1
|
Wang YJ, Wen Y, Zheng L, Chen J, Lin Z, Pan Y. A computational and multi-brain signature for aberrant social coordination in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111225. [PMID: 39706546 DOI: 10.1016/j.pnpbp.2024.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Social functioning impairment is a core symptom of schizophrenia (SCZ). Yet, the computational and neural mechanisms of social coordination in SCZ under real-time and naturalistic settings are poorly understood. Here, we instructed patients with SCZ to coordinate with a healthy control (HC) in a joint finger-tapping task, during which their brain activity was measured by functional near-infrared spectroscopy simultaneously. The results showed that patients with SCZ exhibited poor rhythm control ability and unstable tapping behaviour, which weakened their interpersonal synchronization when coordinating with HCs. Moreover, the dynamical systems modeling revealed disrupted between-participant coupling when SCZ patients coordinated with HCs. Importantly, increased inter-brain synchronization was identified within SCZ-HC dyads, which positively correlated with behavioural synchronization and successfully predicted dimensions of psychopathology. Our study suggests that SCZ individuals may require stronger interpersonal neural alignment to support their deficient coordination performance. This hyperalignment may be relevant for developing inter-personalized treatment strategies.
Collapse
Affiliation(s)
- Ya-Jie Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yalan Wen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Leilei Zheng
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Center for Brain Health and Brain Technology, Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
McCraw A, Sullivan J, Lowery K, Eddings R, Heim HR, Buss AT. Dynamic Field Theory of Executive Function: Identifying Early Neurocognitive Markers. Monogr Soc Res Child Dev 2024; 89:7-109. [PMID: 39628288 PMCID: PMC11615565 DOI: 10.1111/mono.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 12/08/2024]
Abstract
In this Monograph, we explored neurocognitive predictors of executive function (EF) development in a cohort of children followed longitudinally from 30 to 54 months of age. We tested predictions of a dynamic field model that explains development in a benchmark measure of EF development, the dimensional change card sort (DCCS) task. This is a rule-use task that measures children's ability to switch between sorting cards by shape or color rules. A key developmental mechanism in the model is that dimensional label learning drives EF development. Data collection began in February 2019 and was completed in April 2022 on the Knoxville campus of the University of Tennessee. Our cohort included 20 children (13 female) all of whom were White (not Hispanic/Latinx) from an urban area in southern United States, and the sample annual family income distribution ranged from low to high (most families falling between $40,000 and 59,000 per year (note that we address issues of generalizability and the small sample size throughout the monograph)). We tested the influence of dimensional label learning on DCCS performance by longitudinally assessing neurocognitive function across multiple domains at 30 and 54 months of age. We measured dimensional label learning with comprehension and production tasks for shape and color labels. Simple EF was measured with the Simon task which required children to respond to images of a cat or dog with a lateralized (left/right) button press. Response conflict was manipulated in this task based on the spatial location of the stimulus which could be neutral (central), congruent, or incongruent with the spatial lateralization of the response. Dimensional understanding was measured with an object matching task requiring children to generalize similarity between objects that matched within the dimensions of color or shape. We first identified neural measures associated with performance and development on each of these tasks. We then examined which of these measures predicted performance on the DCCS task at 54 months. We measured neural activity with functional near-infrared spectroscopy across bilateral frontal, temporal, and parietal cortices. Our results identified an array of neurocognitive mechanisms associated with development within each domain we assessed. Importantly, our results suggest that dimensional label learning impacts the development of EF. Neural activation in left frontal cortex during dimensional label production at 30 months of age predicted EF performance at 54 months of age. We discussed these results in the context of efforts to train EF with broad transfer. We also discussed a new autonomy-centered EF framework. The dynamic field model on which we have motivated the current research makes decisions autonomously and various factors can influence the types of decisions that the model makes. In this way, EF is a property of neurocognitive dynamics, which can be influenced by individual factors and contextual effects. We also discuss how this conceptual framework can generalize beyond the specific example of dimensional label learning and DCCS performance to other aspects of EF and how this framework can help to understand how EF unfolds in unique individual, cultural, and contextual factors. Measures of EF during early childhood are associated with a wide range of development outcomes, including academic skills and quality of life. The hope is that broad aspects of development can be improved by implementing interventions aimed at facilitating EF development. However, this promise has been largely unrealized. Previous work on EF development has been limited by a focus on EF components, such as inhibition, working memory, and switching. Similarly, intervention research has focused on practicing EF tasks that target these specific components of EF. While performance typically improves on the practiced task, improvement rarely generalizes to other EF tasks or other developmental outcomes. The current work is unique because we looked beyond EF itself to identify the lower-level learning processes that predict EF development. Indeed, the results of this study identify the first learning mechanism involved in the development of EF. Although the work here provides new targets for interventions in future work, there are also important limitations. First, our sample is not representative of the underlying population of children in the United States under the age of 5. This is a problem in much of the existing developmental cognitive neuroscience research. We discussed challenges to the generalizability of our findings to the population at large. This is particularly important given that our theory is largely contextual, suggesting that children's unique experiences with learning labels for visual dimensions will impact EF development. Second, we identified a learning mechanism to target in future intervention research; however, it is not clear whether such interventions would benefit all children or how to identify children who would benefit most from such interventions. We also discuss prospective lines of research that can address these limitations, such as targeting families that are typically underrepresented in research, expanding longitudinal studies to examine longer term outcomes such as school-readiness and academic skills, and using the dynamic field (DF) model to systematically explore how exposure to objects and labels can optimize the neural representations underlying dimensional label learning. Future work remains to understand how such learning processes come to define the contextually and culturally specific skills that emerge over development and how these skills lay the foundation for broad developmental trajectories.
Collapse
Affiliation(s)
- Alexis McCraw
- Department of PsychologyUniversity of TennesseeKnoxville
| | | | - Kara Lowery
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Rachel Eddings
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Hollis R. Heim
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Aaron T. Buss
- Department of PsychologyUniversity of TennesseeKnoxville
| |
Collapse
|
3
|
Mai G, Jiang Z, Wang X, Tachtsidis I, Howell P. Neuroplasticity of Speech-in-Noise Processing in Older Adults Assessed by Functional Near-Infrared Spectroscopy (fNIRS). Brain Topogr 2024; 37:1139-1157. [PMID: 39042322 PMCID: PMC11408581 DOI: 10.1007/s10548-024-01070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS), a non-invasive optical neuroimaging technique that is portable and acoustically silent, has become a promising tool for evaluating auditory brain functions in hearing-vulnerable individuals. This study, for the first time, used fNIRS to evaluate neuroplasticity of speech-in-noise processing in older adults. Ten older adults, most of whom had moderate-to-mild hearing loss, participated in a 4-week speech-in-noise training. Their speech-in-noise performances and fNIRS brain responses to speech (auditory sentences in noise), non-speech (spectrally-rotated speech in noise) and visual (flashing chequerboards) stimuli were evaluated pre- (T0) and post-training (immediately after training, T1; and after a 4-week retention, T2). Behaviourally, speech-in-noise performances were improved after retention (T2 vs. T0) but not immediately after training (T1 vs. T0). Neurally, we intriguingly found brain responses to speech vs. non-speech decreased significantly in the left auditory cortex after retention (T2 vs. T0 and T2 vs. T1) for which we interpret as suppressed processing of background noise during speech listening alongside the significant behavioural improvements. Meanwhile, functional connectivity within and between multiple regions of temporal, parietal and frontal lobes was significantly enhanced in the speech condition after retention (T2 vs. T0). We also found neural changes before the emergence of significant behavioural improvements. Compared to pre-training, responses to speech vs. non-speech in the left frontal/prefrontal cortex were decreased significantly both immediately after training (T1 vs. T0) and retention (T2 vs. T0), reflecting possible alleviation of listening efforts. Finally, connectivity was significantly decreased between auditory and higher-level non-auditory (parietal and frontal) cortices in response to visual stimuli immediately after training (T1 vs. T0), indicating decreased cross-modal takeover of speech-related regions during visual processing. The results thus showed that neuroplasticity can be observed not only at the same time with, but also before, behavioural changes in speech-in-noise perception. To our knowledge, this is the first fNIRS study to evaluate speech-based auditory neuroplasticity in older adults. It thus provides important implications for current research by illustrating the promises of detecting neuroplasticity using fNIRS in hearing-vulnerable individuals.
Collapse
Affiliation(s)
- Guangting Mai
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Nottingham, UK.
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Division of Psychology and Language Sciences, University College London, London, UK.
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Zhizhao Jiang
- Division of Psychology and Language Sciences, University College London, London, UK
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Xinran Wang
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Peter Howell
- Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
4
|
Kim HI, Jo S, Kwon M, Park JE, Han JW, Kim KW. Association of Compensatory Mechanisms in Prefrontal Cortex and Impaired Anatomical Correlates in Semantic Verbal Fluency: A Functional Near-Infrared Spectroscopy Study. Psychiatry Investig 2024; 21:1065-1075. [PMID: 39255965 PMCID: PMC11513872 DOI: 10.30773/pi.2023.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/16/2024] [Accepted: 07/07/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVE Semantic verbal fluency (SVF) engages cognitive functions such as executive function, mental flexibility, and semantic memory. Left frontal and temporal lobes, particularly the left inferior frontal gyrus (IFG), are crucial for SVF. This study investigates SVF and associated neural processing in older adults with mild SVF impairment and the relationship between structural abnormalities in the left IFG and functional activation during SVF in those individuals. METHODS Fifty-four elderly individuals with modest level of mild cognitive impairment whose global cognition were preserved to normal but exhibited mild SVF impairment were participated. Prefrontal oxyhemoglobin (HbO2) activation and frontal cortical thickness were collected from the participants using functional near-infrared spectroscopy (fNIRS) and brain MRI, respectively. We calculated the β coefficient of HbO2 activation induced by tasks, and performed correlation analysis between SVF induced HbO2 activation and cortical thickness in frontal areas. RESULTS We observed increased prefrontal activation during SVF task compared to the resting and control task. The activation distinct to SVF was identified in the midline superior and left superior prefrontal regions (p<0.05). Correlation analysis revealed an inverse relationship between SVF-specific activation and cortical thickness in the left IFG, particularly in pars triangularis (r(54)=-0.304, p=0.025). CONCLUSION The study contributes to understanding the relationship between reduced cortical thickness in left IFG and increased functional activity in cognitively normal individuals with mild SVF impairment, providing implications on potential compensatory mechanisms for cognitive preservation.
Collapse
Affiliation(s)
- Hae-In Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sungman Jo
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minjeong Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Theyer A, Davidson C, Amaireh G, Wijeakumar S. Association between caregiver and infant visual neurocognition. Infant Behav Dev 2024; 76:101975. [PMID: 38986217 DOI: 10.1016/j.infbeh.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Previous work has shown that caregiver attention shapes visual cognition in infants through dyadic interactions. Is this association measurable when visual cognition is objectively measured in caregivers and infants using comparable experimental paradigms? In the current study, we presented infants (N = 86) and caregivers (N = 78) with age-specific variants of the same preferential looking visual cognition task to investigate whether caregiver visual cognition was associated with their infants' visual cognition. In each trial of the task, two side-by-side flashing displays of coloured shapes were presented. On the 'unchanging' side, the colours of the shapes remained the same. On the 'changing' side, the colour of one shape changed after each flash. Load was varied by changing the number of shapes across trials (low, medium, and high loads). We extracted looking dynamics using video recordings and brain function using functional near-infrared spectroscopy as both infants and caregivers engaged with the task. Change preference (CP) score, which represented the amount of time spent looking at the changing side divided by the total looking duration, showed a load-dependent modulation for both infants and caregivers. Both groups showed the highest CP scores at the low load. Further, higher caregiver CP scores was associated with higher infant CP scores at the low load. Both infants and caregivers engaged canonical regions of the fronto-parietal network involved in visual cognition. Critically, higher caregiver CP scores were associated with greater activation in the left superior parietal lobule in younger infants, a region involved in allocating visuo-spatial attention and working memory maintenance. Further, there was spatial overlap between performance-dependent regions in the right parietal cortex in caregivers and younger infants. Our findings provide first evidence of a heritability-related visual neurocognitive association between caregivers and their children in the first year of life.
Collapse
Affiliation(s)
- Aimee Theyer
- School of Psychology, University of Nottingham, NG7 2RD Nottingham, England, UK
| | - Christina Davidson
- School of Psychology, University of Nottingham, NG7 2RD Nottingham, England, UK
| | - Ghada Amaireh
- School of Psychology, University of Nottingham, NG7 2RD Nottingham, England, UK
| | | |
Collapse
|
6
|
Bálint A, Rummel C, Caversaccio M, Weder S. Three-dimensional infrared scanning: an enhanced approach for spatial registration of probes for neuroimaging. NEUROPHOTONICS 2024; 11:024309. [PMID: 38812965 PMCID: PMC11134420 DOI: 10.1117/1.nph.11.2.024309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Significance Accurate spatial registration of probes (e.g., optodes and electrodes) for measurement of brain activity is a crucial aspect in many neuroimaging modalities. It may increase measurement precision and enable the transition from channel-based calculations to volumetric representations. Aim This technical note evaluates the efficacy of a commercially available infrared three-dimensional (3D) scanner under actual experimental (or clinical) conditions and provides guidelines for its use. Method We registered probe positions using an infrared 3D scanner and validated them against magnetic resonance imaging (MRI) scans on five volunteer participants. Results Our analysis showed that with standard cap fixation, the average Euclidean distance of probe position among subjects could reach up to 43 mm, with an average distance of 15.25 mm [standard deviation (SD) = 8.0]. By contrast, the average distance between the infrared 3D scanner and the MRI-acquired positions was 5.69 mm (SD = 1.73), while the average difference between consecutive infrared 3D scans was 3.43 mm (SD = 1.62). The inter-optode distance, which was fixed at 30 mm, was measured as 29.28 mm (SD = 1.12) on the MRI and 29.43 mm (SD = 1.96) on infrared 3D scans. Our results demonstrate the high accuracy and reproducibility of the proposed spatial registration method, making it suitable for both functional near-infrared spectroscopy and electroencephalogram studies. Conclusions The 3D infrared scanning technique for spatial registration of probes provides economic efficiency, simplicity, practicality, repeatability, and high accuracy, with potential benefits for a range of neuroimaging applications. We provide practical guidance on anonymization, labeling, and post-processing of acquired scans.
Collapse
Affiliation(s)
- András Bálint
- University of Bern, ARTORG Center for Biomedical Engineering Research, Hearing Research Laboratory, Bern, Switzerland
- Inselspital, Bern University Hospital, University of Bern, Department of ENT - Head and Neck Surgery, Bern, Switzerland
| | - Christian Rummel
- Inselspital, Bern University Hospital, University of Bern, University Institute of Diagnostic and Interventional Neuroradiology, Support Center for Advanced Neuroimaging (SCAN), Bern, Switzerland
| | - Marco Caversaccio
- University of Bern, ARTORG Center for Biomedical Engineering Research, Hearing Research Laboratory, Bern, Switzerland
- Inselspital, Bern University Hospital, University of Bern, Department of ENT - Head and Neck Surgery, Bern, Switzerland
| | - Stefan Weder
- Inselspital, Bern University Hospital, University of Bern, Department of ENT - Head and Neck Surgery, Bern, Switzerland
| |
Collapse
|
7
|
Davidson C, Theyer A, Amaireh G, Wijeakumar S. The impact of caregiver inhibitory control on infant visual working memory. Infant Behav Dev 2024; 74:101921. [PMID: 38211463 DOI: 10.1016/j.infbeh.2023.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
Visual working memory (VWM) emerges in the first year of life and has far-reaching implications for academic and later life outcomes. Given that caregivers play a significant role in shaping cognitive function in children, it is important to understand how they might impact VWM development as early as infancy. The current study investigated whether caregivers' efficiency of regulating inhibitory control was associated with VWM function in their infants. Eighty-eight caregivers were presented with a Go-NoGo task to assess inhibitory control. An efficiency score was calculated using their behavioural responses. Eighty-six 6-to-10-month-old infants were presented with a preferential looking task to assess VWM function. VWM load was manipulated across one (low load), two (medium load) and three (high load) items. Functional near-infrared spectroscopy was used to record brain activation from caregivers and their infants. We found no direct association between caregiver efficiency and infant VWM behaviour. However, we found an indirect association - caregiver efficiency was linked to infant VWM through left-lateralized fronto-parietal engagement. Specifically, infants with low efficiency caregivers showed decreasing left-lateralized parietal engagement with increasing VWM performance at the medium and high loads compared to infants with high efficiency caregivers, who did not show any load- or performance-dependent modulation. Our findings contribute to a growing body of literature examining the role that caregivers play in early neurocognitive development.
Collapse
Affiliation(s)
- Christina Davidson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Aimee Theyer
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Ghada Amaireh
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
8
|
Vera DA, García HA, Carbone NA, Waks-Serra MV, Iriarte DI, Pomarico JA. Retrieval of chromophore concentration changes in a digital human head model using analytical mean partial pathlengths of photons. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:025004. [PMID: 38419755 PMCID: PMC10901244 DOI: 10.1117/1.jbo.29.2.025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Significance Continuous-wave functional near-infrared spectroscopy has proved to be a valuable tool for assessing hemodynamic activity in the human brain in a non-invasively and inexpensive way. However, most of the current processing/analysis methods assume the head is a homogeneous medium, and hence do not appropriately correct for the signal coming from the scalp. This effect can be reduced by considering light propagation in a layered model of the human head, being the Monte Carlo (MC) simulations the gold standard to this end. However, this implies large computation times and demanding hardware capabilities. Aim In this work, we study the feasibility of replacing the homogeneous model and the MC simulations by means of analytical multilayered models, combining in this way, the speed and simplicity of implementation of the former with the robustness and accuracy of the latter. Approach Oxy- and deoxyhemoglobin (HbO and HbR, respectively) concentration changes were proposed in two different layers of a magnetic resonance imaging (MRI)-based meshed model of the human head, and then these changes were retrieved by means of (i) a typical homogeneous reconstruction and (ii) a theoretical layered reconstruction. Results Results suggest that the use of analytical models of light propagation in layered models outperforms the results obtained using traditional homogeneous reconstruction algorithms, providing much more accurate results for both, the extra- and the cerebral tissues. We also compare the analytical layered reconstruction with MC-based reconstructions, achieving similar degrees of accuracy, especially in the gray matter layer, but much faster (between 4 and 5 orders of magnitude). Conclusions We have successfully developed, implemented, and validated a method for retrieving chromophore concentration changes in the human brain, combining the simplicity and speed of the traditional homogeneous reconstruction algorithms with robustness and accuracy much more similar to those provided by MC simulations.
Collapse
|
9
|
Leadley G, Austin T, Bale G. Review of measurements and imaging of cytochrome-c-oxidase in humans using near-infrared spectroscopy: an update. BIOMEDICAL OPTICS EXPRESS 2024; 15:162-184. [PMID: 38223181 PMCID: PMC10783912 DOI: 10.1364/boe.501915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
10
|
Wijeakumar S, Forbes SH, Magnotta VA, Deoni S, Jackson K, Singh VP, Tiwari M, Kumar A, Spencer JP. Stunting in infancy is associated with atypical activation of working memory and attention networks. Nat Hum Behav 2023; 7:2199-2211. [PMID: 37884677 PMCID: PMC10730391 DOI: 10.1038/s41562-023-01725-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Stunting is associated with poor long-term cognitive, academic and economic outcomes, yet the mechanisms through which stunting impacts cognition in early development remain unknown. In a first-ever neuroimaging study conducted on infants from rural India, we demonstrate that stunting impacts a critical, early-developing cognitive system-visual working memory. Stunted infants showed poor visual working memory performance and were easily distractible. Poor performance was associated with reduced engagement of the left anterior intraparietal sulcus, a region involved in visual working memory maintenance and greater suppression in the right temporoparietal junction, a region involved in attentional shifting. When assessed one year later, stunted infants had lower problem-solving scores, while infants of normal height with greater left anterior intraparietal sulcus activation showed higher problem-solving scores. Finally, short-for-age infants with poor physical growth indices but good visual working memory performance showed more positive outcomes suggesting that intervention efforts should focus on improving working memory and reducing distractibility in infancy.
Collapse
Affiliation(s)
| | | | | | - Sean Deoni
- Maternal, Newborn and Child Health Discovery & Tools, Bill & Melinda Gates Foundation, Seattle, WA, USA
- Advanced Baby Imaging Lab, New England Pediatric Institute of Neurodevelopment, Rhode Island Hospital, Providence, RI, USA
| | - Kiara Jackson
- School of Psychology, University of East Anglia, Norwich, UK
| | | | | | | | - John P Spencer
- School of Psychology, University of East Anglia, Norwich, UK.
| |
Collapse
|
11
|
Cui Y, Cong F, Huang F, Zeng M, Yan R. Cortical activation of neuromuscular electrical stimulation synchronized mirror neuron rehabilitation strategies: an fNIRS study. Front Neurol 2023; 14:1232436. [PMID: 37602262 PMCID: PMC10437114 DOI: 10.3389/fneur.2023.1232436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background The mirror neuron system (MNS) plays a key role in the neural mechanism underlying motor learning and neural plasticity. Action observation (AO), action execution (AE), and a combination of both, known as action imitation (AI), are the most commonly used rehabilitation strategies based on MNS. It is possible to enhance the cortical activation area and amplitude by combining traditional neuromuscular electrical stimulation (NMES) with other top-down and active rehabilitation strategies based on the MNS theory. Objective This study aimed to explore the cortical activation patterns induced by NMES synchronized with rehabilitation strategies based on MNS, namely NMES+AO, NMES+AE, and NMES+AI. In addition, the study aimed to assess the feasibility of these three novel rehabilitative treatments in order to provide insights and evidence for the design, implementation, and application of brain-computer interfaces. Methods A total of 70 healthy adults were recruited from July 2022 to February 2023, and 66 of them were finally included in the analysis. The cortical activation patterns during NMES+AO, NMES+AE, and NMES+AI were detected using the functional Near-Infrared Spectroscopy (fNIRS) technique. The action to be observed, executed, or imitated was right wrist and hand extension, and two square-shaped NMES electrodes were placed on the right extensor digitorum communis. A block design was adopted to evaluate the activation intensity of the left MNS brain regions. Results General linear model results showed that compared with the control condition, the number of channels significantly activated (PFDR < 0.05) in the NMES+AO, NMES+AE, and NMES+AI conditions were 3, 9, and 9, respectively. Region of interest (ROI) analysis showed that 2 ROIs were significantly activated (PFDR < 0.05) in the NMES+AO condition, including BA6 and BA44; 5 ROIs were significantly activated in the NMES+AE condition, including BA6, BA40, BA44, BA45, and BA46; and 6 ROIs were significantly activated in the NMES+AI condition, including BA6, BA7, BA40, BA44, BA45, and BA46. Conclusion The MNS was activated during neuromuscular electrical stimulation combined with an AO, AE, and AI intervention. The synchronous application of NMES and mirror neuron rehabilitation strategies is feasible in clinical rehabilitation. The fNIRS signal patterns observed in this study could be used to develop brain-computer interface and neurofeedback therapy rehabilitation devices.
Collapse
Affiliation(s)
- Yao Cui
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fang Cong
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fubiao Huang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Ming Zeng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang, China
| | - Ruxiu Yan
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
12
|
Vidal-Rosas EE, von Lühmann A, Pinti P, Cooper RJ. Wearable, high-density fNIRS and diffuse optical tomography technologies: a perspective. NEUROPHOTONICS 2023; 10:023513. [PMID: 37207252 PMCID: PMC10190166 DOI: 10.1117/1.nph.10.2.023513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Recent progress in optoelectronics has made wearable and high-density functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) technologies possible for the first time. These technologies have the potential to open new fields of real-world neuroscience by enabling functional neuroimaging of the human cortex at a resolution comparable to fMRI in almost any environment and population. In this perspective article, we provide a brief overview of the history and the current status of wearable high-density fNIRS and DOT approaches, discuss the greatest ongoing challenges, and provide our thoughts on the future of this remarkable technology.
Collapse
Affiliation(s)
- Ernesto E. Vidal-Rosas
- University College London, DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Gowerlabs Ltd., London, United Kingdom
| | - Alexander von Lühmann
- Technische Universität Berlin – BIFOLD, Intelligent Biomedical Sensing Lab, Machine Learning Department, Berlin, Germany
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Paola Pinti
- University of London, Birkbeck College, Centre for Brain and Cognitive Development, London, United Kingdom
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Robert J. Cooper
- University College London, DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
13
|
Bonilauri A, Sangiuliano Intra F, Baglio F, Baselli G. Impact of Anatomical Variability on Sensitivity Profile in fNIRS-MRI Integration. SENSORS (BASEL, SWITZERLAND) 2023; 23:2089. [PMID: 36850685 PMCID: PMC9962997 DOI: 10.3390/s23042089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is an important non-invasive technique used to monitor cortical activity. However, a varying sensitivity of surface channels vs. cortical structures may suggest integrating the fNIRS with the subject-specific anatomy (SSA) obtained from routine MRI. Actual processing tools permit the computation of the SSA forward problem (i.e., cortex to channel sensitivity) and next, a regularized solution of the inverse problem to map the fNIRS signals onto the cortex. The focus of this study is on the analysis of the forward problem to quantify the effect of inter-subject variability. Thirteen young adults (six males, seven females, age 29.3 ± 4.3) underwent both an MRI scan and a motor grasping task with a continuous wave fNIRS system of 102 measurement channels with optodes placed according to a 10/5 system. The fNIRS sensitivity profile was estimated using Monte Carlo simulations on each SSA and on three major atlases (i.e., Colin27, ICBM152 and FSAverage) for comparison. In each SSA, the average sensitivity curves were obtained by aligning the 102 channels and segmenting them by depth quartiles. The first quartile (depth < 11.8 (0.7) mm, median (IQR)) covered 0.391 (0.087)% of the total sensitivity profile, while the second one (depth < 13.6 (0.7) mm) covered 0.292 (0.009)%, hence indicating that about 70% of the signal was from the gyri. The sensitivity bell-shape was broad in the source-detector direction (20.953 (5.379) mm FWHM, first depth quartile) and steeper in the transversal one (6.082 (2.086) mm). The sensitivity of channels vs. different cortical areas based on SSA were analyzed finding high dispersions among subjects and large differences with atlas-based evaluations. Moreover, the inverse cortical mapping for the grasping task showed differences between SSA and atlas based solutions. In conclusion, integration with MRI SSA can significantly improve fNIRS interpretation.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | | | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
14
|
Davidson C, Shing YL, McKay C, Rafetseder E, Wijeakumar S. The first year in formal schooling improves working memory and academic abilities. Dev Cogn Neurosci 2023; 60:101205. [PMID: 36724671 PMCID: PMC9898018 DOI: 10.1016/j.dcn.2023.101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Neurocognition and academic abilities during the period of 4 and 7 years of age are impacted by both the transition from kindergarten to primary school and age-related developmental processes. Here, we used a school cut-off design to tease apart the impact of formal schooling from age, on working memory (WM) function, vocabulary, and numeracy scores. We compared two groups of children with similar age, across two years: first-graders (FG), who were enrolled into primary school the year that they became eligible and kindergarteners (KG), who were deferred school entry until the following year. All children completed a change detection task while brain activation was recorded using portable functional near-infrared spectroscopy, a vocabulary assessment, and a numeracy screener. Our results revealed that FG children showed greater improvement in WM performance and greater engagement of a left-lateralized fronto-parietal network compared to KG children. Further, they also showed higher gains in vocabulary and non-symbolic numeracy scores. This improvement in vocabulary and non-symbolic numeracy scores following a year in primary school was predicted by WM function. Our findings contribute to a growing body of literature examining neurocognitive and academic benefits conferred to children following exposure to formal schooling.
Collapse
Affiliation(s)
- Christina Davidson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Germany,Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt, Germany
| | - Courtney McKay
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland, UK
| | - Eva Rafetseder
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland, UK
| | - Sobanawartiny Wijeakumar
- School of Psychology, University of Nottingham, Nottingham, United Kingdom,Psychology, Faculty of Natural Sciences, University of Stirling, Scotland, UK,Correspondence to: School of Psychology, University of Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
15
|
Bonilauri A, Sangiuliano Intra F, Rossetto F, Borgnis F, Baselli G, Baglio F. Whole-Head Functional Near-Infrared Spectroscopy as an Ecological Monitoring Tool for Assessing Cortical Activity in Parkinson's Disease Patients at Different Stages. Int J Mol Sci 2022; 23:14897. [PMID: 36499223 PMCID: PMC9736501 DOI: 10.3390/ijms232314897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is increasingly employed as an ecological neuroimaging technique in assessing age-related chronic neurological disorders, such as Parkinson's disease (PD), mainly providing a cross-sectional characterization of clinical phenotypes in ecological settings. Current fNIRS studies in PD have investigated the effects of motor and non-motor impairment on cortical activity during gait and postural stability tasks, but no study has employed fNIRS as an ecological neuroimaging tool to assess PD at different stages. Therefore, in this work, we sought to investigate the cortical activity of PD patients during a motor grasping task and its relationship with both the staging of the pathology and its clinical variables. This study considered 39 PD patients (age 69.0 ± 7.64, 38 right-handed), subdivided into two groups at different stages by the Hoehn and Yahr (HY) scale: early PD (ePD; N = 13, HY = [1; 1.5]) and moderate PD (mPD; N = 26, HY = [2; 2.5; 3]). We employed a whole-head fNIRS system with 102 measurement channels to monitor brain activity. Group-level activation maps and region of interest (ROI) analysis were computed for ePD, mPD, and ePD vs. mPD contrasts. A ROI-based correlation analysis was also performed with respect to contrasted subject-level fNIRS data, focusing on age, a Cognitive Reserve Index questionnaire (CRIQ), disease duration, the Unified Parkinson's Disease Rating Scale (UPDRS), and performances in the Stroop Color and Word (SCW) test. We observed group differences in age, disease duration, and the UPDRS, while no significant differences were found for CRIQ or SCW scores. Group-level activation maps revealed that the ePD group presented higher activation in motor and occipital areas than the mPD group, while the inverse trend was found in frontal areas. Significant correlations with CRIQ, disease duration, the UPDRS, and the SCW were mostly found in non-motor areas. The results are in line with current fNIRS and functional and anatomical MRI scientific literature suggesting that non-motor areas-primarily the prefrontal cortex area-provide a compensation mechanism for PD motor impairment. fNIRS may serve as a viable support for the longitudinal assessment of therapeutic and rehabilitation procedures, and define new prodromal, low-cost, and ecological biomarkers of disease progression.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
- Faculty of Education, Free University of Bolzano-Bozen, 39042 Brixen, Italy
| | - Federica Rossetto
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Francesca Borgnis
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| |
Collapse
|
16
|
Fu X, Richards JE. Age-related changes in diffuse optical tomography sensitivity profiles from childhood to adulthood. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083004. [PMID: 35810323 PMCID: PMC9270691 DOI: 10.1117/1.jbo.27.8.083004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Diffuse optical tomography (DOT) uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the brain location that generates the hemodynamic signal require accurate descriptions of the DOT sensitivity to the underlying cortex. DOT sensitivity profiles are different in infants compared with adults. However, the descriptions of DOT sensitivity profiles from early childhood to adulthood are lacking despite the continuous head and brain development. AIM We aim to investigate age-related differences in DOT sensitivity profiles in individuals aged from 2 to 34 years with narrow age ranges of 0.5 or 1 year. APPROACH We implemented existing photon migration simulation methods and computed source-detector channel DOT sensitivity using age-appropriate, realistic head models. RESULTS DOT sensitivity profiles change systematically as a function of source-detector separation distance for all age groups. Children displayed distinctive DOT sensitivity profiles compared to older individuals, and the differences were enhanced at larger separation distances. CONCLUSIONS The findings have important implications for the design of source-detector placement and image reconstruction. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone DOT data. Using age-inappropriate head models will have more negative impacts on estimation accuracy in younger children.
Collapse
Affiliation(s)
- Xiaoxue Fu
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| | - John E. Richards
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| |
Collapse
|
17
|
Lowery K, Nikam B, Buss AT. Dimensional label learning contributes to the development of executive functions. Sci Rep 2022; 12:11008. [PMID: 35773365 PMCID: PMC9246947 DOI: 10.1038/s41598-022-14761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
A key to understanding how the brain develops is to understand how learning can change brain function. One index of learning that takes place in early childhood involves the comprehension and production of labels describing the shape and color features of objects, a process known as dimensional label learning (DLL). DLL requires integrating auditory and visual stimuli to form a system of mappings that link label representations (e.g. "red" and "color") and visual feature representations (e.g. "red" and the hue red). Children gain expertise with these labels between the ages of 2 and 5 years, and at the same time they begin to demonstrate skills in using labels to guide cognitive function in other domains. For example, one of the hallmark measures of executive function development requires children to use verbally instructed rules to guide attention to visual dimensions. The broader impact of DLL, however, has not yet been explored. Here, we examine how the neural processes associated with the comprehension and production of labels for visual features predicts later performance on executive function tasks. Specifically, we show that left frontal cortex is activated during comprehension and production tasks at 33 months of age. Moreover, we find that neural activation in this region during label production at 33 months is associated with dimensional attention, but not spatial selective attention, at 45 months. These results shed new light on the role of label learning in developmental changes in brain and behavior. Moreover, these data suggest that dimensional label learning generalizes beyond the learned information to influence other aspects of cognition. We anticipate that these results may serve as a starting point for future work to implement label training as an intervention to influence later cognition.
Collapse
Affiliation(s)
- Kara Lowery
- Department of Psychology, University of Tennessee at Knoxville, Knoxville, USA.
| | - Bhoomika Nikam
- Department of Educational Psychology and Counseling, University of Tennessee at Knoxville, Knoxville, USA
| | - Aaron T Buss
- Department of Psychology, University of Tennessee at Knoxville, Knoxville, USA
| |
Collapse
|
18
|
McKay C, Wijeakumar S, Rafetseder E, Shing YL. Disentangling age and schooling effects on inhibitory control development: An fNIRS investigation. Dev Sci 2021; 25:e13205. [PMID: 34865293 DOI: 10.1111/desc.13205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
Children show marked improvements in executive functioning (EF) between 4 and 7 years of age. In many societies, this time period coincides with the start of formal school education, in which children are required to follow rules in a structured environment, drawing heavily on EF processes such as inhibitory control. This study aimed to investigate the longitudinal development of two aspects of inhibitory control, namely response inhibition and response monitoring and their neural correlates. Specifically, we examined how their longitudinal development may differ by schooling experience, and their potential significance in predicting academic outcomes. Longitudinal data were collected in two groups of children at their homes. At T1, all children were roughly 4.5 years of age and neither group had attended formal schooling. One year later at T2, one group (P1, n = 40) had completed one full year of schooling while the other group (KG, n = 40) had stayed in kindergarten. Behavioural and brain activation data (measured with functional near-infrared spectroscopy, fNIRS) in response to a Go/No-Go task and measures of academic achievement were collected. We found that P1 children, compared to KG children, showed a greater change over time in activation related to response monitoring in the bilateral frontal cortex. The change in left frontal activation difference showed a small positive association with math performance. Overall, the school environment is important in shaping the development of the brain functions underlying the monitoring of one own's performance.
Collapse
Affiliation(s)
- Courtney McKay
- Division of Psychology, University of Stirling, Stirling, Scotland
| | - Sobanawartiny Wijeakumar
- Division of Psychology, University of Stirling, Stirling, Scotland.,School of Psychology, University of Nottingham, Nottingham, UK
| | - Eva Rafetseder
- Division of Psychology, University of Stirling, Stirling, Scotland.,Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany.,Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt, Germany
| |
Collapse
|
19
|
Fu X, Richards JE. devfOLD: a toolbox for designing age-specific fNIRS channel placement. NEUROPHOTONICS 2021; 8:045003. [PMID: 34881349 PMCID: PMC8647945 DOI: 10.1117/1.nph.8.4.045003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Significance: Near-infrared spectroscopy (NIRS) is a noninvasive technique that uses scalp-placed sensors to measure cerebral hemoglobin concentration. Commercial NIRS instruments do not allow for whole-head coverage and do not intrinsically indicate which brain areas generate the NIRS signal. Hence, the challenge is to design source-detector channel arrangement that maximizes sensitivity to a given brain region of interest (ROI). Existing methods for optimizing channel placement design have been developed using adult head models. Thus, they have limited utility for developmental research. Aim: We aim to build an application from an existing toolbox (fOLD) that guides NIRS channel configuration based on age group, stereotaxic atlas, and ROI (devfOLD). Approach: The devfOLD provides NIRS channel-to-ROI specificity computed using photon propagation simulation with realistic head models from infant, child, and adult age groups. Results: Cortical locations and user-specified specificity cut-off values influence the between-age consistency and differences in the ROI-to-channel correspondence among the example infant and adult age groups. Conclusions: The study highlights the importance of incorporating age-specific head models for optimizing NIRS channel configurations. The devfOLD toolbox is publicly shared and compatible with multiple operating systems.
Collapse
Affiliation(s)
- Xiaoxue Fu
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| | - John E. Richards
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| |
Collapse
|