1
|
Corradini NA, Vite C, Urso P. Performance of binary MLC using real-time optical sensor feedback system. J Appl Clin Med Phys 2024; 25:e14506. [PMID: 39250633 PMCID: PMC11539967 DOI: 10.1002/acm2.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
The Radixact system (Accuray Inc., Sunnyvale, CA) is the latest platform release based on the TomoTherapy technology. The most recent system does not apply a leaf latency model correction after plan optimization to ensure the correct MLC leaf-open time (LOT) agreement between the TPS and machine delivery. The MLC uses optical sensors to measure the delivered LOTs in real-time and individual leaf-specific latency corrections are made to ensure agreement. The aim of this study was to assess the performance of the Radixact MLC with leaf-specific latency correction using the optical sensor's real-time feedback. Specifically, the study statistically evaluated the MLC LOT errors observed from 290 plan-specific quality assurance (PSQA) measurements. Repeatability testing was performed to quantify the uncertainty in the MLC feedback system delivery by analyzing > 1300 delivered treatment fractions throughout the course of radiotherapy. The clinical impact was evaluated by estimating the resulting dose difference in the patient targets due to the measured plan latencies. Our study measured an average plan latency equal to 2.0 ± 0.4 ms (0.6% ± 0.2%) for 290 PSQAs. Repeatability tests showed a mean standard deviation in plan latencies measuring 0.05 ms (0.02%). The deviation from the TPS in the mean target dose due to the plan latencies was estimated to be 0.0% ± 0.2% (range: -0.7%-1.1%). The current MLC system with real-time optical sensor feedback is capable of accurately delivering the TPS-generated sinograms. Repeatability test results showed that the system allows for high reliability in daily sinogram delivery. The MLC latency deviations were shown to have minimal clinical impact on the overall target dosimetry.
Collapse
Affiliation(s)
- Nathan A. Corradini
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| | - Cristina Vite
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| | - Patrizia Urso
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| |
Collapse
|
2
|
Poon HM, Chiu TL, Yu SK. Investigation on the accuracy of field widths and the quantitative relationship with energy variations for dynamic jaws helical tomotherapy. J Appl Clin Med Phys 2024; 25:e14251. [PMID: 38140755 PMCID: PMC11005978 DOI: 10.1002/acm2.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND PURPOSE TomoEDGE is an advanced technology for TomoTherapy treatment delivery by introducing a sliding-window dynamic jaw motion. The front and back jaws move independently at the start and end of a target volume along the longitudinal couch direction to reduce the undesired dose to the normal tissues. The accuracy of field width is essential to treatment delivery in this regard. The purpose of this work was to analyze the performance of dynamic jaws on helical tomotherapy and investigate the relationship with energy variation. METHODS The Tomotherapy-Quality-Assurance (TQA) Dynamic Field Width procedure was performed monthly across three tomotherapy machines. All field widths were analyzed, especially the FWHM of the 10 mm field width. Field width measurements were compared with the ratio of Percentage Depth Dose at 20 and 10 cm to render the value of correlation. Changes in beam FWHM and energy were further discussed. Two-year data were collected for this purpose. RESULTS On average, measured field widths in each unit agreed within 1% tolerance recommendation stated. The average absolute difference between reference and measured FWs in each unit was approximately 0.07 mm. An increase of 1.5% in the FW of the 10 mm nominal beam width was correlated with a 1% increase in PDD20,10 ratio, implying a positive correlation between the two factors (p < 0.002). CONCLUSIONS A positive correlation between nominal 10 mm FW and PDD20,10 was observed. In the case that the PDD20,10 marginally passes the QA tests, users are recommended to consider further verification on Dynamic Jaws to ensure the smallest field width to be within tolerance, which is essential to maintain effective treatment in TomoEDGE system. Since the regression of this study was a single-factor model, other confounding factors such as the focal spot size of linear accelerator should also be considered when evaluating the machine status.
Collapse
Affiliation(s)
- Ho Ming Poon
- Medical Physics DepartmentHong Kong Sanatorium & HospitalHong Kong SARChina
| | - Tin Lok Chiu
- Medical Physics DepartmentHong Kong Sanatorium & HospitalHong Kong SARChina
| | - Siu Ki Yu
- Medical Physics DepartmentHong Kong Sanatorium & HospitalHong Kong SARChina
| |
Collapse
|
3
|
Han B, Capaldi D, Kovalchuk N, Simiele E, White J, Zaks D, Xing L, Surucu M. Beam commissioning of the first clinical biology-guided radiotherapy system. J Appl Clin Med Phys 2022; 23:e13607. [PMID: 35482018 PMCID: PMC9194984 DOI: 10.1002/acm2.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
This study reports the beam commissioning results for the first clinical RefleXion Linac. Methods: The X1 produces a 6 MV photon beam and the maximum clinical field size is 40 × 2 cm2 at source‐to‐axis distance of 85 cm. Treatment fields are collimated by a binary multileaf collimator (MLC) system with 64 leaves with width of 0.625 cm and y‐jaw pairs to provide either a 1 or 2 cm opening. The mechanical alignment of the radiation source, the y‐jaw, and MLC were checked with film and ion chambers. The beam parameters were characterized using a diode detector in a compact water tank. In‐air lateral profiles and in‐water percentage depth dose (PDD) were measured for beam modeling of the treatment planning system (TPS). The lateral profiles, PDDs, and output factors were acquired for field sizes from 1.25 × 1 to 40 × 2 cm2 field to verify the beam modeling. The rotational output variation and synchronicity were tested to check the gantry angle, couch motion, and gantry rotation. Results: The source misalignments were 0.049 mm in y‐direction, 0.66% out‐of‐focus in x‐direction. The divergence of the beam axis was 0.36 mm with a y‐jaw twist of 0.03°. Clinical off‐axis treatment fields shared a common center in y‐direction were within 0.03 mm. The MLC misalignment and twist were 0.57 mm and 0.15°. For all measured fields ranging from the size from 1.25 × 1 to 40 × 2 cm2, the mean difference between measured and TPS modeled PDD at 10 cm depth was −0.3%. The mean transverse profile difference in the field core was −0.3% ± 1.1%. The full‐width half maximum (FWHM) modeling was within 0.5 mm. The measured output factors agreed with TPS within 0.8%. Conclusions: This study summarizes our specific experience commissioning the first novel RefleXion linac, which may assist future users of this technology when implementing it into their own clinics.
Collapse
Affiliation(s)
- Bin Han
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dante Capaldi
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Eric Simiele
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - John White
- RefleXion Medical, Hayward, California, USA
| | | | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Pang T, Yang B, Liu X, Castle JR, Yu L, Liu N, Li W, Dong T, Qiu J, Chen Q. Investigation of absolute dose calibration accuracy for TomoTherapy using real water. J Appl Clin Med Phys 2021; 22:139-145. [PMID: 34060222 PMCID: PMC8200510 DOI: 10.1002/acm2.13311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
A systematic bias in TomoTherapy output calibration was reported by the Imaging and Radiation Oncology Core Houston (IROC‐H) after analyzing intensity‐modulated radiation therapy (IMRT) credentialing results from hundreds of TomoTherapy units. Multiple theories were developed to explain this observation. One theory was that the use of a solid water “cheese” phantom instead of real water in the calibration measurement was the culprit. A phantom filled with distilled water was built to investigate whether our TomoTherapy was miscalibrated due to the use of a solid water phantom. A miscalibration of −1.47% was detected on our TomoTherapy unit. It is found that despite following the vendor's updated recommendation on computed tomography (CT) number to density calibration, the cheese phantom was still mapped to a density of 1.028 g/cm3, rather than the 1.01 g/cm3 value reported in literature. When the density of the cheese phantom was modified to 1.01 g/cm3 in the treatment planning system, the measurement also indicated that our TomoTherapy machine was miscalibrated by −1.52%, agreeing with the real water phantom findings. Our single‐institution finding showed that the cheese phantom density assignment can introduce greater than 1% errors in the TomoTherapy absolute dose calibration. It is recommended that the absolute dose calibration for TomoTherapy be performed either in real water or in the cheese phantom with the density in TPS overridden as 1.01 g/cm3.
Collapse
Affiliation(s)
- Tingtian Pang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Bo Yang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Xia Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - James R Castle
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lang Yu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Nan Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Wenbo Li
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Tingting Dong
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Jie Qiu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Quan Chen
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
A sliding-window approach for improved VMAT dose calculation accuracy. Med Dosim 2020; 45:197-201. [PMID: 31901300 DOI: 10.1016/j.meddos.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
The continuous delivery of volumetric modulated arc therapy (VMAT) plans is usually approximated by discrete apertures at evenly-spaced gantry angles for dose calculation purposes. This approximation can potentially lead to large dose calculation errors if the gantry angle spacings are large and/or there are large changes in the MLC apertures from one control point (CP) to the next. In this work, we developed a sliding-window (SW) method to improve VMAT dose calculation accuracy. For any 2 adjacent VMAT CPs ni and ni + 1, the dose distribution was approximated by a 2-CP SW IMRT beam with the starting MLC positions at CP ni and ending MLC positions at CP ni + 1, with the gantry angle fixed in the middle of the 2 VMAT CPs. Therefore, a VMAT beam with N CPs was approximated by a SW plan with N-1 SW beams. To validate the method, VMAT plans were generated for 10 patients in Pinnacle using 4° gantry spacing. Each plan was converted to a SW plan and dose was recalculated. Another VMAT plan, with 1° gantry spacing, was created by interpolating the original VMAT beam. The original plans were delivered on an Elekta Versa HD and measured with ArcCHECK. For both the isodose distribution and DVH, there were significant differences between the original VMAT plan and either the SW or the interpolated plan. However, they were indistinguishable between the SW and the interpolated plans. When compared with measurement, the average passing rates of the original VMAT plans were 87.3 ± 2.8% and 93.1 ± 1.0% for the 5 HN and 5 spine SBRT cases, respectively. On the other hand, the passing rates for both the VMAT1 and SW plans were above 95% for all the 10 cases studied. The dose calculation times of the original VMAT plans and the SW plans were very similar. We conclude that the proposed SW approach improves VMAT dose calculation accuracy without increase in dose calculation time.
Collapse
|
6
|
Binny D, Mezzenga E, Sarnelli A, Kairn T, Crowe SB, Trapp JV. Departmental action limits for TQA energy variations defined by means of statistical process control methods. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 43:10.1007/s13246-019-00791-0. [PMID: 31452055 DOI: 10.1007/s13246-019-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022]
Abstract
The purpose of this study is to define departmental action limits for energy percentage variation measured by means of step-wedge helical Tomotherapy quality assurance module. Individual charts using the Statistical Process Control techniques have been used to identify retrospectively out-of-control situations ascribable to documented actions performed on the Tomotherapy system. Using the in-control data of our analysis process capability indices (cp, cpk, cpm and cpmk) are calculated in order to document the real working condition of the Tomotherapy system. Our findings indicate use of an action limit of 1.0% for energy percentage variation difference between the measured and reference output is a good working condition of a Tomotherapy system. cp and cpk indices are suggested as good indices that correctly report the system capability. A method for calculating and reporting Tomotherapy action limits for the integrated self-checking TQA energy check was shown in this study. SPC technique has proven to be efficient in defining departmental action limits from retrospective data for TQA energy measurements, hence optimally enabling corrective improvements in the process of quality assurance.
Collapse
Affiliation(s)
- Diana Binny
- ICON Cancer Centres, Radiation Therapy, North Lakes, 4509, Australia.
- Queensland University of Technology Science and Engineering Faculty, Brisbane, 4000, Australia.
| | - Emilio Mezzenga
- Medical Physics Unit, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, 47014, Meldola, Italy
| | - Anna Sarnelli
- Medical Physics Unit, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, 47014, Meldola, Italy
| | - Tanya Kairn
- Queensland University of Technology Science and Engineering Faculty, Brisbane, 4000, Australia
- Royal Brisbane and Women's Hospital, Cancer Care Services, Brisbane, 4029, Australia
| | - Scott B Crowe
- Queensland University of Technology Science and Engineering Faculty, Brisbane, 4000, Australia
- Royal Brisbane and Women's Hospital, Cancer Care Services, Brisbane, 4029, Australia
| | - Jamie V Trapp
- Queensland University of Technology Science and Engineering Faculty, Brisbane, 4000, Australia
| |
Collapse
|
7
|
Kodama T, Saito Y, Hatanaka S, Hariu M, Shimbo M, Takahashi T. Commissioning of the Mobius3D independent dose verification system for TomoTherapy. J Appl Clin Med Phys 2019; 20:12-20. [PMID: 30920130 PMCID: PMC6523001 DOI: 10.1002/acm2.12572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022] Open
Abstract
In radiation therapy, a secondary independent dose verification is an important component of a quality control system. Mobius3D calculates three‐dimensional (3D) patient dose using reference beam data and a collapsed cone convolution algorithm and analyzes dose‐volume histogram automatically. There are currently no published data on commissioning and determining tolerance levels of Mobius3D for TomoTherapy. To verify the calculation accuracy and adjust the parameters of this system, we compared the measured dose using an ion chamber and film in a phantom with the dose calculated using Mobius3D for nine helical intensity‐modulated radiation therapy plans, each with three nominal field widths. We also compared 126 treatment plans used in our institution to treat prostate, head‐and‐neck, and esophagus tumors based on dose calculations by treatment planning system for given dose indices and 3D gamma passing rates with those produced by Mobius3D. On the basis of these results, we showed that the action and tolerance levels at the average dose for the planning target volume (PTV) at each treatment site are at μ ± 2σ and μ ± 3σ, respectively. After adjusting parameters, the dose difference ratio on average was −0.2 ± 0.6% using ion chamber and gamma passing rate with the criteria of 3% and 3 mm on average was 98.8 ± 1.4% using film. We also established action and tolerance levels for the PTV at the prostate, head‐and‐neck, esophagus, and for the organ at risk at all treatment sites. Mobius3D calculations thus provide an accurate secondary dose verification system that can be commissioned easily and immediately after installation. Before clinical use, the Mobius3D system needs to be commissioned using the treatment plans for patients treated in each institution to determine the calculational accuracy and establish tolerances for each treatment site and dose index.
Collapse
Affiliation(s)
- Takumi Kodama
- Department of Radiation Oncology, Saitama Cancer Center, Saitama, Japan.,Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshihiro Saito
- Department of Radiation Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shogo Hatanaka
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Masatsugu Hariu
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Munefumi Shimbo
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Takeo Takahashi
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
8
|
Schopfer M, Bochud FO, Bourhis J, Moeckli R. In air and in vivo measurement of the leaf open time in tomotherapy using the on-board detector pulse-by-pulse data. Med Phys 2019; 46:1963-1971. [PMID: 30810233 DOI: 10.1002/mp.13459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE We developed an algorithm to measure the leaf open times (LOT) from the on-board detector (OBD) pulse-by-pulse data in tomotherapy. We assessed the feasibility of measuring the LOTs in dynamic jaw mode and validated the algorithm on machine QA and clinical data. Knowledge of the actual LOTs is a basis toward calculating the delivered dose and performing efficient phantom-less delivery quality assurance (DQA) controls of the multileaf collimator (MLC). In tomotherapy, the quality of the delivered dose depends on the correct performance of the MLC, hence on the accuracy of the LOTs. MATERIALS AND METHODS In the detector signal, the period of time during which a leaf is open corresponds to a high intensity region. The algorithm described here locally normalizes the detector signal and measures the FWHM of the high intensity regions. The Daily QA module of the TomoTherapy Quality Assurance (TQA) tool measures LOT errors. The Daily QA detector data were collected during 9 days on two tomotherapy units. The errors yielded by the method were compared to these reported by the Daily QA module. In addition, clinical data were acquired on the two units (25 plans in total), in air without attenuation material in the beam path and in vivo during a treatment fraction. The study included plans with fields of all existing sizes (1.05, 2.51, 5.05 cm). The collimator jaws were in dynamic mode (TomoEDGETM ). The feasibility of measuring the LOTs was assessed with respect to the jaw aperture. RESULTS The mean discrepancy between LOTs measured by the algorithm and those measured by TQA was of 0 ms, with a standard deviation of 0.3 ms. The LOT measured by the method had thus an uncertainty of 1 ms with a confidence level of 99%. In 5.05 cm dynamic jaw procedures, the detector is in the beam umbra at the beginning and at the end of the delivery. In such procedures, the algorithm could not measure the LOTs at jaw apertures between 7 and maximum 12.4 mm. Otherwise, no measurement error due to the jaw movement was observed. No LOT measurement difference between air and in vivo data was observed either. CONCLUSION The method we propose is reliable. It can equivalently measure the LOTs from data acquired in air or in vivo. It handles fully the static procedures and the 2.51 cm dynamic procedures. It handles partially the 5.05 cm dynamic procedures. The limitation was evaluated with respect to the jaw aperture.
Collapse
Affiliation(s)
- Mathieu Schopfer
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - François O Bochud
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation-oncology department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Binny D, Lancaster CM, Byrne M, Kairn T, V Trapp J, Crowe SB. Tomotherapy treatment site specific planning using statistical process control. Phys Med 2018; 53:32-39. [PMID: 30241752 DOI: 10.1016/j.ejmp.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/26/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND This study investigated planned MLC distribution and treatment region specific plan parameters to recommend optimal delivery parameters based on statistical process techniques. METHODS A cohort of 28 head and neck, 19 pelvic and 23 brain pre-treatment plans were delivered on a helical tomotherapy system using 2.5 cm field width. Parameters such as gantry period, leaf open time (LOT), actual modulation factor, LOT sonogram, treatment duration and couch travel were investigated to derive optimal range for plans that passed acceptable delivery quality assurance. The results were compared against vendor recommendations and previous publications. RESULTS No correlation was observed between vendor recommended gantry period and percentage of minimum leaf open times. The range of gantry period (min-max) observed was 16-21 s for head and neck, 15-22 s for pelvis and 13-18 s for brain plans respectively. It was also noted that the highest percentage (average (X-) ± SD) of leaf open times for a minimum time of 100 ms was seen for brain plans (53.9 ± 9.2%) compared to its corresponding head and neck (34.5 ± 4.2%) and pelvic (32.0 ± 9.4%) plans respectively. CONCLUSIONS We have proposed that treatment site specific delivery parameters be used during planning that are based on the treatment centre and have detailed recommendations and limitations for the studied cohort. This may enable to improve efficiency of treatment deliveries by reducing inaccuracies in MLC distribution.
Collapse
Affiliation(s)
- Diana Binny
- Radiation Oncology Centres, Redlands, Australia; Queensland University of Technology, Brisbane, Australia; Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Craig M Lancaster
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Mikel Byrne
- Radiation Oncology Centres, Wahroonga, Australia
| | - Tanya Kairn
- Queensland University of Technology, Brisbane, Australia; Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jamie V Trapp
- Queensland University of Technology, Brisbane, Australia
| | - Scott B Crowe
- Queensland University of Technology, Brisbane, Australia; Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
10
|
Urso P, Corradini NA, Vite C. Accuracy of TomoEDGE dynamic jaw field widths. J Appl Clin Med Phys 2018; 19:761-766. [PMID: 30058267 PMCID: PMC6123137 DOI: 10.1002/acm2.12418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 11/06/2022] Open
Abstract
Dynamic jaw delivery on the TomoTherapy H-series platform, entitled TomoEDGE™, is an effective tool to decrease the patient dose along the superior and inferior edges of the treatment target. The aperture of the TomoTherapy jaws, that is, field width (FW), defines the longitudinal dose profile. A consistent FW dose profile is an important quantity for accurate and reproducible dose delivery in TomoTherapy. To date, no evaluation has been made of the accuracy and precision of the dose profiles produced by dynamic jaws. This study aims to provide a long-term evaluation of the dynamic jaw FW dose profiles obtained on TomoTherapy utilizing the TomoTherapy Quality Assurance procedure (TQA). A total of 840 dose profiles were measured during 84 TQA procedures, performed over a 2-yr period. The full width at half maximum (FWHM) and constancy of the FW dose profile measurements were analyzed and compared with the tolerances proposed by AAPM Task Group 148 (TG-148) and those used by the manufacturer. The FWHM evaluation showed that the FWs > 2.0 cm respect the TG-148 tolerance of 1%, while the asymmetric FWs ≤ 2.0 cm were outside the limit in 17.3% of measurements. Constancy results evaluated along the full profiles showed that 95.2% of measurements were within 3% of the baseline for symmetric FWs and 94.8% of measurements were within 4% of the baseline for asymmetric FWs. In conclusion, the analysis confirms the accuracy and precision of TomoEDGE™ technology in jaw positioning. This study has identified the potential to establish an appropriate QA tolerance for the asymmetric FWs used in dynamic jaw movement. Finally, the clinical significance of the observed discrepancies should be studied further to understand the dosimetric effect on patient treatments.
Collapse
Affiliation(s)
- Patrizia Urso
- Radiotherapy CenterClinica Luganese Moncucco SALuganoSwitzerland
| | | | - Cristina Vite
- Radiotherapy CenterClinica Luganese Moncucco SALuganoSwitzerland
| |
Collapse
|
11
|
Thomas SJ, Geater AR. Implications of leaf fluence opening factors on transfer of plans between matched helical tomotherapy machines. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa9879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Deshpande S, Xing A, Metcalfe P, Holloway L, Vial P, Geurts M. Clinical implementation of an exit detector-based dose reconstruction tool for helical tomotherapy delivery quality assurance. Med Phys 2017; 44:5457-5466. [PMID: 28737014 DOI: 10.1002/mp.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to validate the accuracy of an exit detector-based dose reconstruction tool for helical tomotherapy (HT) delivery quality assurance (DQA). METHODS AND MATERIAL Exit detector-based DQA tool was developed for patient-specific HT treatment verification. The tool performs a dose reconstruction on the planning image using the sinogram measured by the HT exit detector with no objects in the beam (i.e., static couch), and compares the reconstructed dose to the planned dose. Vendor supplied (three "TomoPhant") plans with a cylindrical solid water ("cheese") phantom were used for validation. Each "TomoPhant" plan was modified with intentional multileaf collimator leaf open time (MLC LOT) errors to assess the sensitivity and robustness of this tool. Four scenarios were tested; leaf 32 was "stuck open," leaf 42 was "stuck open," random leaf LOT was closed first by mean values of 2% and then 4%. A static couch DQA procedure was then run five times (once with the unmodified sinogram and four times with modified sinograms) for each of the three "TomoPhant" treatment plans. First, the original optimized delivery plan was compared with the original machine agnostic delivery plan, then the original optimized plans with a known modification applied (intentional MLC LOT error) were compared to the corresponding error plan exit detector measurements. An absolute dose comparison between calculated and ion chamber (A1SL, Standard Imaging, Inc., WI, USA) measured dose was performed for the unmodified "TomoPhant" plans. A 3D gamma evaluation (2%/2 mm global) was performed by comparing the planned dose ("original planned dose" for unmodified plans and "adjusted planned dose" for each intentional error) to exit detector-reconstructed dose for all three "Tomophant" plans. Finally, DQA for 119 clinical (treatment length <25 cm) and three cranio-spinal irradiation (CSI) plans were measured with both the ArcCHECK phantom (Sun Nuclear Corp., Melbourne, FL, USA) and the exit detector DQA tool to assess the time required for DQA and similarity between two methods. RESULTS The measured ion chamber dose agreed to within 1.5% of the reconstructed dose computed by the exit detector DQA tool on a cheese phantom for all unmodified "Tomophant" plans. Excellent agreement in gamma pass rate (>95%) was observed between the planned and reconstructed dose for all "Tomophant" plans considered using the tool. The gamma pass rate from 119 clinical plan DQA measurements was 94.9% ± 1.5% and 91.9% ± 4.37% for the exit detector DQA tool and ArcCHECK phantom measurements (P = 0.81), respectively. For the clinical plans (treatment length <25 cm), the average time required to perform DQA was 24.7 ± 3.5 and 39.5 ± 4.5 min using the exit detector QA tool and ArcCHECK phantom, respectively, whereas the average time required for the 3 CSI treatments was 35 ± 3.5 and 90 ± 5.2 min, respectively. CONCLUSION The exit detector tool has been demonstrated to be faster for performing the DQA with equivalent sensitivity for detecting MLC LOT errors relative to a conventional phantom-based QA method. In addition, comprehensive MLC performance evaluation and features of reconstructed dose provide additional insight into understanding DQA failures and the clinical relevance of DQA results.
Collapse
Affiliation(s)
- Shrikant Deshpande
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aitang Xing
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia
| | - Peter Metcalfe
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia.,South West Sydney Clinical School, School of Medicine, University of NSW, Sydney, Australia
| | - Philip Vial
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Geurts
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
13
|
Binny D, Lancaster CM, Trapp JV, Crowe SB. Statistical process control and verifying positional accuracy of a cobra motion couch using step-wedge quality assurance tool. J Appl Clin Med Phys 2017; 18:70-79. [PMID: 28730740 PMCID: PMC5874965 DOI: 10.1002/acm2.12136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 11/21/2022] Open
Abstract
This study utilizes process control techniques to identify action limits for TomoTherapy couch positioning quality assurance tests. A test was introduced to monitor accuracy of the applied couch offset detection in the TomoTherapy Hi‐Art treatment system using the TQA “Step‐Wedge Helical” module and MVCT detector. Individual X‐charts, process capability (cp), probability (P), and acceptability (cpk) indices were used to monitor a 4‐year couch IEC offset data to detect systematic and random errors in the couch positional accuracy for different action levels. Process capability tests were also performed on the retrospective data to define tolerances based on user‐specified levels. A second study was carried out whereby physical couch offsets were applied using the TQA module and the MVCT detector was used to detect the observed variations. Random and systematic variations were observed for the SPC‐based upper and lower control limits, and investigations were carried out to maintain the ongoing stability of the process for a 4‐year and a three‐monthly period. Local trend analysis showed mean variations up to ±0.5 mm in the three‐monthly analysis period for all IEC offset measurements. Variations were also observed in the detected versus applied offsets using the MVCT detector in the second study largely in the vertical direction, and actions were taken to remediate this error. Based on the results, it was recommended that imaging shifts in each coordinate direction be only applied after assessing the machine for applied versus detected test results using the step helical module. User‐specified tolerance levels of at least ±2 mm were recommended for a test frequency of once every 3 months to improve couch positional accuracy. SPC enables detection of systematic variations prior to reaching machine tolerance levels. Couch encoding system recalibrations reduced variations to user‐specified levels and a monitoring period of 3 months using SPC facilitated in detecting systematic and random variations. SPC analysis for couch positional accuracy enabled greater control in the identification of errors, thereby increasing confidence levels in daily treatment setups.
Collapse
Affiliation(s)
- Diana Binny
- Department of Radiation Oncology, Cancer Care Services, Royal Brisbane and Women's Hospital, Queensland, Australia.,Science and Engineering Faculty, Queensland University of Technology, Queensland, Australia
| | - Craig M Lancaster
- Department of Radiation Oncology, Cancer Care Services, Royal Brisbane and Women's Hospital, Queensland, Australia
| | - Jamie V Trapp
- Science and Engineering Faculty, Queensland University of Technology, Queensland, Australia
| | - Scott B Crowe
- Department of Radiation Oncology, Cancer Care Services, Royal Brisbane and Women's Hospital, Queensland, Australia.,Science and Engineering Faculty, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
14
|
Investigating output and energy variations and their relationship to delivery QA results using Statistical Process Control for helical tomotherapy. Phys Med 2017; 38:105-110. [DOI: 10.1016/j.ejmp.2017.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022] Open
|
15
|
Moutrie ZR, Lancaster CM, Yu L. First experiences in using a dose control system on a TomoTherapy Hi·Art II. J Appl Clin Med Phys 2015; 16:5489. [PMID: 26103503 PMCID: PMC5690136 DOI: 10.1120/jacmp.v16i3.5489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/14/2015] [Accepted: 01/07/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to investigate the impact of a dose control system (DCS) servo installed on two fully commissioned TomoTherapy Hi·Art II treatment units. This servo is designed to actively adjust machine parameters to control the output variation of a tomotherapy unit to within ± 0.5% of the nominal dose rate. Machine output, dose rate, and patient-specific quality assurance data were retrospectively analyzed for periods prior to and following the installation of the servo system. Quality assurance tests indicate a reduction in the rotational variation of the output during a procedure, where the peak-to-peak amplitude of the variation was ± 1.30 prior to DCS and equal to ± 0.4 with DCS. Comparing two tomotherapy unit static outputs over four years the percentage error was 1.05% ± 0.7% and -0.4% ± 0.66% and, once DCS was installed, was reduced to -0.22% ± 0.29% and -0.08% ± 0.16%. The results of the quality assurance tests indicate that the dose control system reduced the output variation of each machine for both static and rotational delivery, leading to an improvement in the overall performance of the machine and providing greater certainty in treatment delivery.
Collapse
Affiliation(s)
- Zoë R Moutrie
- Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia.
| | | | | |
Collapse
|
16
|
Fan-shaped complete block on helical tomotherapy for esophageal cancer: a phantom study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:959504. [PMID: 25767810 PMCID: PMC4342177 DOI: 10.1155/2015/959504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/18/2022]
Abstract
Radiation pneumonitis (RP) is a common complication for radiotherapy of esophageal cancer and is associated with the low dose irradiated lung volume. This study aims to reduce the mean lung dose (MLD) and the relative lung volume at 20 Gy (V20) and at low dose region using various designs of the fan-shaped complete block (FSCB) in helical tomotherapy. Hypothetical esophageal tumor was delineated on an anthropomorphic phantom. The FSCB was defined as the fan-shaped radiation restricted area located in both lungs. Seven treatment plans were performed with nonblock design and FSCB with different fan angles, that is, from 90° to 140°, with increment of 10°. The homogeneous index, conformation number, MLD, and the relative lung volume receiving more than 5, 10, 15, and 20 Gy (V5, V10, V15, and V20) were determined for each treatment scheme. There was a substantial reduction in the MLD, V5, V10, V15, and V20 when using different types of FSCB as compared to the nonblock design. The reduction of V20, V15, V10, and V5 was 6.3%–8.6%, 16%–23%, 42%–57%, and 42%–66% for FSCB 90°–140°, respectively. The use of FSCB in helical tomotherapy is a promising method to reduce the MLD, V20, and relative lung volume in low dose region, especially in V5 and V10 for esophageal cancer.
Collapse
|
17
|
Peng JL, Ashenafi MS, McDonald DG, Vanek KN. Assessment of a three-dimensional (3D) water scanning system for beam commissioning and measurements on a helical tomotherapy unit. J Appl Clin Med Phys 2015; 16:4980. [PMID: 25679156 PMCID: PMC5689986 DOI: 10.1120/jacmp.v16i1.4980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/22/2014] [Accepted: 08/21/2014] [Indexed: 11/23/2022] Open
Abstract
Beam scanning data collected on the tomotherapy linear accelerator using the TomoScanner water scanning system is primarily used to verify the golden beam profiles included in all Helical TomoTherapy treatment planning systems (TOMO TPSs). The user is not allowed to modify the beam profiles/parameters for beam modeling within the TOMO TPSs. The authors report the first feasibility study using the Blue Phantom Helix (BPH) as an alternative to the TomoScanner (TS) system. This work establishes a benchmark dataset using BPH for target commissioning and quality assurance (QA), and quantifies systematic uncertainties between TS and BPH. Reproducibility of scanning with BPH was tested by three experienced physicists taking five sets of measurements over a six‐month period. BPH provides several enhancements over TS, including a 3D scanning arm, which is able to acquire necessary beam‐data with one tank setup, a universal chamber mount, and the OmniPro software, which allows online data collection and analysis. Discrepancies between BPH and TS were estimated by acquiring datasets with each tank. In addition, data measured with BPH and TS was compared to the golden TOMO TPS beam data. The total systematic uncertainty, defined as the combination of scanning system and beam modeling uncertainties, was determined through numerical analysis and tabulated. OmniPro was used for all analysis to eliminate uncertainty due to different data processing algorithms. The setup reproducibility of BPH remained within 0.5 mm/0.5%. Comparing BPH, TS, and Golden TPS for PDDs beyond maximum depth, the total systematic uncertainties were within 1.4 mm/2.1%. Between BPH and TPS golden data, maximum differences in the field width and penumbra of in‐plane profiles were within 0.8 and 1.1 mm, respectively. Furthermore, in cross‐plane profiles, the field width differences increased at depth greater than 10 cm up to 2.5 mm, and maximum penumbra uncertainties were 5.6 mm and 4.6 mm from TS scanning system and TPS modeling, respectively. Use of BPH reduced measurement time by 1–2 hrs per session. The BPH has been assessed as an efficient, reproducible, and accurate scanning system capable of providing a reliable benchmark beam data. With this data, a physicist can utilize the BPH in a clinical setting with an understanding of the scan discrepancy that may be encountered while validating the TPS or during routine machine QA. Without the flexibility of modifying the TPS and without a golden beam dataset from the vendor or a TPS model generated from data collected with the BPH, this represents the best solution for current clinical use of the BPH. PACS number: 87.56.Fc
Collapse
|
18
|
Yuan J, Rong Y, Chen Q. A virtual source model for Monte Carlo simulation of helical tomotherapy. J Appl Clin Med Phys 2015; 16:4992. [PMID: 25679157 PMCID: PMC5689983 DOI: 10.1120/jacmp.v16i1.4992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/29/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase‐space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS‐generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of <1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of <2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM‐based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose‐volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM‐based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media. PACS numbers: 87.53.‐j, 87.55.K‐
Collapse
|
19
|
Wen N, Zhao B, Kim J, Chin-Snyder K, Bellon M, Glide-Hurst C, Barton K, Chen D, Chetty IJ. IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases. J Appl Clin Med Phys 2014; 15:4843. [PMID: 25207569 PMCID: PMC5711094 DOI: 10.1120/jacmp.v15i5.4843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/11/2014] [Accepted: 06/04/2014] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study is to evaluate the overall accuracy of intensity‐modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter‐free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG‐119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X‐FFF, 10X‐FFF) and the Exact IGRT couch was included in the dose calculation. One high‐dose point in the PTV and one low‐dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high‐ and low‐dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high‐dose point in the PTV were 0.030 ± 0.007 (range, 0.022–0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016–0.043) for the RapidArc plans. For low‐point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024–0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017–0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high‐dose region were 5.9 ± 2.7 (range, 1.4–8.6) and 3.9 ± 2.9 (range, 1.5–8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low‐dose region were 5.3 ± 2.6 (range, 1.2–7.4) and 3.7 ± 2.8 (range, 1.8–8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities. PACS number: 87
Collapse
|
20
|
Klüter S, Schubert K, Lissner S, Sterzing F, Oetzel D, Debus J, Schlegel W, Oelfke U, Nill S. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system. Med Phys 2014; 41:081709. [PMID: 25086519 DOI: 10.1118/1.4887779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. METHODS A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose-volume histograms were calculated for the patient plans. RESULTS Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of -0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local voxel-based deviation of -2.41% ± 0.75% for all voxels with dose values >20% were found for 11 modulated plans in the cheese phantom. Averaged over nine patient plans, the deviations amounted to -0.14% ± 1.97% (voxels >80%) and -0.95% ± 2.27% (>20%, local deviations). For a lung case, mean voxel-based deviations of more than 4% were found, while for all other patient plans, all mean voxel-based deviations were within ± 2.4%. CONCLUSIONS The presented method is suitable for independent dose calculation for helical tomotherapy within the known limitations of the pencil beam algorithm. It can serve as verification of the primary dose calculation and thereby reduce the need for time-consuming measurements. By using the patient anatomy and generating full 3D dose data, and combined with measurements of additional machine parameters, it can substantially contribute to overall patient safety.
Collapse
Affiliation(s)
- Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Kai Schubert
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Steffen Lissner
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Florian Sterzing
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Dieter Oetzel
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Wolfgang Schlegel
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Uwe Oelfke
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Simeon Nill
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| |
Collapse
|
21
|
Takahashi Y, Hui SK. Fast, simple, and informative patient-specific dose verification method for intensity modulated total marrow irradiation with helical tomotherapy. Radiat Oncol 2014; 9:34. [PMID: 24461048 PMCID: PMC3922911 DOI: 10.1186/1748-717x-9-34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/23/2014] [Indexed: 11/20/2022] Open
Abstract
Background Patient-specific dose verification for treatment planning in helical tomotherapy is routinely performed using a homogeneous virtual water cylindrical phantom of 30 cm diameter and 18 cm length (Cheese phantom). Because of this small length, treatment with total marrow irradiation (TMI) requires multiple deliveries of the dose verification procedures to cover a wide range of the target volumes, which significantly prolongs the dose verification process. We propose a fast, simple, and informative patient-specific dose verification method which reduce dose verification time for TMI with helical tomotherapy. Methods We constructed a two-step solid water slab phantom (length 110 cm, height 8 cm, and two-step width of 30 cm and 15 cm), termed the Whole Body Phantom (WB phantom). Three ionization chambers and three EDR-2 films can be inserted to cover extended field TMI treatment delivery. Three TMI treatment plans were conducted with a TomoTherapy HiArt Planning Station and verified using the WB phantom with ion chambers and films. Three regions simulating the head and neck, thorax, and pelvis were covered in a single treatment delivery. The results were compared to those with the cheese phantom supplied by Accuray, Inc. following three treatment deliveries to cover the body from head to pelvis. Results Use of the WB phantom provided point doses or dose distributions from head and neck to femur in a single treatment delivery of TMI. Patient-specific dose verification with the WB phantom was 62% faster than with the cheese phantom. The average pass rate in gamma analysis with the criteria of a 3-mm distance-to-agreement and 3% dose differences was 94% ± 2% for the three TMI treatment plans. The differences in pass rates between the WB and cheese phantoms at the upper thorax to abdomen regions were within 2%. The calculated dose agreed with the measured dose within 3% for all points in all five cases in both the WB and cheese phantoms. Conclusions Our dose verification method with the WB phantom provides simple and rapid quality assurance without limiting dose verification information in total marrow irradiation with helical tomotherapy.
Collapse
Affiliation(s)
| | - Susanta K Hui
- Masonic Cancer Center, University of Minnesota, 424 Harvard Street SE, Minneapolis 55455, MN, USA.
| |
Collapse
|
22
|
Chang Z, Wu Q, Adamson J, Ren L, Bowsher J, Yan H, Thomas A, Yin FF. Commissioning and dosimetric characteristics of TrueBeam system: composite data of three TrueBeam machines. Med Phys 2013; 39:6981-7018. [PMID: 23127092 DOI: 10.1118/1.4762682] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A TrueBeam linear accelerator (TB-LINAC) is designed to deliver traditionally flattened and flattening-filter-free (FFF) beams. Although it has been widely adopted in many clinics for patient treatment, limited information is available related to commissioning of this type of machine. In this work, commissioning data of three units were measured, and multiunit comparison was presented to provide valuable insights and reliable evaluations on the characteristics of the new treatment system. METHODS The TB-LINAC is equipped with newly designed waveguide, carousel assembly, monitoring control, and integrated imaging systems. Each machine in this study has 4, 6, 8, 10, 15 MV flattened photon beams, and 6 MV and 10 MV FFF photon beams as well as 6, 9, 12, 16, 20, and 22 MeV electron beams. Dosimetric characteristics of the three new TB-LINAC treatment units are systematically measured for commissioning. High-resolution diode detectors and ion chambers were used to measure dosimetric data for a range of field sizes from 10 × 10 to 400 × 400 mm(2). The composite dosimetric data of the three units are presented in this work. The commissioning of intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), image-guided radiation therapy, and gating systems are also illustrated. Critical considerations of P(ion) of FFF photon beams and small field dosimetric measurements were investigated. RESULTS The authors found all PDDs and profiles matched well among the three machines. Beam data were quantitatively compared and combined through average to yield composite beam data. The discrepancies among the machines were quantified using standard deviation (SD). The mean SD of the PDDs among the three units is 0.12%, and the mean SD of the profiles is 0.40% for 10 MV FFF open fields. The variations of P(ion) of the chamber CC13 is 1.2 ± 0.1% under 6 MV FFF and 2.0 ± 0.5% under 10 MV FFF from dmax to the 18 cm-off-axis point at 35 cm depth under 40 × 40 cm(2). The mean penumbra of crossplane flattened photon beams at collimator angle of 0° is measured from 5.88 ± 0.09 to 5.99 ± 0.13 mm from 4 to 15 MV at 10 cm depth of 100 × 100 mm(2). The mean penumbra of crossplane beams at collimator angle of 0° is measured as 3.70 ± 0.21 and 4.83 ± 0.04 mm for 6 MV FFF and 10 MV FFF, respectively, at 10 cm depth with a field size of 5 × 5 cm(2). The end-to-end test procedures of both IMRT and VMAT were performed for various energy modes. The mean ion chamber measurements of three units showed less than 2% between measurement and calculation; the mean MultiCube ICA measurements demonstrated over 90% pixels passing gamma analysis (3%, 3 mm, 5% threshold). The imaging dosimetric data of KV planar imaging and CBCT demonstrated improved consistency with vendor specifications and dose reduction for certain imaging protocols. The gated output verification showed a discrepancy of 0.05% or less between gating radiation delivery and nongating radiation delivery. CONCLUSIONS The commissioning data indicated good consistency among the three TB-LINAC units. The commissioning data provided us valuable insights and reliable evaluations on the characteristics of the new treatment system. The systematically measured data might be useful for future reference.
Collapse
Affiliation(s)
- Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mikołajczyk K, Piotrowski T. Development of cylindrical stepwedge phantom for routine quality controls of a helical tomotherapy machine. Phys Med 2013; 29:91-8. [PMID: 22209626 DOI: 10.1016/j.ejmp.2011.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/25/2011] [Accepted: 12/11/2011] [Indexed: 12/01/2022] Open
Affiliation(s)
- Krzysztof Mikołajczyk
- Department of Medical Physics, Greater Poland Cancer Centre, 15th Garbary Street, 61-866 Poznań, Poland.
| | | |
Collapse
|
24
|
Tudor GSJ, Thomas SJ. Impact of the fixed gantry angle approximation on dosimetric accuracy for helical tomotherapy plans. Med Phys 2012; 40:011711. [DOI: 10.1118/1.4769120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Sevillano D, Minguez C, Sanchez A, Sanchez-Reyes A. Measurement and correction of leaf open times in helical tomotherapy. Med Phys 2012; 39:6972-80. [PMID: 23127091 DOI: 10.1118/1.4762565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The binary multileaf collimator (MLC) is one of the most important components in helical tomotherapy (HT), as it modulates the dose delivered to the patient. However, methods to ensure MLC quality in HT treatments are lacking. The authors obtained data on the performance of the MLC in treatments administered in their department in order to assess possible delivery errors due to the MLC. Correction methods based on their data are proposed. METHODS Twenty sinograms from treatments delivered using both of the authors HT systems were measured and analyzed by recording the fluence collected by the imaging detector. Planned and actual sinograms were compared using distributions of leaf open time (LOT) errors, as well as differences in fluence reconstructed at each of the 51 projections into which the treatment planning system divides each rotation for optimization purposes. They proposed and applied a method based on individual leaf error correction and the increase in projection time to prevent latency effects when LOT is close to projection time. In order to analyze the dosimetric impact of the corrections, inphantom measurements were made for four corrected treatments. RESULTS The LOTs measured were consistent with those planned. Most of the mean errors in LOT distributions were within 1 ms with standard deviations of over 4 ms. Reconstructed fluences showed good results, with over 90% of points passing the 3% criterion, except in treatments with a short mean LOT, where the percentage of passing points was as low as 66%. Individual leaf errors were as long as 4 ms in some cases. Corrected sinograms improved error distribution, with standard deviations of over 3 ms and increased percentages of points passing 3% in the fluence per angle analysis, especially in treatments with a short mean LOT and those that were more subject to latency effects. The minimum percentage of points within 3% increased to 86%. In-phantom measurements of the corrected treatments showed that, while treatments affected by latency effects were improved, those affected by individual leaf errors were not. CONCLUSIONS Measurement of MLC performance in real treatments provides the authors with a valuable tool for ensuring the quality of HT delivery. The LOTs of MLC are very accurate in most cases. Sources of error were found and correction methods proposed and applied. The corrections decreased the amount of LOT errors. The dosimetric impact of these corrections should be evaluated more thoroughly using 3D dose distribution analysis.
Collapse
Affiliation(s)
- David Sevillano
- Department of Medical Physics, Tomotherapy Unit, Grupo IMO, Madrid, Spain.
| | | | | | | |
Collapse
|
26
|
Pavoni JF, Pike TL, Snow J, DeWerd L, Baffa O. Tomotherapy dose distribution verification using MAGIC-fpolymer gel dosimetry. Med Phys 2012; 39:2877-84. [DOI: 10.1118/1.4704496] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
27
|
Ebara T, Kawamura H, Kaminuma T, Okamoto M, Yoshida D, Okubo Y, Takahashi T, Kobayashi K, Sakaguchi H, Ando Y, Nakano T. Hemithoracic intensity-modulated radiotherapy using helical tomotherapy for patients after extrapleural pneumonectomy for malignant pleural mesothelioma. JOURNAL OF RADIATION RESEARCH 2012; 53:288-294. [PMID: 22374401 DOI: 10.1269/jrr.11130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Postoperative hemithoracic irradiation is regarded as an important part of the curative treatment for resectable malignant pleural mesothelioma (MPM). Because the clinical target volume in postoperative MPM is irregular and surrounded by dose-limiting critical structures, intensity-modulated radiation therapy (IMRT) is thought to be suitable. However, postoperative hemithoracic IMRT remains experimental due to a high incidence of fatal pneumonitis. Therefore, a Phase I dose escalation study for hemithoracic IMRT using helical tomotherapy was planned, and the results of the first three patients are herein reported because this technique may provide benefits to such patients. For 3 patients with postoperative MPM, who were treated by extrapleural pneumonectomy (EPP), a radiation dose of 45.0 Gy in 25 fractions was given to cover 95% of the PTV. The lung V5s of the three patients were 14.3%, 10.0%, and 31.3%, respectively. The V5s of the present plans was smaller than that of the recent IMRT planning studies. The lung V20s of these patients were 2.4%, 2.2%, and 4.3%, respectively. Their MLDs were 4.3 Gy, 3.4 Gy, and 5.8 Gy, respectively. The follow-up periods of the patients were 26, 14 and 9 months from initiation of IMRT, respectively. All patients were alive, although local and contralateral recurrences had developed in 1 patient. Only 1 patient had Grade 2 acute esophagitis and nausea. There was no treatment-related pneumonitis. Hemithoracic IMRT using helical tomotherapy may play a crucial role in adjuvant treatment for MPM after EPP.
Collapse
Affiliation(s)
- Takeshi Ebara
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Althof V, van Haaren P, Westendorp R, Nuver T, Kramer D, Ikink M, Bel A, Minken A. A quality assurance tool for helical tomotherapy using a step-wedge phantom and the on-board MVCT detector. J Appl Clin Med Phys 2012; 13:3585. [PMID: 22231210 PMCID: PMC5716125 DOI: 10.1120/jacmp.v13i1.3585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/25/2011] [Accepted: 08/19/2011] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to develop and evaluate filmless quality assurance (QA) tools for helical tomotherapy by using the signals from the on-board megavoltage computed tomography (MVCT) detector and applying a dedicated step-wedge phantom. The step-wedge phantom is a 15 cm long step-like aluminum block positioned on the couch. The phantom was moved through the slit beam and MVCT detector signals were analyzed. Two QA procedures were developed, with gantry fixed at 0°: 1) step-wedge procedure: to check beam energy consistency, field width, laser alignment with respect to the virtual isocenter, couch movement, and couch velocity; and 2) completion procedure: to check the accuracy of a field abutment made by the tomotherapy system after a treatment interruption. The procedures were designed as constancy tool and were validated by measurement of deliberately induced variations and comparison with a reference method. Two Hi-Art II machines were monitored over a period of three years using the step-wedge procedures. The data acquisition takes 5 minutes. The analysis is fully automated and results are available directly after acquisition. Couch speed deviations up to 2% were induced. The mean absolute difference between expected and measured couch speed was 0.2% ± 0.2% (1 standard deviation SD). Field width was varied around the 10 mm nominal size, between 9.7 and 11.1 mm, in steps of 0.2 mm. Mean difference between the step-wedge analysis and the reference method was < 0.01 mm ± 0.03 mm (1 SD). Laser (mis)alignment relative to a reference situation was detected with 0.3 mm precision (1SD). The step-wedge profile was fitted to a PDD in water. The PDD ratio D20/D10, measured at depths of 20 cm and 10 cm, was used to check beam energy consistency. Beam energy variations were induced. Mean difference between step-wedge and water PDD ratios was 0.2% ± 0.3% (1SD). The completion procedure was able to reveal abutment mismatches with a mean error of -0.6 mm ± 0.2 mm (1SD). The trending data over a period of three years showed a mean deviation of 0.4% ± 0.1% (1 SD) in couch speed. The spread in field width was 0.15 mm (1 SD). The sagittal and transverse lasers showed a variation of 0.5 mm (1 SD). Beam energy varied 1.0% (1 SD). A mean abutment mismatch was found of -0.4 mm ± 0.2 mm (1 SD) between interrupted treatments. The on-board MVCT detector, in combination with the step-wedge phantom, is a suitable tool for a QA program for helical tomotherapy. The method allowed frequent monitoring of machine behavior for the past three years.
Collapse
Affiliation(s)
- Vincent Althof
- Radiotherapeutic Institute RISO, Deventer, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Song JY, Ahn SJ. Effect of image value-to-density table (IVDT) on the accuracy of delivery quality assurance (DQA) process in helical tomotherapy. Med Dosim 2011; 37:265-70. [PMID: 22189030 DOI: 10.1016/j.meddos.2011.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/26/2011] [Accepted: 09/16/2011] [Indexed: 11/29/2022]
Abstract
The effect of the accuracy in the application of the image value-to-density table (IVDT) from kilovoltage computed tomography (kVCT) and mega-voltage computed tomography (MVCT) images on the delivery quality assurance (DQA) in helical tomotherapy (HT) was analyzed. The DQA plans were prepared with a kVCT image of a cheese phantom for 10 HT patients, and the difference in absolute dose equivalence between the planned and real measurement was evaluated according to the accuracy of IVDT application. The difference between the calculated dose distribution and real dose distribution measured with MapCHECK (SunNuclear, Melbourne, FL) was analyzed through the DQA process with a kVCT MapCHECK image and the same analysis was performed with an MVCT MapCHECK image. The IVDT for kVCT was applied to MVCT and the variation in error between the planned and real measurement caused by improper application of IVDT was evaluated. The accuracy of the IVDT application in the homogeneous water-equivalent cheese phantom had only a minor influence on the dose calculation. Although the overall accuracy of the calculated dose was increased when the proper IVDT was applied, this result had no statistical significance. The MVCT image of MapCHECK contained less error between the calculated dose and delivered dose with a high pass rate. The proper IVDT application to the MVCT image of MapCHECK increased the accuracy of dose calculation, and this result had a statistical significance. Application of the correct IVDT is important in HT DQA and its significance is increased when using phantoms consisting of inhomogeneous density materials.
Collapse
Affiliation(s)
- Ju-Young Song
- Department of Radiation Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | | |
Collapse
|
30
|
Zeverino M, Agostinelli S, Pupillo F, Taccini G. Determination of the correction factors for different ionization chambers used for the calibration of the helical tomotherapy static beam. Radiother Oncol 2011; 100:424-8. [DOI: 10.1016/j.radonc.2011.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
31
|
Pelagade SM, Paliwal BR. Verification of tomotherapy dose delivery. J Med Phys 2011; 34:188-90. [PMID: 20098569 PMCID: PMC2807687 DOI: 10.4103/0971-6203.54856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 03/26/2009] [Accepted: 05/04/2009] [Indexed: 11/10/2022] Open
Abstract
Seventy-one patient-specific delivery quality assurance (DQA) plans for the Tomotherapy HI-ART II helical tomotherapy system (TomoTherapy, Inc., Madison, WI, USA) were measured using film and ion chamber. The agreement in absolute point dose was 1.19 ± 0.79%, 1.91 ± 1.39%, 2.14 ± 1.3%, 1.3 ± 0.73% and 1.67 ± 1.5% for head and neck, prostate, pelvis-abdomen sites, and for all other sites. The spatial agreement between the calculated and the measured film dose distributions was evaluated using the gamma metric distribution. The average frequency versus gamma interval was plotted as a bar graph to quantify the gamma index variation inside the region of interest for each body site.
Collapse
Affiliation(s)
- S M Pelagade
- Department of Medical Physics, The Gujarat Cancer & Research Institute, NCH Campus, Asarwa, Ahmedabad-380016, India
| | | |
Collapse
|
32
|
Commissioning of Photon Beams of a Flattening Filter-Free Linear Accelerator and the Accuracy of Beam Modeling Using an Anisotropic Analytical Algorithm. Int J Radiat Oncol Biol Phys 2011; 80:1228-37. [DOI: 10.1016/j.ijrobp.2010.09.050] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/08/2010] [Accepted: 09/28/2010] [Indexed: 11/21/2022]
|
33
|
Wong JHD, Hardcastle N, Tomé WA, Bayliss A, Tolakanahalli R, Lerch MLF, Petasecca M, Carolan M, Metcalfe P, Rosenfeld AB. Independent quality assurance of a helical tomotherapy machine using the dose magnifying glass. Med Phys 2011; 38:2256-64. [PMID: 21626960 DOI: 10.1118/1.3566067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Helical tomotherapy is a complex delivery technique, integrating CT image guidance and intensity modulated radiotherapy in a single system. The integration of the CT detector ring on the gantry not only allows patient position verification but is also often used to perform various QA procedures. This convenience lacks the rigor of a machine-independent QA process. METHODS In this article, a Si strip detector, known as the Dose Magnifying Glass (DMG), was used to perform machine-independent QA measurements of the multileaf collimator alignment, leaf open time threshold, and leaf fluence output factor (LFOF). RESULTS The DMG measurements showed good agreements with EDR2 film for the MLC alignment test while the CT detector agrees well with DMG measurements for leaf open time threshold and LFOF measurements. The leaf open time threshold was found to be approximately 20 ms. The LFOF measured with the DMG agreed within error with the CT detector measured LFOF. CONCLUSIONS The DMG with its 0.2 mm spatial resolution coupled to TERA ASIC allowed real-time high temporal resolution measurements of the tomotherapy leaf movement. In conclusion, DMG was shown to be a suitable tool for machine-independent QA of a tomotherapy unit.
Collapse
Affiliation(s)
- J H D Wong
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hundertmark B, Sterpin E, Mackie T. A robust procedure for verifying TomoTherapy Hi-Art™ source models for small fields. Phys Med Biol 2011; 56:3685-99. [DOI: 10.1088/0031-9155/56/12/015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Perichon N, Garcia T, François P, Lourenço V, Lesven C, Bordy JM. Calibration of helical tomotherapy machine using EPR/alanine dosimetry. Med Phys 2011; 38:1168-77. [DOI: 10.1118/1.3553407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Cadman P, Bzdusek K. Co-60 tomotherapy: A treatment planning investigation. Med Phys 2011; 38:556-64. [DOI: 10.1118/1.3533668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
Song CH, Pyo H, Moon SH, Kim TH, Kim DW, Cho KH. Treatment-Related Pneumonitis and Acute Esophagitis in Non–Small-Cell Lung Cancer Patients Treated With Chemotherapy and Helical Tomotherapy. Int J Radiat Oncol Biol Phys 2010; 78:651-8. [DOI: 10.1016/j.ijrobp.2009.08.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 10/19/2022]
|
38
|
Langen KM, Papanikolaou N, Balog J, Crilly R, Followill D, Goddu SM, Grant W, Olivera G, Ramsey CR, Shi C. QA for helical tomotherapy: Report of the AAPM Task Group 148a). Med Phys 2010; 37:4817-53. [DOI: 10.1118/1.3462971] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
39
|
de Vondel IV, Tournel K, Verellen D, Duchateau M, Lelie S, Storme G. A diagnostic tool for basic daily quality assurance of a Tomotherapy Hi*Art machine. J Appl Clin Med Phys 2009; 10:151-164. [PMID: 19918225 PMCID: PMC5720581 DOI: 10.1120/jacmp.v10i4.2972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 06/25/2009] [Accepted: 06/24/2009] [Indexed: 12/04/2022] Open
Abstract
To investigate and evaluate the use of an in‐house developed diagnostic software tool using the imaging detector data for a quick daily quality assurance check of the output (dose) and lateral profile (cone) of a tomotherapy Hi•Art system. The Hi•Art treatment system is a radiation therapy machine for delivering intensity modulated radiation therapy (IMRT) in a helical fashion with an integrated CT scanner used for improved patient positioning before treatment. Since the system was developed specifically for IMRT, fat fields can be obtained by modulating the beam and therefore the fattening filter could be omitted. Because of this, the field has a cone‐like profile in both lateral and transversal directions. Patients are treated in a helical fashion with a tight pitch and a constant gantry rotation speed, while modulation is performed by a binary MLC. Consequently dose output per time‐unit (dose rate) as well as the shape of the cone‐profile are very important for correct patient treatment and should be closely monitored. However, using the company‐provided initial tools and conventional dosimetry, this can be a time consuming daily procedure. The aim of this work is to develop a fast, automated method of quality assurance based on the detector signal. A software tool called “tomocheck” running on the operation station has been developed to evaluate the output (dose rate) and the lateral cone profile (energy) of the Hi•Art system, comparing actual output and cone profile with a reference (previously approved against ionization chamber measurements). This is done by using the data of the 640 on‐board detector array that are directly retrieved and processed after a specific QA procedure. The detector file consists of the CT detector data and the three monitoring dose chamber readings over a time period of 200 sec. To evaluate the method, the system was benchmarked against ionization chamber measurements and classical IMRT QA methods. Action levels (final status “NOT ACCEPTED”) for dose ratio as well as the cone ratio are set to ±2%. The QA tool was introduced for daily QA in May 2007. For the following 24 months, a total of 931 morning checks was made on both tomotherapy machines. In 42 cases the check status was “NOT ACCEPTED”. In 34 cases the dose ratio (DR) was out of tolerance. The corrected cone ratio (CCR) was outside of specification tolerance in 8 cases. The tomocheck data was related to the ionization chamber measurements for the IMRT plan indicating a close relationship between the CCR and the off‐axis measurements. Average dose ratio against the mean value of the on‐ and off‐axis IC measurement indicates that this parameter is a good interpretation of the dose output. This tool makes it possible to perform an easy‐to‐use and fast basic daily quality assurance check featuring an output as well as an energy evaluation. Ideally this tool should offer also the combined dosimetry check of jaw width, couch speed, leaf latency, output, leaf/gantry synchrony, and lasers. This will be investigated in the future. PACS 87.55Qr
Collapse
Affiliation(s)
| | - Koen Tournel
- Department of Radiotherapy, Oncologic Centre, UZ, Brussel, Belgium
| | - Dirk Verellen
- Department of Radiotherapy, Oncologic Centre, UZ, Brussel, Belgium
| | | | | | - Guy Storme
- Department of Radiotherapy, Oncologic Centre, UZ, Brussel, Belgium
| |
Collapse
|
40
|
Goddu SM, Mutic S, Pechenaya OL, Chaudhari SR, Garcia-Ramirez J, Rangaraj D, Klein EE, Yang D, Grigsby J, Low DA. Enhanced efficiency in helical tomotherapy quality assurance using a custom-designed water-equivalent phantom. Phys Med Biol 2009; 54:5663-74. [DOI: 10.1088/0031-9155/54/19/001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Bailat CJ, Buchillier T, Pachoud M, Moeckli R, Bochud FO. An absolute dose determination of helical tomotherapy accelerator, TomoTherapy High-Art II. Med Phys 2009; 36:3891-6. [DOI: 10.1118/1.3176951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
42
|
Westerly DC, Soisson E, Chen Q, Woch K, Schubert L, Olivera G, Mackie TR. Treatment planning to improve delivery accuracy and patient throughput in helical tomotherapy. Int J Radiat Oncol Biol Phys 2009; 74:1290-7. [PMID: 19394157 DOI: 10.1016/j.ijrobp.2009.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 01/28/2009] [Accepted: 02/03/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate delivery quality assurance (DQA) discrepancies observed for a subset of helical tomotherapy patients. METHODS AND MATERIALS Six tomotherapy patient plans were selected for analysis. Three had passing DQA ion chamber (IC) measurements, whereas 3 had measurements deviating from the expected dose by more than 3.0%. All plans used similar parameters, including: 2.5 cm field-width, 15-s gantry period, and pitch values ranging from 0.143 to 0.215. Preliminary analysis suggested discrepancies were associated with plans having predominantly small leaf open times (LOTs). To test this, patients with failing DQA measurements were replanned using an increased pitch of 0.287. New DQA plans were generated and IC measurements performed. Exit fluence data were also collected during DQA delivery for dose reconstruction purposes. RESULTS Sinogram analysis showed increases in mean LOTs ranging from 29.8% to 83.1% for the increased pitch replans. IC measurements for these plans showed a reduction in dose discrepancies, bringing all measurements within +/-3.0%. The replans were also more efficient to deliver, resulting in reduced treatment times. Dose reconstruction results were in excellent agreement with IC measurements, illustrating the impact of leaf-timing inaccuracies on plans having predominantly small LOTs. CONCLUSIONS The impact of leaf-timing inaccuracies on plans with small mean LOTs can be considerable. These inaccuracies result from deviations in multileaf collimator latency from the linear approximation used by the treatment planning system and can be important for plans having a 15-s gantry period. The ability to reduce this effect while improving delivery efficiency by increasing the pitch is demonstrated.
Collapse
Affiliation(s)
- David C Westerly
- Department of Medical Physics, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705-2275, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Djouguela A, Harder D, Kollhoff R, Foschepoth S, Kunth W, Rühmann A, Willborn K, Poppe B. Fourier deconvolution reveals the role of the Lorentz function as the convolution kernel of narrow photon beams. Phys Med Biol 2009; 54:2807-27. [DOI: 10.1088/0031-9155/54/9/015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Chaudhari SR, Pechenaya OL, Goddu SM, Mutic S, Rangaraj D, Bradley JD, Low D. The validation of tomotherapy dose calculations in low-density lung media. Phys Med Biol 2009; 54:2315-22. [DOI: 10.1088/0031-9155/54/8/004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Gibbons JP, Smith K, Cheek D, Rosen I. Independent calculation of dose from a helical TomoTherapy unit. J Appl Clin Med Phys 2009; 10:103-119. [PMID: 19223830 PMCID: PMC5720509 DOI: 10.1120/jacmp.v10i1.2772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/06/2008] [Indexed: 11/23/2022] Open
Abstract
A new calculation algorithm has been developed for independently verifying doses calculated by the TomoTherapy Hi.Art treatment planning system (TPS). The algorithm is designed to confirm the dose to a point in a high dose, low dose-gradient region. Patient data used by the algorithm include the radiological depth to the point for each projection angle and the treatment sinogram file controlling the leaf opening time for each projection. The algorithm uses common dosimetric functions [tissue phantom ratio (TPR) and output factor (Scp)] for the central axis combined with lateral and longitudinal beam profile data to quantify the off-axis dose dependence. Machine data for the dosimetric functions were measured on the Hi.Art machine and simulated using the TPS. Point dose calculations were made for several test phantoms and for 97 patient treatment plans using the simulated machine data. Comparisons with TPS-predicted point doses for the phantom treatment plans demonstrated agreement within 2% for both on-axis and off-axis planning target volumes (PTVs). Comparisons with TPS-predicted point doses for the patient treatment plans also showed good agreement. For calculations at sites other than lung and superficial PTVs, agreement between the calculations was within 2% for 94% of the patient calculations (64 of 68). Calculations within lung and superficial PTVs overestimated the dose by an average of 3.1% (sigma=2.4%) and 3.2% (sigma=2.2%), respectively. Systematic errors within lung are probably due to the weakness of the algorithm in correcting for missing tissue and/or tissue density heterogeneities. Errors encountered within superficial PTVs probably result from the algorithm overestimating the scatter dose within the patient. Our results demonstrate that for the majority of cases, the algorithm could be used without further refinement to independently verify patient treatment plans.
Collapse
Affiliation(s)
- John P Gibbons
- Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, U.S.A.,Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, U.S.A
| | - Koren Smith
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, U.S.A
| | - Dennis Cheek
- Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, U.S.A
| | - Isaac Rosen
- Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, U.S.A.,Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, U.S.A
| |
Collapse
|
46
|
Balog J, Soisson E. Helical tomotherapy quality assurance. Int J Radiat Oncol Biol Phys 2008; 71:S113-7. [PMID: 18406907 DOI: 10.1016/j.ijrobp.2007.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 09/13/2007] [Accepted: 10/02/2007] [Indexed: 11/16/2022]
Abstract
Helical tomotherapy uses a dynamic delivery in which the gantry, treatment couch, and multileaf collimator leaves are all in motion during treatment. This results in highly conformal radiotherapy, but the complexity of the delivery is partially hidden from the end-user because of the extensive integration and automation of the tomotherapy control systems. This presents a challenge to the medical physicist who is expected to be both a system user and an expert, capable of verifying relevant aspects of treatment delivery. A related issue is that a clinical tomotherapy planning system arrives at a customer's site already commissioned by the manufacturer, not by the clinical physicist. The clinical physicist and the manufacturer's representative verify the commissioning at the customer site before acceptance. Theoretically, treatment could begin immediately after acceptance. However, the clinical physicist is responsible for the safe and proper use of the machine. In addition, the therapists and radiation oncologists need to understand the important machine characteristics before treatment can proceed. Typically, treatment begins about 2 weeks after acceptance. This report presents an overview of the tomotherapy system. Helical tomotherapy has unique dosimetry characteristics, and some of those features are emphasized. The integrated treatment planning, delivery, and patient-plan quality assurance process is described. A quality assurance protocol is proposed, with an emphasis on what a clinical medical physicist could and should check. Additionally, aspects of a tomotherapy quality assurance program that could be checked automatically and remotely because of its inherent imaging system and integrated database are discussed.
Collapse
Affiliation(s)
- John Balog
- Department of Radiation Oncology, Mohawk Valley Medical Physics, Rome, NY 13440, USA.
| | | |
Collapse
|
47
|
Holmes TW, Hudes R, Dziuba S, Kazi A, Hall M, Dawson D. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System. Med Dosim 2008; 33:135-48. [DOI: 10.1016/j.meddos.2008.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 02/29/2008] [Indexed: 11/26/2022]
|
48
|
Bichay T, Cao D, Orton CG. Helical tomotherapy will ultimately replace linear accelerator based IMRT as the best way to deliver conformal radiotherapy. Med Phys 2008; 35:1625-8. [DOI: 10.1118/1.2885365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Broggi S, Mauro Cattaneo G, Molinelli S, Maggiulli E, Del Vecchio A, Longobardi B, Perna L, Fazio F, Calandrino R. Results of a two-year quality control program for a helical tomotherapy unit. Radiother Oncol 2008; 86:231-41. [DOI: 10.1016/j.radonc.2007.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/31/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
|
50
|
Sterzing F, Sroka-Perez G, Schubert K, Münter MW, Thieke C, Huber P, Debus J, Herfarth KK. Evaluating target coverage and normal tissue sparing in the adjuvant radiotherapy of malignant pleural mesothelioma: helical tomotherapy compared with step-and-shoot IMRT. Radiother Oncol 2008; 86:251-7. [PMID: 18207597 DOI: 10.1016/j.radonc.2007.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Revised: 12/08/2007] [Accepted: 12/11/2007] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the potential of helical tomotherapy in the adjuvant treatment of malignant pleural mesothelioma and compare target homogeneity, conformity and normal tissue dose with step-and-shoot intensity-modulated radiotherapy. METHODS AND MATERIALS Ten patients with malignant pleural mesothelioma who had undergone neoadjuvant chemotherapy with cisplatin and permetrexed followed by extrapleural pneumonectomy (EPP) were treated in our department with 54 Gy to the hemithorax delivered by step-and-shoot IMRT. A planning comparison was performed by creating radiation plans for helical tomotherapy. The different plans were compared by analysing target homogeneity using the homogeneity indices HI(max) and HI(min) and target conformity by using the conformity index CI(95). To assess target coverage and normal tissue sparing TV(90), TV(95) and mean and maximum doses were compared. RESULTS Both modalities achieved excellent dose distributions while sparing organs at risk. Target coverage and homogeneity could be increased significantly with helical tomotherapy compared with step-and-shoot IMRT. Mean dose to the contralateral lung could be lowered beyond 5 Gy. CONCLUSIONS Our planning study showed that helical tomotherapy is an excellent option for the adjuvant intensity-modulated radiotherapy of MPM. It is capable of improving target coverage and homogeneity.
Collapse
Affiliation(s)
- Florian Sterzing
- Department of Radiation Oncology, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|