2021; 8:025006. [PMID: 33912621 PMCID: PMC8071783 DOI: 10.1117/1.nph.8.2.025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Significance: Diffuse correlation spectroscopy (DCS) is an emerging noninvasive, diffuse optical modality that purportedly enables direct measurements of microvasculature blood flow. Functional optical coherence tomography angiography (OCT-A) can resolve blood flow in vessels as fine as capillaries and thus has the capability to validate key attributes of the DCS signal. Aim: To characterize activity in cortical vasculature within the spatial volume that is probed by DCS and to identify populations of blood vessels that are most representative of the DCS signals. Approach: We performed simultaneous measurements of somatosensory-evoked cerebral blood flow in mice in vivo using both DCS and OCT-A. Results: We resolved sensory-evoked blood flow in the somatosensory cortex with both modalities. Vessels with diameters smaller than 10 μ m featured higher peak flow rates during the initial poststimulus positive increase in flow, whereas larger vessels exhibited considerably larger magnitude of the subsequent undershoot. The simultaneously recorded DCS waveforms correlated most highly with flow in the smallest vessels, yet featured a more prominent undershoot. Conclusions: Our direct, multiscale, multimodal cross-validation measurements of functional blood flow support the assertion that the DCS signal preferentially represents flow in microvasculature. The significantly greater undershoot in DCS, however, suggests a more spatially complex relationship to flow in cortical vasculature during functional activation.
Collapse
Affiliation(s)
- James H. Jang
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Krystyna Solarana
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Daniel X. Hammer
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jonathan A. N. Fisher
- New York Medical College, Department of Physiology, Valhalla, New York, United States
| |
Collapse
|
13
|
Pagliazzi M, Colombo L, Vidal-Rosas EE, Dragojević T, Parfentyeva V, Culver JP, Konugolu Venkata Sekar S, Di Sieno L, Contini D, Torricelli A, Pifferi A, Dalla Mora A, Durduran T. Time resolved speckle contrast optical spectroscopy at quasi-null source-detector separation for non-invasive measurement of microvascular blood flow. BIOMEDICAL OPTICS EXPRESS 2021; 12:1499-1511. [PMID: 33796368 PMCID: PMC7984782 DOI: 10.1364/boe.418882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 05/03/2023]
Abstract
Time (or path length) resolved speckle contrast optical spectroscopy (TD-SCOS) at quasi-null (2.85 mm) source-detector separation was developed and demonstrated. The method was illustrated by in vivo studies on the forearm muscle of an adult subject. The results have shown that selecting longer photon path lengths results in higher hyperemic blood flow change and a faster return to baseline by a factor of two after arterial cuff occlusion when compared to SCOS without time resolution. This indicates higher sensitivity to the deeper muscle tissue. In the long run, this approach may allow the use of simpler and cheaper detector arrays compared to time resolved diffuse correlation spectroscopy that are based on readily available technologies. Hence, TD-SCOS may increase the performance and decrease cost of devices for continuous non-invasive, deep tissue blood flow monitoring.
Collapse
Affiliation(s)
- Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Ernesto E. Vidal-Rosas
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Tanja Dragojević
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Veronika Parfentyeva
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Joseph P. Culver
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | | | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|