1
|
Kamal R, Thaper D, Singh G, Sharma S, Navjeet, Oinam AS, Kumar V. Modeling of Gamma Index for Prediction of Pretreatment Quality Assurance in Stereotactic Body Radiation Therapy of the Liver. J Med Phys 2024; 49:232-239. [PMID: 39131435 PMCID: PMC11309143 DOI: 10.4103/jmp.jmp_176_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose The purpose of this study was to develop a predictive model to evaluate pretreatment patient-specific quality assurance (QA) based on treatment planning parameters for stereotactic body radiation therapy (SBRT) for liver carcinoma. Materials and Methods We retrospectively selected 180 cases of liver SBRT treated using the volumetric modulated arc therapy technique. Numerous parameters defining the plan complexity were calculated from the DICOM-RP (Radiotherapy Plan) file using an in-house program developed in MATLAB. Patient-specific QA was performed with global gamma evaluation criteria of 2%/2 mm and 3%/3 mm in a relative mode using the Octavius two-dimensional detector array. Various statistical tests and multivariate predictive models were evaluated. Results The leaf speed (MILS) and planning target volume size showed the highest correlation with the gamma criteria of 2%/2 mm and 3%/3 mm (P < 0.05). Degree of modulation (DoM), MCSSPORT, leaf speed (MILS), and gantry speed (MIGS) were predictors of global gamma pass rate (GPR) for 2%/2 mm (G22), whereas DoM, MCSSPORT, leaf speed (MILS) and robust decision making were predictors of the global GPR criterion of 3%/3 mm (G33). The variance inflation factor values of all predictors were <2, indicating that the data were not associated with each other. For the G22 prediction, the sensitivity and specificity of the model were 75.0% and 75.0%, respectively, whereas, for G33 prediction, the sensitivity and specificity of the model were 74.9% and 85.7%%, respectively. Conclusions The model was potentially beneficial as an easy alternative to pretreatment QA in predicting the uncertainty in plan deliverability at the planning stage and could help reduce resources in busy clinics.
Collapse
Affiliation(s)
- Rose Kamal
- Department of Radiation Oncology, Amrita Institute of Medical Sciences and Research Centre, Faridabad, Haryana, India
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Deepak Thaper
- Department of Radiation Oncology, Amrita Institute of Medical Sciences and Research Centre, Faridabad, Haryana, India
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaganpreet Singh
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Shambhavi Sharma
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Navjeet
- Department of Radiation Oncology, Amrita Institute of Medical Sciences and Research Centre, Faridabad, Haryana, India
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Arun Singh Oinam
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Regional Cancer Centre, Chandigarh, India
| | - Vivek Kumar
- Centre for Medical Physics, Panjab University, Chandigarh, India
| |
Collapse
|
2
|
Renkamp CK, Eulenstein D, Sebald M, Schlüter F, Buchele C, Rippke C, Debus J, Klüter S. Evaluation of 2D ion chamber arrays for patient specific quality assurance using a static phantom at a 0.35 T MR-Linac. Z Med Phys 2024:S0939-3889(23)00150-2. [PMID: 38184375 DOI: 10.1016/j.zemedi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Patient specific quality assurance (QA) in MR-Linacs can be performed with MR-compatible ion chamber arrays. However, the presence of a static magnetic field can alter the angular response of such arrays substantially. This works investigates the suitability of two ion chamber arrays, an air-filled and a liquid-filled array, for patient specific QA at a 0.35 T MR-Linac using a static phantom. METHODS In order to study the angular response, the two arrays were placed in a static, solid phantom and irradiated with 9.96 × 9.96 cm2 fields every 10° beam angle at a 0.35 T MR-Linac. Measurements were compared to the TPS calculated dose in terms of gamma passing rate and relative dose to the central chamber. 20 patient specific quality assurance plans were measured using the liquid-filled array. RESULTS The air-filled array showed asymmetric angular response changes of central chamber dose of up to 18% and down to local 3 mm / 3% gamma rates of 20%, while only minor differences within 3% (excluding parallel irradiation and beams through the couch edges) were found for the liquid-filled ion chamber array without rotating the phantom. Patient plan QA using the liquid-filled array yielded a median local 3 mm / 3% 3D gamma passing rate of 99.8% (range 96.9%-100%). CONCLUSION A liquid-filled ionization chamber array in combination with a static phantom can be used for efficient patient specific plan QA in a single measurement set-up in a 0.35 T MR-Linac, while the air-filled ion chamber array phantom shows large angular response changes and has its limitations regarding patient specific QA measurements.
Collapse
Affiliation(s)
- C K Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany.
| | | | - M Sebald
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - F Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - C Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany; Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - C Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany; Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - J Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany; Medical Faculty, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK), Core-Center Heidelberg, Heidelberg, Germany
| | - S Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
3
|
Wang S, Zheng Y. Evaluation and improvement of angular response for a commercial 2D detector array for patient-specific QA. J Appl Clin Med Phys 2023; 24:e14106. [PMID: 37593989 PMCID: PMC10476988 DOI: 10.1002/acm2.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 07/08/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSE MatriXX ionization chamber array has been widely used for the composite dose verification of IMRT/VMAT plans. However, in addition to its dose response dependence on gantry angle, there seems to be an offset between the beam axis and measured dose profile by MatriXX for oblique beam incidence at various gantry angles, leading to unnecessary quality assurance (QA) fails. In this study, we investigated the offset at various setup conditions and how to eliminate or decrease it to improve the accuracy of MatriXX for IMRT/VMAT plan verification with original gantry angles. METHODS We measured profiles for a narrow beam with MatriXX located at various depths in increments of 0.5 mm from the top to bottom of the sensitive volume of the array detectors and gantry angles from 0° to 360°. The optimal depth for QA measurement was determined at the depth where the measured profile had minimum offset. RESULTS The measured beam profile offset varies with incident gantry angle, increasing from vertical direction to lateral direction, and could be over 3 cm at vendor-recommended depth for near lateral direction beams. The offset also varies with depth, and the minimum offset (almost 0 for most oblique beams) was found to be at a depth of ∼2.5 mm below the vendor suggested depth, which was chosen as the optimal depth for all QA measurements. Using the optimal depth we determined, QA results (3%/2 mm Gamma analysis) were largely improved with an average of 99.4% gamma passing rate (no fails for 95% criteria) for 10 IMRT and VMAT plans with original gantry angles compared to 94.1% using the vendor recommended depth. CONCLUSIONS The improved accuracy and passing rate for QA measurement performed at the optimal depth with original gantry angles would lead to reduction in unnecessary repeated QA or plan changes due to QA system errors.
Collapse
Affiliation(s)
- Sha Wang
- Guangzhou Concord Cancer CenterSino‐Singapore Guangzhou Knowledge CityGuangzhou CityChina
| | - Yuanshui Zheng
- Guangzhou Concord Cancer CenterSino‐Singapore Guangzhou Knowledge CityGuangzhou CityChina
| |
Collapse
|
4
|
Guo Y, Li B, Li Y, Du W, Feng W, Feng S, Miao G. Application of a linear interpolation algorithm in radiation therapy dosimetry for 3D dose point acquisition. Sci Rep 2023; 13:4539. [PMID: 36941321 PMCID: PMC10027884 DOI: 10.1038/s41598-023-31562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Air-vented ion chambers are generally used in radiation therapy dosimetry to determine the absorbed radiation dose with superior precision. However, in ion chamber detector arrays, the number of array elements and their spacing do not provide sufficient spatial sampling, which can be overcome by interpolating measured data. Herein, we investigated the potential principle of the linear interpolation algorithm in volumetric dose reconstruction based on computed tomography images in the volumetric modulated arc therapy (VMAT) technique and evaluated how the ion chamber spacing and anatomical mass density affect the accuracy of interpolating new data points. Plane measurement doses on 83 VMAT treatment plans at different anatomical sites were acquired using Octavius 729, Octavius1500, and MatriXX ion chamber detector arrays, followed by the linear interpolation to reconstruct volumetric doses. Dosimetric differences in planning target volumes (PTVs) and organs at risk (OARs) between treatment planning system and reconstruction were evaluated by dose volume histogram metrics. The average percentage dose deviations in the mean dose (Dmean) of PTVs reconstructed by 729 and 1500 arrays ranged from 4.7 to 7.3% and from 1.5 to 2.3%, while the maximum dose (Dmax) counterparts ranged from 2.3 to 5.5% and from 1.6 to 7.6%, respectively. The average percentage dose/volume deviations of mixed PTVs and OARs in the abdomen/gastric and pelvic sites were 7.6%, 3.5%, and 7.2%, while mediastinum and lung plans showed slightly larger values of 8.7%, 5.1%, and 8.9% for 729, 1500, and MatriXX detector arrays, respectively. Our findings indicated that the smaller the spacing between neighbouring detectors and the more ion chambers present, the smaller the error in interpolating new data points. Anatomical regions with small local mass density inhomogeneity were associated with superior dose reconstruction. Given a large mass density difference in the various human anatomical structures and the characteristics of the linear interpolation algorithm, we suggest that an alternative data interpolation method should be used in radiotherapy dosimetry.
Collapse
Affiliation(s)
- Yixiao Guo
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China
| | - Bo Li
- Department of Bone and Soft-Tissue Carcinoma, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China
| | - Yazhou Li
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China
| | - Wen Du
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China
| | - Weigui Feng
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China
| | - Shifang Feng
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China
| | - Guoying Miao
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Price RA, Veltchev I, Lin T, Eldib A, Chen L, Jin L, Chen X, Liu J, Wang L, Ma CMC. Evaluating suggested stricter gamma criteria for linac-based patient-specific delivery QA in the conventional and SBRT environments. Phys Med 2022; 100:72-80. [PMID: 35759942 DOI: 10.1016/j.ejmp.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To evaluate AAPM TG-218 recommended tolerances for IMRT QA for conventional and SBRT delivery. METHODS QA analysis was repeated for 150 IMRT/VMAT patients with varying gamma criteria. True composite delivery was utilized, corrected for detector and output variation. Universal tolerance (TLuniv) and action limits (ALuniv) were compared with statistical process control (SPC) TLSPC and ALSPC values. Analysis was repeated as a function of plan complexity for 250 non-stereotactic body radiotherapy (SBRT) VMAT patients at 3%/2mm and a threshold of 10% and for 75 SBRT VMAT patients at 2%/2 mm and a threshold of 50% with results plotted as a function of PTV volume. Regions of failure were dose-scaled on the planning CT data sets based on delivery results. RESULTS The IMRT/VMAT TLSPC and ALSPC for gamma criteria of 3%/3 mm were 96.5% and 95.6% and for 3%/2 mm were 91.2% and 89.2%, respectively. Correlation with plan complexity for conventional fractionation VMAT was "low" for all sites with pelvis having the highest r value at -0.35. The equivalent SBRT PTV diameter ranged from 2.0 cm to 5.6 cm. Negative low correlation was found for 38 of 75 VMAT cases below ALuniv. CONCLUSIONS The ALuniv and ALSPC are similar for 3%/2 mm. However, our 5% failure rate for ALuniv, may result in treatment start delays approximately 2 times/month, given 40 new cases/month. VMAT QA failure at stricter criteria did not correlate strongly with plan complexity. Site-specific action limits vary less than 3% from the average. SBRT QA results do not strongly correlate with target size over the range studied.
Collapse
Affiliation(s)
- Robert A Price
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| | - Iavor Veltchev
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Teh Lin
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Ahmed Eldib
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Lili Chen
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Lihui Jin
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Xiaoming Chen
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Jie Liu
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - Lu Wang
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | - C-M Charlie Ma
- Fox Chase Cancer Center, Department of Radiation Oncology, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| |
Collapse
|
6
|
Lei H, Tan P, Hu D, Yu Y, Lin Y, Zhang Z, Li J. Gaussian fitting algorithm with multi-geometric parameters for rotated elliptical beam profiling using pixel ion chamber. Med Phys 2021; 48:4799-4811. [PMID: 34314534 DOI: 10.1002/mp.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE A high-precision rotated elliptical beam profiling method based on pixel ion chamber is proposed in this paper. This method aims to improve the accuracy by modeling the transverse profile of rotated beam as an ellipse with additional correlation coefficient and eliminating the fitting error due to the volume averaging effect of pixel ion chamber. METHODS In pencil beam scanning (PBS) proton therapy systems, the transverse beam profile model is generally represented as a standard Gaussian distribution. Considering the elliptical spots, two-dimensional (2D) joint Gaussian distribution characterized with the correlation coefficient ρ is adopted in this study. Gaussian-type particle distribution with white noise was generated and processed in MATLAB to simulate the secondary particle collection in the pixel ion chamber. The simulated pixel ion chamber is a commercially available ion chamber which consists of 12 × 12 small square pixels (3.75 × 3.75 mm2 ) with a 0.05 mm interval. The simulated signals were preprocessed by filtering with the noise threshold and extracting the maximum simply connected domain (MSCD) of the signal. Then, five geometric parameters that identify the transverse beam profiles were fitted under different signal-to-noise ratio (SNR) conditions: the center of the beam (x0 , y0 ), the spot size (σmajor , σminor ), and the rotation angle θ formed between the major axes of elliptical spot and the x axes of the ion chamber. First, the simulated signals were preprocessed by filtering with the noise threshold and extracting the MSCD of the signal. Second, a rectification curve of systematic error in fitted spot size versus the prescribed spot size was used to predict the systematic error due to the volume averaging effect. Finally, the effects of fitting errors on therapeutic dose were evaluated in terms of gamma index and relative dose difference. RESULTS When the SNR is not less than 20 dB, the relative fitting error of spot size and the absolute fitting error of angle θ are less than 1% and 6.1°, respectively. The fitting error of beam center increases with spot size and will not exceed 0.22 mm when spot size reaches up to 12 mm. At a SNR equal to 20 dB, neither cold nor hot spots were presented in dose distribution calculated with the fitted spot parameters. CONCLUSION The improved Gaussian fitting algorithm performs well when SNR is not less than 20 dB. This method can effectively distinguish the nominal beam and rotated elliptical beam. An ideal systematic error curve can be predicted and used to correct the fitted spot size, thus eliminating the systematic error due to the volume averaging effect of the pixel ion chamber. The fitting error of spot size cannot be fully corrected, but it is negligible and shows little effect on the overall therapeutic dose.
Collapse
Affiliation(s)
- Hao Lei
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Ping Tan
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Delin Hu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Yecheng Yu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Yinjie Lin
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Zhongqi Zhang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Jiadong Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
7
|
Thaper D, Kamal R, Singh G, Oinam AS, Yadav HP, Kumar V. Derivative-based gamma index: a novel methodology for stringent patient-specific quality assurance in the stereotactic treatment planning of liver cancer. Biomed Phys Eng Express 2020; 6. [PMID: 35125347 DOI: 10.1088/2057-1976/ababf3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/03/2020] [Indexed: 11/12/2022]
Abstract
Objective:The development of a stringent derivative-based gamma (DBG) index for patient-specific QA in stereotactic radiotherapy treatment planning (SRTP) to account for the spatial change in dose.Methods:Twenty-five patients of liver SBRT were selected retrospectively for this study. Deliberately, two different kinds of treatment planning approaches were used for each patient. Firstly, the treatment plans were generated using a conventional treatment planning (CTP) approach in which the target was covered with a homogeneous dose along with the nominal dose fall-off around the treatment field. Subsequently, the other treatment plans were generated using an SRTP approach with the intent of heterogeneous dose within the target region along with a steeper dose gradient outside the treatment field as much as possible. For both kinds of treatment plans, two dimensional (2D) conventional gamma (CG) and DBG analysis were performed using the 2D ion chamber array and radiochromic film.Results:Difference in the DBG index was statistically significant whereas, for CG analysis, the difference in CG index was insignificant for both types of treatment plans (CTP and SRTP). A significant positive correlation was observed between the difference in the DBG index and the difference in HI for high gamma criteria.Conclusion:The DBG evaluation is found to be more rigorous, and sensitive to the only SRTP. The proposed method could be opted-in the routine clinical practice in addition to CG.Advances in knowledge:DBG is more sensitive to detect the spatial change of dose, especially in high dose gradient regions.
Collapse
Affiliation(s)
- Deepak Thaper
- Centre for Medical Physics, Panjab University, Chandigarh, India.,Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rose Kamal
- Centre for Medical Physics, Panjab University, Chandigarh, India.,Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaganpreet Singh
- Centre for Medical Physics, Panjab University, Chandigarh, India.,Department of Radiotherapy, PGIMER, Regional Cancer Centre, Chandigarh, India
| | - Arun S Oinam
- Department of Radiotherapy, PGIMER, Regional Cancer Centre, Chandigarh, India
| | - Hanuman P Yadav
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vivek Kumar
- Centre for Medical Physics, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Pan Y, Yang R, Zhang S, Li J, Dai J, Wang J, Cai J. National survey of patient specific IMRT quality assurance in China. Radiat Oncol 2019; 14:69. [PMID: 31023348 PMCID: PMC6482589 DOI: 10.1186/s13014-019-1273-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To analyze and present the China's national survey on patient-specific IMRT quality assurance (QA). METHODS A national survey was conducted in all radiotherapy centers in China to collect comprehensive information on status of IMRT QA practice, including machine, technique, equipment, issues and suggestions. RESULTS Four hundred and three centers responded to this survey, accounting for 56.92% of all the centers implementing IMRT in China. The total number of medical physicists and the total number of patients treated with IMRT annually in these centers was 1599 and 305,000 respectively. All centers implemented measurement-based verification. Point dose verification and 2D dose verification was implemented in 331 and 399 centers, respectively. Three hundred forty-eight centers had 2D arrays, and 52 centers had detector devices designed to measure VMAT beams. EPID and film were used in 78 and 70 centers, respectively. Seventeen and 20 centers used log file and 3D DVH analysis, respectively. One hundred sixty-eight centers performed measurement-based verification not for each patient based on different selection criteria. The techniques and methods varied significantly in both point dose and dose distribution verification, from evaluation metrics, criteria, tolerance limit, and steps to check failed IMRT QA plans. Major issues identified in this survey were the limited resources of physicists, QA devices, and linacs. CONCLUSIONS IMRT QA was implemented in all the surveyed centers. The practice of IMRT QA varied significantly between centers. An increase in personnel, QA devices and linacs is highly desired. National standard, guideline, regulation and training programs are urgently needed in China for consistent and effective implementation of IMRT QA.
Collapse
Affiliation(s)
- Yuxi Pan
- Department of Radiation Oncology, Peking University Third Hospital, 49th North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, 49th North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Shuming Zhang
- Department of Radiation Oncology, Peking University Third Hospital, 49th North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jiaqi Li
- Department of Radiation Oncology, Peking University Third Hospital, 49th North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jianrong Dai
- Department of Radiation Oncology, Chinese Academy of Medical Science Cancer Institute, 17 Panjiayuan Nanli, Beijing, People's Republic of China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49th North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hongkong Polytechnic University, Hongkong, People's Republic of China
| |
Collapse
|
9
|
Alharthi T, Arumugam S, Vial P, Holloway L, Thwaites D. EPID sensitivity to delivery errors for pre-treatment verification of lung SBRT VMAT plans. Phys Med 2019; 59:37-46. [PMID: 30928064 DOI: 10.1016/j.ejmp.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/10/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To study the sensitivity of an Electronic Portal Imaging Device (EPID) in detecting delivery errors for VMAT lung stereotactic body radiotherapy (SBRT) using the Collapsed Arc method. METHODS Baseline VMAT plans and plans with errors intentionally introduced were generated for 15 lung SBRT patients. Three types of errors were introduced by modifying collimator angles and multi-leaf collimator (MLC) field sizes (MLCFS) and MLC shifts by ±5, ±2, and ±1° or millimeters. A total of 103 plans were measured with EPID on an Elekta Synergy Linear Accelerator (Agility MLC) and compared to both the original treatment planning system (TPS) Collapsed Arc dose matrix and the no-error plan baseline EPID measurements. Gamma analysis was performed using the OmniPro-I'mRT (IBA Dosimetry) software and gamma criteria of 1%/1 mm, 2%/1 mm, 2%/2 mm, and 3%/3. RESULTS When the error-introduced EPID measured dose matrices were compared to the TPS matrices, the majority of simulated errors were detected with gamma tolerance of 2%/1 mm and 1%/1 mm. When the error-introduced EPID measured dose matrices were compared to the baseline EPID measurements, all the MLCFS and MLC shift errors, and ±5°collimator errors were detected using 2%/1 mm and 1%/1 mm gamma criteria. CONCLUSION This work demonstrates the feasibility and effectiveness of the collapsed arc technique and EPID for pre-treatment verification of lung SBRT VMAT plans. The EPID was able to detect the majority of MLC and the larger collimator errors with sensitivity to errors depending on the gamma tolerances.
Collapse
Affiliation(s)
- Thahabah Alharthi
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, New South Wales, Australia; School of Medicine, Taif University, Taif, Saudi Arabia; Liverpool and Macarthur Cancer Therapy Centers, Liverpool, NSW, Australia; Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centers, Liverpool, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Phil Vial
- Liverpool and Macarthur Cancer Therapy Centers, Liverpool, NSW, Australia; Ingham Institute for Applied Medical Research, Sydney, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Lois Holloway
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, New South Wales, Australia; Liverpool and Macarthur Cancer Therapy Centers, Liverpool, NSW, Australia; Ingham Institute for Applied Medical Research, Sydney, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - David Thwaites
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Madhusudhana Sresty NVN, Raju AK, Reddy BN, Sahithya VC, Mohmd Y, Kumar GD, Kumar TA, Rushdi T, Aparna S, Prasad GD, Bajwa HK. Evaluation and Validation of IBA I'MatriXX Array for Patient-Specific Quality Assurance of TomoTherapy ®. J Med Phys 2019; 44:222-227. [PMID: 31576071 PMCID: PMC6764175 DOI: 10.4103/jmp.jmp_11_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
TomoTherapy® is a modern radiation treatment technique in which intensity-modulated radiation therapy (IMRT) is delivered in helical fashion. A two-dimensional (2D) array which has been existing for IMRT patient-specific quality assurance (PSQA) verifications for many years is I'MatriXX. Our objectives were to validate this I'MatriXX and to evaluate it for different patient sites and fractionation schedules of TomoTherapy treatment. Twenty-five plans were created with virtual target for different possible pitch values and field widths for validation. Gamma index criteria of 3%/2% dose differences and 3/2 mm distance to agreement were used. QA plans of 26 different treatment sites and different fractionation schedules were used. Results indicated that the matrix response is independent of field width, pitch, and modulation factor of TomoTherapy with 3%, 3 mm criteria. High passing rate ranging from 99.7% to 90.7% was observed for selected patient plans. We found that I'MatriXX 2D array can be utilized for easy and quick TomoTherapy PSQA.
Collapse
Affiliation(s)
- N V N Madhusudhana Sresty
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - A Krishnam Raju
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - B Nagarjuna Reddy
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - V C Sahithya
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Yakub Mohmd
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - G Deleep Kumar
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - T Anil Kumar
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Tasneem Rushdi
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - S Aparna
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - G Durga Prasad
- Department of Radiotherapy, Government Medical College and General Hospital, Anantapuramu, Andhra Pradesh, India
| | - Harjot Kaur Bajwa
- Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Luo W, Meng Y, Westlund SB. Dose calibration uncertainty and plan-specific dose calibration for IMRT QA. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Cilla S, Deodato F, Ianiro A, Macchia G, Picardi V, Buwenge M, Cammelli S, Zamagni A, Valentini V, Morganti AG. Partially ablative radiotherapy (PAR) for large mass tumors using simultaneous integrated boost: A dose-escalation feasibility study. J Appl Clin Med Phys 2018; 19:35-43. [PMID: 30220111 PMCID: PMC6236838 DOI: 10.1002/acm2.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose This study aimed to assess the feasibility to plan and deliver highly heterogeneous doses to symptomatic large tumors using volumetric modulated arc therapy (VMAT) and simultaneous integrated boost (SIB) during a short course palliative accelerated radiotherapy. Methods A patient with a large symptomatic chordoma infiltrating the right gluteal region was selected. A modified SIB treatment was implemented to irradiate the central volume of the tumor (boost target volume, BTV) up to 10 Gy/fraction in a dose escalation trial while maintaining the remaining tumor volume (planning target volume, PTV) and the surrounding healthy tissues within 5 Gy/fraction in twice daily fractions for two consecutive days. Four SIB plans were generated in the dual‐arc modality; a basal dose of 20 Gy was prescribed to the PTV, while the BTV was boosted up to 40 Gy. For comparison purposes, plans obtained with a sequential boost (SEQ plans) were also generated. All plans were optimized to deliver at least 95% of the prescription dose to the targets. Dose contrast index (DCI), conformity index (CI), integral dose (ID), and the irradiated body volumes at 5, 10, and 20 Gy were evaluated. Results At equal targets coverage, SIB plans provided major improvement in DCI, CI, and ID with respect to SEQ plans. When BTV dose escalated up to 200% of PTV prescription, DCI resulted in 66% for SIB plans and 37% for SEQ plans; the ID increase was only 11% for SIB plans (vs 27% for SEQ plans) and the increase in healthy tissues receiving more than 5, 10, and 20 Gy was less than 2%. Pretreatment dose verification reported a γ‐value passing rate greater than 95% with 3%(global)‐2 mm. Conclusion A modified SIB technique is dosimetrically feasible for large tumors, where doses higher than the tolerance dose of healthy tissues are necessary to increase the therapeutic gain.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Francesco Deodato
- Radiation Oncology Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Anna Ianiro
- Medical Physics Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Vincenzo Picardi
- Radiation Oncology Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Milly Buwenge
- Radiation Oncology Department, DIMES Università di Bologna - Ospedale S.Orsola Malpighi, Bologna, Italy
| | - Silvia Cammelli
- Radiation Oncology Department, DIMES Università di Bologna - Ospedale S.Orsola Malpighi, Bologna, Italy
| | - Alice Zamagni
- Radiation Oncology Department, DIMES Università di Bologna - Ospedale S.Orsola Malpighi, Bologna, Italy
| | - Vincenzo Valentini
- Radiation Oncology Unit, Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, Campobasso, Italy.,Radiation Oncology Department, Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessio G Morganti
- Radiation Oncology Department, DIMES Università di Bologna - Ospedale S.Orsola Malpighi, Bologna, Italy
| |
Collapse
|
13
|
Alharthi T, Pogson EM, Arumugam S, Holloway L, Thwaites D. Pre-treatment verification of lung SBRT VMAT plans with delivery errors: Toward a better understanding of the gamma index analysis. Phys Med 2018; 49:119-128. [DOI: 10.1016/j.ejmp.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
|
14
|
Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, Li H, Wijesooriya K, Shi J, Xia P, Papanikolaou N, Low DA. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys 2018; 45:e53-e83. [DOI: 10.1002/mp.12810] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/10/2017] [Accepted: 01/11/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Moyed Miften
- Department of Radiation Oncology; University of Colorado School of Medicine; Aurora CO USA
| | - Arthur Olch
- Department of Radiation Oncology; University of Southern California and Radiation Oncology Program; Childrens Hospital of Los Angeles; Los Angeles CA USA
| | - Dimitris Mihailidis
- Department of Radiation Oncology; University of Pennsylvania; Perelman Center for Advanced Medicine; Philadelphia PA USA
| | - Jean Moran
- Department of Radiation Oncology; University of Michigan; Ann Arbor MI USA
| | - Todd Pawlicki
- Department of Radiation Oncology; University of California San Diego; La Jolla CA USA
| | - Andrea Molineu
- Radiological Physics Center; UT MD Anderson Cancer Center; Houston TX USA
| | - Harold Li
- Department of Radiation Oncology; Washington University; St. Louis MO USA
| | - Krishni Wijesooriya
- Department of Radiation Oncology; University of Virginia; Charlottesville VA USA
| | - Jie Shi
- Sun Nuclear Corporation; Melbourne FL USA
| | - Ping Xia
- Department of Radiation Oncology; The Cleveland Clinic; Cleveland OH USA
| | - Nikos Papanikolaou
- Department of Medical Physics; University of Texas Health Sciences Center; San Antonio TX USA
| | - Daniel A. Low
- Department of Radiation Oncology; University of California Los Angeles; Los Angeles CA USA
| |
Collapse
|
15
|
Seravalli E, Houweling AC, Van Battum L, Raaben TA, Kuik M, de Pooter JA, Van Gellekom MP, Kaas J, de Vries W, Loeff EA, Van de Kamer JB. Auditing local methods for quality assurance in radiotherapy using the same set of predefined treatment plans. Phys Imaging Radiat Oncol 2018; 5:19-25. [PMID: 33458364 PMCID: PMC7807668 DOI: 10.1016/j.phro.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND PURPOSE Local implementation of plan-specific quality assurance (QA) methods for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans may vary because of dissimilarities in procedures, equipment and software. The purpose of this work is detecting possible differences between local QA findings and those of an audit, using the same set of treatment plans. METHODS A pre-defined set of clinical plans was devised and imported in the participating institute's treatment planning system for dose computation. The dose distribution was measured using an ionisation chamber, radiochromic film and an ionisation chamber array. The centres performed their own QA, which was compared to the audit findings. The agreement/disagreement between the audit and the institute QA results were assessed along with the differences between the dose distributions measured by the audit team and computed by the institute. RESULTS For the majority of the cases the results of the audit were in agreement with the institute QA findings: ionisation chamber: 92%, array: 88%, film: 76% of the total measurements. In only a few of these cases the evaluated measurements failed for both: ionisation chamber: 2%, array: 4%, film: 0% of the total measurements. CONCLUSION Using predefined treatment plans, we found that in approximately 80% of the evaluated measurements the results of local QA of IMRT and VMAT plans were in line with the findings of the audit. However, the percentage of agreement/disagreement depended on the characteristics of the measurement equipment used and on the analysis metric.
Collapse
Affiliation(s)
- Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonetta C. Houweling
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Van Battum
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Marc Kuik
- Department of Radiotherapy, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | | | | | - Jochem Kaas
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilfred de Vries
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik A. Loeff
- Department of Radiation Oncology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Jeroen B. Van de Kamer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Werlé F, Dehaynin N, Niederst C, Jarnet D, Gantier M, Karamanoukian D, Meyer P. Detecting anomalies in a deliberately biased tomotherapy plan: Comparison of two patient-specific quality assurance processes involving ArcCHECK ® and Gafchromic ® EBT3 films. Cancer Radiother 2017; 21:749-758. [PMID: 28780318 DOI: 10.1016/j.canrad.2017.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE This work proposes a comparative evaluation of two of our patient-specific quality assurance processes involving ArcCHECK® (Sun Nuclear) and Gafchromic® EBT3 films (Ashland) in order to determine which detector is able to most effectively detect an anomaly in a deliberately biased tomotherapy plan. MATERIAL AND METHODS A complex clinical head and neck tomotherapy plan was deliberately biased by introducing six errors: multileaf collimator leaf positional errors by leaving one and two central leafs closed during the whole treatment, initial radiation angle errors (+0.5° and +1.0°) and multileaf collimator leafs opening time errors (+0.5% and +1.0%). For each error-induced plan, comparison of ArcCHECK® with Gafchromic® EBT3 films (20.3×25.4cm2) was performed through two methods: a dose matrices subtraction study and a gamma index analysis. RESULTS The dose matrices subtraction study shows that our ArcCHECK® processing is able to detect all the six induced errors contrary to the one using films, which are only able to detect the two biases involving multileaf collimator leaf positional errors. The gamma index analysis confirms the previous method, since it shows all six errors induced in the reference plan seem to be widely detected with ArcCHECK® with the more restrictive 1%/1mm gamma criterion, whereas films may only be able to detect biases in relation to multileaf collimator leaf positional errors. It also shows the common 3%/3mm gamma criterion does not allow deciding between both detectors in the detection of the six induced biases. CONCLUSION Both comparative methods showed ArcCHECK® processing is more suitable to detect the six errors introduced in the reference treatment plan.
Collapse
Affiliation(s)
- F Werlé
- Strasbourg oncologie libérale, centre de radiothérapie de la Robertsau, 184, route de la Wantzenau, 67000 Strasbourg, France
| | - N Dehaynin
- Unité de physique médicale, département de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France.
| | - C Niederst
- Unité de physique médicale, département de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - D Jarnet
- Unité de physique médicale, département de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - M Gantier
- Unité de physique médicale, département de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - D Karamanoukian
- Unité de physique médicale, département de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - P Meyer
- Unité de physique médicale, département de radiothérapie, centre Paul-Strauss, 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| |
Collapse
|
17
|
Deshpande S, Xing A, Metcalfe P, Holloway L, Vial P, Geurts M. Clinical implementation of an exit detector-based dose reconstruction tool for helical tomotherapy delivery quality assurance. Med Phys 2017; 44:5457-5466. [PMID: 28737014 DOI: 10.1002/mp.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to validate the accuracy of an exit detector-based dose reconstruction tool for helical tomotherapy (HT) delivery quality assurance (DQA). METHODS AND MATERIAL Exit detector-based DQA tool was developed for patient-specific HT treatment verification. The tool performs a dose reconstruction on the planning image using the sinogram measured by the HT exit detector with no objects in the beam (i.e., static couch), and compares the reconstructed dose to the planned dose. Vendor supplied (three "TomoPhant") plans with a cylindrical solid water ("cheese") phantom were used for validation. Each "TomoPhant" plan was modified with intentional multileaf collimator leaf open time (MLC LOT) errors to assess the sensitivity and robustness of this tool. Four scenarios were tested; leaf 32 was "stuck open," leaf 42 was "stuck open," random leaf LOT was closed first by mean values of 2% and then 4%. A static couch DQA procedure was then run five times (once with the unmodified sinogram and four times with modified sinograms) for each of the three "TomoPhant" treatment plans. First, the original optimized delivery plan was compared with the original machine agnostic delivery plan, then the original optimized plans with a known modification applied (intentional MLC LOT error) were compared to the corresponding error plan exit detector measurements. An absolute dose comparison between calculated and ion chamber (A1SL, Standard Imaging, Inc., WI, USA) measured dose was performed for the unmodified "TomoPhant" plans. A 3D gamma evaluation (2%/2 mm global) was performed by comparing the planned dose ("original planned dose" for unmodified plans and "adjusted planned dose" for each intentional error) to exit detector-reconstructed dose for all three "Tomophant" plans. Finally, DQA for 119 clinical (treatment length <25 cm) and three cranio-spinal irradiation (CSI) plans were measured with both the ArcCHECK phantom (Sun Nuclear Corp., Melbourne, FL, USA) and the exit detector DQA tool to assess the time required for DQA and similarity between two methods. RESULTS The measured ion chamber dose agreed to within 1.5% of the reconstructed dose computed by the exit detector DQA tool on a cheese phantom for all unmodified "Tomophant" plans. Excellent agreement in gamma pass rate (>95%) was observed between the planned and reconstructed dose for all "Tomophant" plans considered using the tool. The gamma pass rate from 119 clinical plan DQA measurements was 94.9% ± 1.5% and 91.9% ± 4.37% for the exit detector DQA tool and ArcCHECK phantom measurements (P = 0.81), respectively. For the clinical plans (treatment length <25 cm), the average time required to perform DQA was 24.7 ± 3.5 and 39.5 ± 4.5 min using the exit detector QA tool and ArcCHECK phantom, respectively, whereas the average time required for the 3 CSI treatments was 35 ± 3.5 and 90 ± 5.2 min, respectively. CONCLUSION The exit detector tool has been demonstrated to be faster for performing the DQA with equivalent sensitivity for detecting MLC LOT errors relative to a conventional phantom-based QA method. In addition, comprehensive MLC performance evaluation and features of reconstructed dose provide additional insight into understanding DQA failures and the clinical relevance of DQA results.
Collapse
Affiliation(s)
- Shrikant Deshpande
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aitang Xing
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia
| | - Peter Metcalfe
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia.,South West Sydney Clinical School, School of Medicine, University of NSW, Sydney, Australia
| | - Philip Vial
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Geurts
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
18
|
Ferro M, Chiesa S, Macchia G, Cilla S, Bertini F, Frezza G, Farioli A, Cammelli S, Balducci M, Ianiro A, Angelini AL, Compagnone G, Valentini V, Deodato F, Morganti AG. Intensity Modulated Radiation Therapy With Simultaneous Integrated Boost in Patients With Brain Oligometastases: A Phase 1 Study (ISIDE-BM-1). Int J Radiat Oncol Biol Phys 2017; 97:82-90. [PMID: 27843034 DOI: 10.1016/j.ijrobp.2016.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the maximum tolerated dose of intensity modulated radiation therapy simultaneous integrated boost whole-brain radiation therapy for palliative treatment of patients with <5 brain metastases using a standard linear accelerator. MATERIALS AND METHODS The whole brain plus 3-mm margin was defined as the planning target volume (PTVwb), whereas each brain metastasis, defined as the contrast-enhancing tumor on MRI T1 scans, plus a 3-mm isotropic margin, was defined as metastases PTV (PTVm). Radiation therapy was delivered in 10 daily fractions (2 weeks). Only the dose to PTVm was progressively increased in the patient cohorts (35 Gy, 40 Gy, 45 Gy, 50 Gy), whereas the PTVwb was always treated with 30 Gy (3 Gy per fraction) in all patients. The dose-limiting toxicity was evaluated providing that 3 months of follow-up had occurred after the treatment of a 6-patient cohort. RESULTS Thirty patients were enrolled in the study (dose PTVm: 35 Gy, 8 patients; 40 Gy, 6 patients; 45 Gy, 6 patients; 50 Gy, 10 patients). The number of treated brain metastases was 1 in 18 patients, 2 in 5 patients, 3 in 6 patients, and 4 in 1 patient. Three patients experienced dose-limiting toxicity: 1 patient at dose level 2 presented grade 3 (G3) skin toxicity; 1 patient at dose level 4 presented G3 neurologic toxicity; and 1 patient at the same level showed brain hemorrhage. Most patients showed G1 to 2 acute toxicity, in most cases skin (n=19) or neurologic (n=10). Twenty-seven were evaluable for response: 6 (22%) stable disease, 18 (67%) partial response, and 3 (11%) complete response. Median survival and 1-year overall survival were 12 months and 53%, respectively. No patient showed late toxicity. CONCLUSIONS In this first prospective trial on the use of intensity modulated radiation therapy simultaneous integrated boost delivered with a standard linear accelerator in patients with brain oligometastases, a boost dose up to 50 Gy in 10 fractions was tolerable according to the study design.
Collapse
Affiliation(s)
- Marica Ferro
- Radiotherapy Unit, Fondazione di Ricerca e Cura "Giovanni Paolo II," Catholic University of Sacred Heart, Campobasso, Italy
| | - Silvia Chiesa
- Department of Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Gabriella Macchia
- Radiotherapy Unit, Fondazione di Ricerca e Cura "Giovanni Paolo II," Catholic University of Sacred Heart, Campobasso, Italy.
| | - Savino Cilla
- Medical Physics Unit, Fondazione di Ricerca e Cura "Giovanni Paolo II," Catholic University of Sacred Heart, Campobasso, Italy
| | - Federica Bertini
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Andrea Farioli
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Silvia Cammelli
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Mario Balducci
- Department of Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Anna Ianiro
- Medical Physics Unit, Fondazione di Ricerca e Cura "Giovanni Paolo II," Catholic University of Sacred Heart, Campobasso, Italy
| | | | | | - Vincenzo Valentini
- Department of Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Francesco Deodato
- Radiotherapy Unit, Fondazione di Ricerca e Cura "Giovanni Paolo II," Catholic University of Sacred Heart, Campobasso, Italy
| | - Alessio G Morganti
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Ramachandran P, Tajaldeen A, Taylor D, Wanigaratne D, Roozen K, Geso M. Evaluation and Performance of ArcCheck and Film using Gamma Criteria in Pre-treatment Quality Assurance of Stereotactic Ablative Radiotherapy. J Med Phys 2017; 42:251-257. [PMID: 29296040 PMCID: PMC5744454 DOI: 10.4103/jmp.jmp_132_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: The aim of this study is to assess the use of ArcCHECK (AC) as an alternative method to replace film dosimetry for pre-treatment quality assurance (QA) of three-dimensional conformal radiation therapy, intensity-modulated radiation therapy (IMRT), and volumetric-modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) treatment plans. Materials and Methods: Twenty-five patients with a varied diagnosis of lung, spine, sacrum, sternum, ribs, scapula, and femur undergoing SABR were selected for this study. Pre-treatment QA was performed for all the patients using ionization chamber and film dosimetry. Measurements were also carried out on an AC phantom. The planned and measured doses from the AC device and EBT3 films were compared using four different gamma criteria: 2%/2 mm, 3%/2 mm, 3%/1 mm, and 3%/3 mm. Results: The mean gamma passing rates at 3%/3 mm for all non-spine SABR cases were 98.79 ± 0.96 and 99.27 ± 1.03 with AC and films, respectively. The mean passing rates at 3%/2 mm for AC and films were 98.76 ± 0.42 and 99.43 ± 0.27 respectively for spine VMAT SABR, and 87.15 ± 2.45 and 99.79 ± 0.14 respectively for spine IMRT SABR. In the case of spine tumors, the gamma criterion was tightened due to the proximity of spinal cord to the planning target volume. Our results show that AC provides good results for all VMAT SABR plans. Conclusion: The AC results at 3%/3 mm were in good agreement with film dosimetry for most cases. We observed a significant reduction in QA time on using AC for SABR QA. This study showed that AC results are comparable to film dosimetry for all studied sites except for spine IMRT SABR.
Collapse
Affiliation(s)
- Prabhakar Ramachandran
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Medical Radiation Discipline, School of Health and Biomedical Science, RMIT University, Bundoora, Victoria, Australia
| | - Abdulrahman Tajaldeen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Medical Radiation Discipline, School of Health and Biomedical Science, RMIT University, Bundoora, Victoria, Australia
| | - David Taylor
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Karl Roozen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Moshi Geso
- Medical Radiation Discipline, School of Health and Biomedical Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
20
|
Patient specific quality assurance of RapidArc pre treatment plans using semiflex 0.125 cc ionization chamber. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Colodro JFM, Berná AS, Puchades VP, Amores DR, Baños MA. Volumetric-modulated Arc Therapy Lung Stereotactic Body Radiation Therapy Dosimetric Quality Assurance: A Comparison between Radiochromic Film and Chamber Array. J Med Phys 2017; 42:133-139. [PMID: 28974858 PMCID: PMC5618459 DOI: 10.4103/jmp.jmp_130_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: The aim of this work is to verify the use of radiochromic film in the quality assurance (QA) of volumetric-modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT) plans and compare the results with those obtained using an ion chamber array. Materials and Methods: QA was performed for 14 plans using a two-dimensional-array seven29 and EBT3 film. Dose values per session ranged between 7.5 Gy and 18 Gy. The multichannel method was used to obtain a dose map for film. Results: The results obtained were compared with treatment planning system calculated profiles through gamma analysis. Passing criteria were 3%/3 mm, 2%/2 mm and 3%/1.5 mm with maximum and local dose (LD) normalization. Mean gamma passing rate (GPR) (percentage of points presenting a gamma function value of <1) was obtained and compared. Calibration curves were obtained for each color channel within the dose range 0–16 Gy. Mean GPR values for film were >98.9% for all criteria when normalizing per maximum dose. When using LD, normalization was >92.7%. GPR values for the array were lower for all criteria; this difference being statistically significant when normalizing at LD, reaching 12% for the 3%/1.5 mm criterion. Conclusion: Both detectors provide satisfactory results for the QA of plans for VMAT lung SBRT. The film provided greater mean GPR values, afforded greater spatial resolution and was more efficient overall.
Collapse
Affiliation(s)
- Juan Fernando Mata Colodro
- Department of Medical Physics and Radiation Protection, Santa Lucia University Hospital, Cartagena, Murcia, Spain
| | - Alfredo Serna Berná
- Department of Medical Physics and Radiation Protection, Santa Lucia University Hospital, Cartagena, Murcia, Spain
| | - Vicente Puchades Puchades
- Department of Medical Physics and Radiation Protection, Santa Lucia University Hospital, Cartagena, Murcia, Spain
| | - David Ramos Amores
- Department of Medical Physics and Radiation Protection, Santa Lucia University Hospital, Cartagena, Murcia, Spain
| | - Miguel Alcaraz Baños
- Department of Medical Physic Radiology and Physical Medicine, Faculty of Medicine/Dentistry, University of Murcia, Murcia, Spain
| |
Collapse
|
22
|
A method to enhance 2D ion chamber array patient specific quality assurance for IMRT. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 40:145-151. [PMID: 27873283 DOI: 10.1007/s13246-016-0498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
Gamma index comparison has been established as a method for patient specific quality assurance in IMRT. Detector arrays can replace radiographic film systems to record 2D dose distributions and fulfill quality assurance requirements. These electronic devices present spatial resolution disadvantages with respect to films. This handicap can be partially overcome with a multiple acquisition sequence of adjacent 2D dose distributions. The detector spatial response influence can also be taken into account through the convolution of the calculated dose with the detector spatial response. A methodology that employs both approaches could allow for enhancements of the quality assurance procedure. 35 beams from different step and shoot IMRT plans were delivered on a phantom. 2D dose distributions were recorded with a PTW-729 ion chamber array for individual beams, following the multiple acquisition methodology. 2D dose distributions were also recorded on radiographic films. Measured dose distributions with films and with the PTW-729 array were processed with the software RITv5.2 for Gamma index comparison with calculated doses. Calculated dose was also convolved with the ion chamber 2D response and the Gamma index comparisons with the 2D dose distribution measured with the PTW-729 array was repeated. 3.7 ± 2.7% of points surpassed the accepted Gamma index when using radiographic films compared with calculated dose, with a minimum of 0.67 and a maximum of 13.27. With the PTW-729 multiple acquisition methodology compared with calculated dose, 4.1 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 1.44 and a maximum of 11.26. With the PTW- multiple acquisition methodology compared with convolved calculated dose, 2.7 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 0.42 and a maximum of 5.75. The results obtained in this work suggest that the comparison of merged adjacent dose distributions with convolved calculated dose represents an enhancement in the methodology for IMRT patient specific quality assurance with the PTW-729 ion chamber array.
Collapse
|
23
|
Alrowaili ZA, Lerch MLF, Petasecca M, Carolan MG, Metcalfe PE, Rosenfeld AB. Beam perturbation characteristics of a 2D transmission silicon diode array, Magic Plate. J Appl Clin Med Phys 2016; 17:85-98. [PMID: 27074475 PMCID: PMC5874939 DOI: 10.1120/jacmp.v17i2.5932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/11/2015] [Accepted: 12/01/2015] [Indexed: 11/23/2022] Open
Abstract
The main objective of this study is to demonstrate the performance characteristics of the Magic Plate (MP) system when operated upstream of the patient in transmission mode (MPTM). The MPTM is an essential component of a real‐time QA system designed for operation during radiotherapy treatment. Of particular interest is a quantitative study into the influence of the MP on the radiation beam quality at several field sizes and linear accelerator potential differences. The impact is measured through beam perturbation effects such as changes in the skin dose and/or percentage depth dose (PDD) (both in and out of field). The MP was placed in the block tray of a Varian linac head operated at 6, 10 and 18 MV beam energy. To optimize the MPTM operational setup, two conditions were investigated and each setup was compared to the case where no MP is positioned in place (i.e., open field): (i) MPTM alone and (ii) MPTM with a thin passive contamination electron filter. The in‐field and out‐of‐field surface doses of a solid water phantom were investigated for both setups using a Markus plane parallel (Model N23343) and Attix parallel‐plate, MRI model 449 ionization chambers. In addition, the effect on the 2D dose distribution measured by the Delta4 QA system was also investigated. The transmission factor for both of these MPTM setups in the central axis was also investigated using a Farmer ionization chamber (Model 2571A) and an Attix ionization chamber. Measurements were performed for different irradiation field sizes of 5×5 cm2 and 10×10 cm2. The change in the surface dose relative to dmax was measured to be less than 0.5% for the 6 MV, 10 MV, and 18 MV energy beams. Transmission factors measured for both set ups (i & ii above) with 6 MV, 10 MV, and 18 MV at a depth of dmax and a depth of 10 cm were all within 1.6% of open field. The impact of both the bare MPTM and the MPTM with 1 mm buildup on 3D dose distribution in comparison to the open field investigated using the Delta4 system and both the MPTM versions passed standard clinical gamma analysis criteria. Two MPTM operational setups were studied and presented in this article. The results indicate that both versions may be suitable for the new real‐time megavoltage photon treatment delivery QA system under development. However, the bare MPTM appears to be slightly better suited of the two MP versions, as it minimally perturbs the radiation field and does not lead to any significant increase in skin dose to the patient. PACS number(s): 87.50.up, 87.53.Bn, 87.55.N, 87.55.Qr, 87.56.Fc.
Collapse
|
24
|
Fenoglietto P, Khodri M, Nguyen D, Josserand-Pietri F, Aillères N. Twin machines validation for VMAT treatments using electronic portal-imaging device: a multicenter study. Radiat Oncol 2016; 11:2. [PMID: 26762179 PMCID: PMC4712460 DOI: 10.1186/s13014-015-0577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 12/22/2015] [Indexed: 11/26/2022] Open
Abstract
Purpose To verify the accuracy of volumetric arc therapy (VMAT) using the RapidArc™ device when switching patients from one single linear accelerator (linac) to a paired energy and mechanics "twin" linac without reoptimization of the original treatment plan. Patients and Methods Four centers using 8 linacs were involved in this study. Seventy-four patients previously treated with the 6MV photon RapidArc™ technique were selected for analysis, using 242 measurements. In each institution, all patients were planned on linac A, and their plans were verified both on linac A and on the twin linac B. Verifications were done using the amorphous silicium electronic portal imager (EPID) of the linacs and were analyzed with the EpiQa software (Epidos, Bratislavia, Slovakia). The gamma index formalism was used for validation with a double threshold of 3 % and 3 mm with a measurement resolution of 0.39 mm/pixel, and a smoothed resolution of approximately 2.5 mm. Results The number of points passing the gamma criteria between the measured and computed doses was 94.79 ± 2.57 % for linac A and 94.61 ± 2.46 % for linac B. Concerning the smoothed measurement analysis, 98.67 ± 1.26 % and 98.59 ± 1.20 % points passing the threshold were obtained for linacs A and B, respectively. The difference between the 2 dose matrices acquired on the EPID was very small, with 99.92 ± 0.06 % of the points passing the criteria. Conclusion For linacs sharing the same mechanical and energy parameters, this study tends to indicate that patients may be safely switched from treatment with one linac to treatment with its twin linac using the same VMAT plan.
Collapse
Affiliation(s)
- P Fenoglietto
- Département d'Oncologie Radiothérapie, Institut régional du Cancer de Montpellier (ICM), 208 rue des Apothicaires, F-34298, Montpellier, Cedex 5, France.
| | - M Khodri
- Département d'Oncologie Radiothérapie, Institut de Cancérologie de la Loire (ICL), Saint Etienne, France.
| | - D Nguyen
- Service de radiothérapie, Groupe ORLAM, Mâcon, France.
| | | | - N Aillères
- Département d'Oncologie Radiothérapie, Institut régional du Cancer de Montpellier (ICM), 208 rue des Apothicaires, F-34298, Montpellier, Cedex 5, France.
| |
Collapse
|
25
|
Cilla S, Deodato F, Macchia G, Digesù C, Ianiro A, Viola P, Craus M, Valentini V, Piermattei A, Morganti AG. Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: Feasibility and initial experience. Med Dosim 2016; 41:166-72. [DOI: 10.1016/j.meddos.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/02/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
|
26
|
Kumar S, Cheruparambil A, Thokkayil AP. Clinically evaluating directional dependence of 2D seven29 ion-chamber array with different IMRT plans. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.34.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
27
|
Stelljes TS, Harmeyer A, Reuter J, Looe HK, Chofor N, Harder D, Poppe B. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500. Med Phys 2015; 42:1528-37. [PMID: 25832043 DOI: 10.1118/1.4914151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. METHODS The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm(2) measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array's readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor kNR for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array's central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. RESULTS The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1% over the range from 5 to 1000 MU. The effective point of measurement of the OD1500 for dose measurements in RW3 phantoms was determined to be (8.7 ± 0.2) mm below its front surface. Output factors showed deviations below 1% for field sizes exceeding 4 × 4 cm(2). The dose per pulse dependence was smaller than 0.4% for doses per pulse from 0.2 to 1 mGy. The energy dependence of the array did not exceed ±0.9%. The parameter σ of the Gaussian lateral dose response function was determined as σ6MV = (2.07 ± 0.02) mm for 6 MV and σ15MV = (2.09 ± 0.02) mm for 15 MV. An IMRT verification showed passing rates well above 90% for a local 3 mm/3% criterion. CONCLUSIONS The OD1500 array's dosimetric properties showed the applicability of the array for clinical dosimetry with the possibility to increase the spatial sampling frequency and the coverage of a dose distribution with the sensitive areas of ionization chambers by merging two measurements.
Collapse
Affiliation(s)
- T S Stelljes
- Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - A Harmeyer
- WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - J Reuter
- WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - H K Looe
- Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - N Chofor
- Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - D Harder
- Prof. em., Medical Physics and Biophysics, Georg August University, Göttingen 37073, Germany
| | - B Poppe
- Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129, Germany
| |
Collapse
|
28
|
Arumugam S, Xing A, Young T, Holloway L. Sensitivity of a helical diode array dosimeter to Volumetric Modulated Arc Therapy delivery errors. Phys Med 2015; 31:1043-1054. [PMID: 26429384 DOI: 10.1016/j.ejmp.2015.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/05/2015] [Accepted: 08/22/2015] [Indexed: 11/27/2022] Open
|
29
|
Ambika Devi SS, Thokkayil A. Correlation between gamma analysis for midline and lateralized tumors by using volumetric modulated arc therapy. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.33.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
Macchia G, Cilla S, Deodato F, Legge F, Di Stefano A, Chiantera V, Scambia G, Valentini V, Morganti AG, Ferrandina G. Intensity-modulated extended-field chemoradiation plus simultaneous integrated boost in the pre-operative treatment of locally advanced cervical cancer: a dose-escalation study. Br J Radiol 2015; 88:20150385. [PMID: 26388108 DOI: 10.1259/bjr.20150385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the feasibility and determine the recommended pre-operative intensity-modulated radiotherapy (IMRT) dose of extended-field chemoradiation along with simultaneous integrated boost (SIB) dose escalation. METHODS A radiation dose of 40 Gy over 4 weeks, 2 Gy/fraction, was delivered to the tumour and the lymphatic drainage (planning target volume, PTV3), which encompassed a volume larger than standard (common iliac lymphatic area up to its apex, in front of the L3 vertebra), concurrently with chemotherapy (cisplatin and 5-fluorouracil). Radiation dose was escalated to the pelvis (PTV2) and to the macroscopic disease (PTV1) with the SIB-IMRT strategy. Three dose levels were planned: Level 1 (PTV3: 40/2 Gy; PTV2: 40/2 Gy; PTV1: 45/2.25 Gy), Level 2 (PTV3: 40/2 Gy; PTV2: 45/2.25 Gy; PTV1: 45/2.25 Gy) and Level 3 (PTV3: 40/2 Gy; PTV2: 45/2.25 Gy; PTV1: 50/2.5 Gy). All treatments were delivered in 20 fractions. Patients were treated in cohorts of between three and six per group using a Phase I study design. The recommended dose was exceeded if two of the six patients in a cohort experienced dose-limiting toxicity within 3 months from treatment. RESULTS 19 patients [median age: 46 years; The International Federation of Gynecology and Obstetrics (FIGO) stage IB2: 3, IIB: 10, IIIA-IIIB: 6] were enrolled. Median follow-up was 24 months (9-60 months). The most common grade 3/4 toxicity was gastrointestinal (GI) (diarrhoea, mucous discharge, rectal/abdominal pain). At Levels 1 and 2, only one grade 3 GI toxicity per level was recorded, whereas at Level 3, two grade 3 GI toxicities (diarrhoea, emesis and nausea) were recorded. CONCLUSION The SIB-IMRT technique was found to be feasible and safe at the recommended doses of 45 Gy to PTV1 and PTV2 and 40 Gy to PTV3 in the pre-operative treatment of patients with locally advanced cervical cancer. Unfortunately, this complex technique was unable to safely escalate dose beyond levels already achieved with three-dimensional conformal radiotherapy technique given acute GI toxicity. ADVANCES IN KNOWLEDGE A Phase I radiotherapy dose-escalation trial with SIB-IMRT technique is proposed in cervical cancer. This complex technique is feasible and safe at the recommended doses.
Collapse
Affiliation(s)
- Gabriella Macchia
- 1 Radiotherapy Unit, Department of Oncology, "John Paul II" Foundation, Catholic University, Campobasso, Italy
| | - Savino Cilla
- 2 Medical Physics Unit, "John Paul II" Foundation, Catholic University, Campobasso, Italy
| | - Francesco Deodato
- 1 Radiotherapy Unit, Department of Oncology, "John Paul II" Foundation, Catholic University, Campobasso, Italy
| | - Francesco Legge
- 3 Gynecologic Oncology Unit, Department of Oncology, "John Paul II" Foundation, Catholic University, Campobasso, Italy
| | - Aida Di Stefano
- 3 Gynecologic Oncology Unit, Department of Oncology, "John Paul II" Foundation, Catholic University, Campobasso, Italy
| | - Vito Chiantera
- 3 Gynecologic Oncology Unit, Department of Oncology, "John Paul II" Foundation, Catholic University, Campobasso, Italy
| | - Giovanni Scambia
- 4 Department of Obstetrics and Gynecology, "A. Gemelli" Hospital, Catholic University, Rome, Italy
| | - Vincenzo Valentini
- 5 Department of Radiotherapy, "A. Gemelli" Hospital, Catholic University, Rome, Italy
| | - Alessio G Morganti
- 6 Radiation Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine, DIMES University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Gabriella Ferrandina
- 4 Department of Obstetrics and Gynecology, "A. Gemelli" Hospital, Catholic University, Rome, Italy
| |
Collapse
|
31
|
Abstract
AbstractPurposeIn this work, dosimetric properties of the PTW Octavius detector in and out of the irradiation field have been evaluated. The 2D array of ion chambers has the potential to simplify the linear accelerator QA and pre-treatment verification.Materials and methodsThe evaluation was performed using customised written codes in Matlab and SPSS software for statistical analysis.ResultsExperiments indicate that the reproducibility and stability of the measurements were excellent; the detector showed the same signal with a maximum deviation of <0·5% in the short and long term. Comparisons of the ion chamber with the detector showed the same results with a maximum deviation of ~0·1%. As the detector response is linear with the dose, it can be used for the measurement at regions of high-dose gradient effectively. Logarithmic regression y=0·127 ln(x)+0·729 for detector signal and field size changes yielded a coefficient of determination of 0·997. The dose value decreases with increase in source-to-surface distance, which was modelled using a binomial regression with a coefficient of determination of 0·998 that agrees with the ionisation chamber measurement within 1%.ConclusionOn the basis of the measurements and comparisons performed, this system is a reliable and accurate dosimeter for quality assurance in radiotherapy.
Collapse
|
32
|
Petasecca M, Newall MK, Booth JT, Duncan M, Aldosari AH, Fuduli I, Espinoza AA, Porumb CS, Guatelli S, Metcalfe P, Colvill E, Cammarano D, Carolan M, Oborn B, Lerch MLF, Perevertaylo V, Keall PJ, Rosenfeld AB. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy. Med Phys 2015; 42:2992-3004. [DOI: 10.1118/1.4921126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
Stambaugh C, Nelms B, Wolf T, Mueller R, Geurts M, Opp D, Moros E, Zhang G, Feygelman V. Measurement-guided volumetric dose reconstruction for helical tomotherapy. J Appl Clin Med Phys 2015; 16:5298. [PMID: 26103199 PMCID: PMC5690083 DOI: 10.1120/jacmp.v16i2.5298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/23/2022] Open
Abstract
It was previously demonstrated that dose delivered by a conventional linear accelerator using IMRT or VMAT can be reconstructed - on patient or phantom datasets - using helical diode array measurements and a technique called planned dose perturbation (PDP). This allows meaningful and intuitive analysis of the agreement between the planned and delivered dose, including direct comparison of the dose-volume histograms. While conceptually similar to modulated arc techniques, helical tomotherapy introduces significant challenges to the PDP formalism, arising primarily from TomoTherapy delivery dynamics. The temporal characteristics of the delivery are of the same order or shorter than the dosimeter's update interval (50 ms). Additionally, the prevalence of often small and complex segments, particularly with the 1 cm Y jaw setting, lead to challenges related to detector spacing. Here, we present and test a novel method of tomotherapy-PDP (TPDP) designed to meet these challenges. One of the novel techniques introduced for TPDP is organization of the subbeams into larger subunits called sectors, which assures more robust synchronization of the measurement and delivery dynamics. Another important change is the optional application of a correction based on ion chamber (IC) measurements in the phantom. The TPDP method was validated by direct comparisons to the IC and an independent, biplanar diode array dosimeter previously evaluated for tomotherapy delivery quality assurance. Nineteen plans with varying complexity were analyzed for the 2.5 cm tomotherapy jaw setting and 18 for the 1 cm opening. The dose differences between the TPDP and IC were 1.0% ± 1.1% and 1.1% ± 1.1%, for 2.5 and 1.0 cm jaw plans, respectively. Gamma analysis agreement rates between TPDP and the independent array were: 99.1%± 1.8% (using 3% global normalization/3 mm criteria) and 93.4% ± 7.1% (using 2% global/2 mm) for the 2.5 cm jaw plans; for 1 cm plans, they were 95.2% ± 6.7% (3% G/3) and 83.8% ± 12% (2% G/2). We conclude that TPDP is capable of volumetric dose reconstruction with acceptable accuracy. However, the challenges of fast tomotherapy delivery dynamics make TPDP less precise than the IMRT/VMAT PDP version, particularly for the 1 cm jaw setting.
Collapse
|
34
|
Van Esch A, Basta K, Evrard M, Ghislain M, Sergent F, Huyskens DP. The Octavius1500 2D ion chamber array and its associated phantoms: Dosimetric characterization of a new prototype. Med Phys 2014; 41:091708. [DOI: 10.1118/1.4892178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
35
|
Townson RW, Zavgorodni S. Pre-treatment radiotherapy dose verification using Monte Carlo doselet modulation in a spherical phantom. Phys Med Biol 2014; 59:1923-34. [DOI: 10.1088/0031-9155/59/8/1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Markovic M, Stathakis S, Mavroidis P, Jurkovic IA, Papanikolaou N. Characterization of a two-dimensional liquid-filled ion chamber detector array used for verification of the treatments in radiotherapy. Med Phys 2014; 41:051704. [DOI: 10.1118/1.4870439] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
Hauri P, Verlaan S, Graydon S, Ahnen L, Klöck S, Lang S. Clinical evaluation of an anatomy-based patient specific quality assurance system. J Appl Clin Med Phys 2014; 15:4647. [PMID: 24710453 PMCID: PMC5875461 DOI: 10.1120/jacmp.v15i2.4647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/03/2013] [Accepted: 11/27/2013] [Indexed: 11/23/2022] Open
Abstract
The Delta(4DVH) Anatomy 3D quality assurance (QA) system (ScandiDos), which converts the measured detector dose into the dose distribution in the patient geometry was evaluated. It allows a direct comparison of the calculated 3D dose with the measured back-projected dose. In total, 16 static and 16 volumetric-modulated arc therapy (VMAT) fields were planned using four different energies. Isocenter dose was measured with a pinpoint chamber in homogeneous phantoms to investigate the dose prediction by the Delta(4DVH) Anatomy algorithm for static fields. Dose distributions of VMAT fields were measured using GAFCHROMIC film. Gravitational gantry errors up to 10° were introduced into all VMAT plans to study the potential of detecting errors. Additionally, 20 clinical treatment plans were verified. For static fields, the Delta(4DVH) Anatomy predicted the isocenter dose accurately, with a deviation to the measured phantom dose of 1.1% ± 0.6%. For VMAT fields the predicted Delta(4DVH) Anatomy dose in the isocenter plane corresponded to the measured dose in the phantom, with an average gamma agreement index (GAI) (3 mm/3%) of 96.9± 0.4%. The Delta(4DVH) Anatomy detected the induced systematic gantry error of 10° with a relative GAI (3 mm/3%) change of 5.8% ± 1.6%. The conventional Delta(4PT) QA system detected a GAI change of 4.2%± 2.0%. The conventional Delta(4PT) GAI (3 mm/3%) was 99.8% ± 0.4% for the clinical treatment plans. The mean body and PTV-GAI (3 mm/5%) for the Delta(4DVH) Anatomy were 96.4% ± 2.0% and 97.7%± 1.8%; however, this dropped to 90.8%± 3.4% and 87.1% ± 4.1% for passing criteria of 3 mm/3%. The anatomy-based patient specific quality assurance system predicts the dose distribution correctly for a homogeneous case. The limiting factor for the error detection is the large variability in the error-free plans. The dose calculation algorithm is inferior to that used in the TPS (Eclipse).
Collapse
|
38
|
Watanabe Y, Nakaguchi Y. 3D evaluation of 3DVH program using BANG3 polymer gel dosimeter. Med Phys 2014; 40:082101. [PMID: 23927338 DOI: 10.1118/1.4813301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE With the recent introduction of intensity modulated arc therapy techniques, there is an increasing need for validation of treatment delivery in three-dimensional (3D) space. A commercial dosimetry device ArcCHECK™ (Sun Nuclear Corporation, Melbourne, FL, USA) can be used in conjunction with 3DVH program. With this system, one can reconstruct the 3D dose distribution produced in the actual patient. In this work the authors evaluate the relative accuracy of the ArcCHECK™-3DVH system using BANG3 (MGS Research, Guilford, CT, USA) polymer gel dosimeter. METHODS About 15-cm diameter and 20-cm long cylindrical phantoms filled with BANG3 was used to simulate a patient, to which a volumetrically modulated arc therapy plan was created with Pinnacle3 treatment planning software (Philips Healthcare, Andover, MA, USA). The plan (76 Gy total in 38 fractions) was designed for prostate radiotherapy using a 6 MV photon beam from an Elekta Synergy linear accelerator (Elekta AB, Stockholm, Sweden). The treatment was delivered to the simulated patient. The same plan was used to irradiate an ArcCHECK™ device with an insert plug. The point dose at the isocenter was measured using a Farmer-type ionization chamber. The measured dose data were imported into the 3DVH program, which generated the 3D dose distributions projected onto the simulated patient. The dose data recorded in the polymer gel were read out using a MRI scanner and the 3D dose distribution delivered to the simulated patient was analyzed and compared with those from the 3DVH program and the Pinnacle3 software. The comparison was accomplished by using the gamma index, overlaying the isodose lines for a set of data on selected planes, and computing dose-volume histogram of structures. RESULTS The dose at the center of the ArcCHECK™ device measured with an ionization chamber was 1.82% lower than the dose predicted by Pinnacle3. The 3D dose distribution generated by Pinnacle3 was compared with those obtained by the ArcCHECK™-3DVH system and BANG3. The gamma passing rates for criteria of 3% dose difference, 3 mm distance-to-agreement, and 25% lower dose threshold were 99.1% for the former and 95.7% for the latter. The mean and maximum PTV doses estimated by the 3DVH were 74.0 and 79.3 Gy in comparison to 74.4 and 76.5 Gy with Pinnacle3. Those values for BANG3 measurements were 74.7 and 79.5 Gy. The mean doses to rectum were 40.2, 39.8, and 38.8 Gy for Pinnacle3, 3DVH, and BANG3, whereas the mean doses to the bladder were 26.7, 25.7, and 21.7 Gy, respectively. CONCLUSIONS The ArcCHECK™-3DVH system provides an accurate estimation of 3D dose distribution in an actual patient within a clinically meaningful tolerance level. However, both 3DVH and BANG3 showed two noticeable differences from Pinnacle3. First, the measured dose throughout the PTV region was less uniform than Pinnacle3. Second, the dose gradient at the interface between PTV and rectum was steeper than Pinnacle3 prediction. Further investigation may be able to identify the cause for these findings.
Collapse
Affiliation(s)
- Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, 420 Delaware Street Southeast, MMC-494, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
39
|
Quality assurance of Rapid Arc treatments: Performances and pre-clinical verifications of a planar detector (MapCHECK2). Phys Med 2014; 30:184-90. [DOI: 10.1016/j.ejmp.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/23/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
|
40
|
Macchia G, Cilla S, Morganti AG, Deodato F, Legge F, Piermattei A, Chiantera V, Scambia G, Valentini V, Ferrandina G. Adjuvant volumetric-modulated arc therapy with simultaneous integrated boost in endometrial cancer. Planning and toxicity comparison. Acta Oncol 2014; 53:251-8. [PMID: 24050516 DOI: 10.3109/0284186x.2013.819997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To report dosimetric and acute toxicity data in prospectively enrolled high-intermediate risk endometrial cancer (HIR-EC) patients postoperatively irradiated by simultaneous integrated boost volumetric modulated arc therapy (SIB-VMAT). METHODS Thirty prospectively enrolled HIR-EC patients were postoperatively treated by SIB-VMAT. Target coverage, dose homogeneity, and sparing of organs at risk (OARs) were compared with corresponding data retrieved from an historical control (30 consecutive selected matched patients) treated by concomitant boost three-dimensional conformal radiotherapy (3D CRT CB) from a previously published study (ADA-I trial). All patients received 45 Gy on pelvic lymph nodes plus 10 Gy boost on the vaginal vault. RESULTS The SIB-VMAT technique produced more inhomogeneous plans than 3D CRT CB, but showed significantly better conformity index (CIs) for both PTVs. SIB-VMAT was associated with significant reduction in the irradiated small bowel (SB) volume compared with 3D CRT CB for all dose range > 10 Gy (e.g. V15: 163.5 cm(3) vs. 341.3 cm(3), p = 0.001 and V40: 43.8 cm(3) vs. 85.2 cm(3), p = 0.008). With regard to bladder and rectum, SIB-VMAT showed a significant sparing advantage at all dose levels with respect to 3D CRT CB retrieved plans. Moreover, overall OARs Dmean were significantly reduced by the SIB-VMAT (p = 0.001). According to CTCAE v.4.0, acute (within three months) GI toxicities were more frequent in 3D CRT CB versus SIB-VMAT (90.0% vs. 66.7%; p-value 0.028). CONCLUSIONS Compared to data from a historical database of patients administered 3D CRT CB, SIB-VMAT significantly improves the dose conformity and sparing of OARs in HIR-EC patients undergoing postoperative radiotherapy. The improvement in terms of acute toxicity justifies further prospective clinical evaluation.
Collapse
Affiliation(s)
- Gabriella Macchia
- Radiotherapy Unit, Department of Oncology, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica del S. Cuore , Campobasso , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Feygelman V, Stambaugh C, Opp D, Zhang G, Moros EG, Nelms BE. Cross-validation of two commercial methods for volumetric high-resolution dose reconstruction on a phantom for non-coplanar VMAT beams. Radiother Oncol 2014; 110:558-61. [PMID: 24440044 DOI: 10.1016/j.radonc.2013.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE Delta(4) (ScandiDos AB, Uppsala, Sweden) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL, USA) are commercial quasi-three-dimensional diode dosimetry arrays capable of volumetric measurement-guided dose reconstruction. A method to reconstruct dose for non-coplanar VMAT beams with 3DVH is described. The Delta(4) 3D dose reconstruction on its own phantom for VMAT delivery has not been thoroughly evaluated previously, and we do so by comparison with 3DVH. MATERIALS AND METHODS Reconstructed volumetric doses for VMAT plans delivered with different table angles were compared between the Delta(4) and 3DVH using gamma analysis. RESULTS The average γ (2% local dose-error normalization/2mm) passing rate comparing the directly measured Delta(4) diode dose with 3DVH was 98.2 ± 1.6% (1SD). The average passing rate for the full volumetric comparison of the reconstructed doses on a homogeneous cylindrical phantom was 95.6 ± 1.5%. No dependence on the table angle was observed. CONCLUSIONS Modified 3DVH algorithm is capable of 3D VMAT dose reconstruction on an arbitrary volume for the full range of table angles. Our comparison results between different dosimeters make a compelling case for the use of electronic arrays with high-resolution 3D dose reconstruction as primary means of evaluating spatial dose distributions during IMRT/VMAT verification.
Collapse
Affiliation(s)
| | - Cassandra Stambaugh
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, USA; Department of Physics, University of South Florida, Tampa, USA
| | - Daniel Opp
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, USA
| | - Geoffrey Zhang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, USA
| | | |
Collapse
|
42
|
Cilla S, Deodato F, Digesù C, Macchia G, Picardi V, Ferro M, Sallustio G, De Spirito M, Piermattei A, Morganti AG. Assessing the feasibility of volumetric-modulated arc therapy using simultaneous integrated boost (SIB-VMAT): An analysis for complex head-neck, high-risk prostate and rectal cancer cases. Med Dosim 2013; 39:108-16. [PMID: 24342167 DOI: 10.1016/j.meddos.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/02/2013] [Accepted: 11/11/2013] [Indexed: 10/25/2022]
Abstract
Intensity-modulated radiotherapy (IMRT) allowed the simultaneous delivery of different doses to different target volumes within a single fraction, an approach called simultaneous integrated boost (SIB). As consequence, the fraction dose to the boost volume can be increased while keeping low doses to the elective volumes, and the number of fractions and overall treatment time will be reduced, translating into better radiobiological effectiveness. In recent years, volumetric-modulated arc therapy (VMAT) has been shown to provide similar plan quality with respect to fixed-field IMRT but with large reduction in treatment time and monitor units (MUs) number. However, the feasibility of VMAT when used with SIB strategy has few investigations to date. We explored the potential of VMAT in a SIB strategy for complex cancer sites. A total of 15 patients were selected, including 5 head-and-neck, 5 high-risk prostate, and 5 rectal cancer cases. Both a double-arc VMAT and a 7-field IMRT plan were generated for each case using Oncentra MasterPlan treatment planning system for an Elekta Precise linac. Dosimetric indexes for targets and organs at risk (OARs) were compared based on dose-volume histograms. Conformity index, homogeneity index, and dose-contrast index were used for target analyses. The equivalent uniform doses and the normal tissue complication probabilities were calculated for main OARs. MUs number and treatment time were analyzed to score treatment efficiency. Pretreatment dosimetry was performed using 2-dimensional (2D)-array dosimeter. SIB-VMAT plans showed a high level of fluence modulation needed for SIB treatments, high conformal dose distribution, similar target coverage, and a tendency to improve OARs sparing compared with the benchmark SIB-IMRT plans. The median treatment times reduced from 13 to 20 minutes to approximately 5 minutes for all cases with SIB-VMAT, with a MUs reduction up to 22.5%. The 2D-array ion-chambers' measurements reported an agreement of more than 95% for a criterion of 3% to 3mm. SIB-VMAT was able to combine the advantages of conventional SIB-IMRT with its highly conformal dose distribution and OARs sparing and the advantages of 3D-conformal radiotherapy with its fast delivery.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics Unit, Fondazione di ricerca e cura "Giovanni Paolo II," Università Cattolica del Sacro Cuore, Campobasso, Italy.
| | - Francesco Deodato
- Radiation Oncology Unit, Fondazione di ricerca e cura "Giovanni Paolo II," Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Cinzia Digesù
- Radiation Oncology Unit, Fondazione di ricerca e cura "Giovanni Paolo II," Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Fondazione di ricerca e cura "Giovanni Paolo II," Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Vincenzo Picardi
- Radiation Oncology Unit, Fondazione di ricerca e cura "Giovanni Paolo II," Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Marica Ferro
- Radiation Oncology Unit, Fondazione di ricerca e cura "Giovanni Paolo II," Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Giuseppina Sallustio
- Radiology Unit, Fondazione di ricerca e cura "Giovanni Paolo II," Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Marco De Spirito
- Physics Institute, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Piermattei
- Physics Institute, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio G Morganti
- Radiation Oncology Unit, Fondazione di ricerca e cura "Giovanni Paolo II," Università Cattolica del Sacro Cuore, Campobasso, Italy
| |
Collapse
|
43
|
Shin HJ, Song JH, Jung JY, Kwak YK, Kay CS, Kang YN, Choi BO, Jang HS, Son SH. Advantage of 3D volumetric dosemeter in delivery quality assurance of dynamic arc therapy: comparison of pencil beam and Monte Carlo calculations. Br J Radiol 2013; 86:20130353. [DOI: 10.1259/bjr.20130353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
Hussein M, Adams EJ, Jordan TJ, Clark CH, Nisbet A. A critical evaluation of the PTW 2D-ARRAY seven29 and OCTAVIUS II phantom for IMRT and VMAT verification. J Appl Clin Med Phys 2013; 14:4460. [PMID: 24257288 PMCID: PMC5714639 DOI: 10.1120/jacmp.v14i6.4460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/18/2013] [Accepted: 06/17/2013] [Indexed: 12/25/2022] Open
Abstract
Quality assurance (QA) for intensity- and volumetric-modulated radiotherapy (IMRT and VMAT) has evolved substantially. In recent years, various commercial 2D and 3D ionization chamber or diode detector arrays have become available, allowing for absolute verification with near real time results, allowing for streamlined QA. However, detector arrays are limited by their resolution, giving rise to concerns about their sensitivity to errors. Understanding the limitations of these devices is therefore critical. In this study, the sensitivity and resolution of the PTW 2D-ARRAY seven29 and OCTAVIUS II phantom combination was comprehensively characterized for use in dynamic sliding window IMRT and RapidArc verification. Measurement comparisons were made between single acquisition and a multiple merged acquisition techniques to improve the effective resolution of the 2D-ARRAY, as well as comparisons against GAFCHROMIC EBT2 film and electronic portal imaging dosimetry (EPID). The sensitivity and resolution of the 2D-ARRAY was tested using two gantry angle 0° modulated test fields. Deliberate multileaf collimator (MLC) errors of 1, 2, and 5 mm and collimator rotation errors were inserted into IMRT and RapidArc plans for pelvis and head & neck sites, to test sensitivity to errors. The radiobiological impact of these errors was assessed to determine the gamma index passing criteria to be used with the 2D-ARRAY to detect clinically relevant errors. For gamma index distributions, it was found that the 2D-ARRAY in single acquisition mode was comparable to multiple acquisition modes, as well as film and EPID. It was found that the commonly used gamma index criteria of 3% dose difference or 3 mm distance to agreement may potentially mask clinically relevant errors. Gamma index criteria of 3%/2 mm with a passing threshold of 98%, or 2%/2 mm with a passing threshold of 95%, were found to be more sensitive. We suggest that the gamma index passing thresholds may be used for guidance, but also should be combined with a visual inspection of the gamma index distribution and calculation of the dose difference to assess whether there may be a clinical impact in failed regions.
Collapse
Affiliation(s)
- Mohammad Hussein
- Royal Surrey County Hospital NHS Foundation Trust, University of Surrey.
| | | | | | | | | |
Collapse
|
45
|
A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems. Radiother Oncol 2013; 109:370-6. [PMID: 24100148 DOI: 10.1016/j.radonc.2013.08.048] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/26/2013] [Accepted: 08/31/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE To investigate the variability of the global gamma index (γ) analysis in various commercial IMRT/VMAT QA systems and to assess the impact of measurement with low resolution detector arrays on γ. MATERIALS Five commercial QA systems (PTW 2D-Array, Scandidos Delta4, SunNuclear ArcCHECK, Varian EPID, and Gafchromic EBT2 film) were investigated. The response of γ analysis to deliberately introduced errors in pelvis and head & neck IMRT and RapidArc™ plans was evaluated in each system. A theoretical γ was calculated in each commercial QA system software (PTW Verisoft, Delta4 software, SNC Patient, Varian Portal Dosimetry and IBA OmniPro, respectively), using treatment planning system resolution virtual measurements and compared to an independent calculation. Error-induced plans were measured on a linear accelerator and were evaluated against the error-free dose distribution calculated using Varian Eclipse™ in the relevant phantom CT scan. In all cases, global γ was used with a 20% threshold relative to a point selected in a high dose and low gradient region. The γ based on measurement was compared against the theoretical to evaluate the response of each system. RESULTS There was statistically good agreement between the predicted γ based on the virtual measurements from each software (concordance correlation coefficient, ρc>0.92) relative to the independent prediction in all cases. For the actual measured data, the agreement with the predicted γ reduces with tightening passing criteria and the variability between the different systems increases. This indicates that the detector array configuration and resolution have greater impact on the experimental calculation of γ due to under-sampling of the dose distribution, blurring effects, noise, or a combination. CONCLUSIONS It is important to understand the response and limitations of the gamma index analysis combined with the equipment in use. For the same pass-rate criteria, different devices and software combinations exhibit varying levels of agreement with the predicted γ analysis.
Collapse
|
46
|
Fredh A, Scherman JB, Fog LS, Munck af Rosenschöld P. Patient QA systems for rotational radiation therapy: a comparative experimental study with intentional errors. Med Phys 2013; 40:031716. [PMID: 23464311 DOI: 10.1118/1.4788645] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of the present study was to investigate the ability of commercial patient quality assurance (QA) systems to detect linear accelerator-related errors. METHODS Four measuring systems (Delta(4®), OCTAVIUS(®), COMPASS, and Epiqa™) designed for patient specific quality assurance for rotational radiation therapy were compared by measuring four clinical rotational intensity modulated radiation therapy plans as well as plans with introduced intentional errors. The intentional errors included increasing the number of monitor units, widening of the MLC banks, and rotation of the collimator. The measurements were analyzed using the inherent gamma evaluation with 2% and 2 mm criteria and 3% and 3 mm criteria. When applicable, the plans with intentional errors were compared with the original plans both by 3D gamma evaluation and by inspecting the dose volume histograms produced by the systems. RESULTS There was considerable variation in the type of errors that the various systems detected; the failure rate for the plans with errors varied between 0% and 72%. When using 2% and 2 mm criteria and 95% as a pass rate the Delta(4®) detected 15 of 20 errors, OCTAVIUS(®) detected 8 of 20 errors, COMPASS detected 8 of 20 errors, and Epiqa™ detected 20 of 20 errors. It was also found that the calibration and measuring procedure could benefit from improvements for some of the patient QA systems. CONCLUSIONS The various systems can detect various errors and the sensitivity to the introduced errors depends on the plan. There was poor correlation between the gamma evaluation pass rates of the QA procedures and the deviations observed in the dose volume histograms.
Collapse
Affiliation(s)
- Anna Fredh
- Department of Radiation Oncology, Radiation Medicine Research Center, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
47
|
Aitkenhead AH, Rowbottom CG, Mackay RI. Marvin: an anatomical phantom for dosimetric evaluation of complex radiotherapy of the head and neck. Phys Med Biol 2013; 58:6915-29. [PMID: 24029583 DOI: 10.1088/0031-9155/58/19/6915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
McGarry CK, O'Connell BF, Grattan MWD, Agnew CE, Irvine DM, Hounsell AR. Octavius 4D characterization for flattened and flattening filter free rotational deliveries. Med Phys 2013; 40:091707. [PMID: 24007140 DOI: 10.1118/1.4817482] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Conor K McGarry
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, BT9 7AB Northern Ireland.
| | | | | | | | | | | |
Collapse
|
49
|
Poppe B, Stelljes TS, Looe HK, Chofor N, Harder D, Willborn K. Performance parameters of a liquid filled ionization chamber array. Med Phys 2013; 40:082106. [PMID: 23927343 DOI: 10.1118/1.4816298] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- B Poppe
- Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Stathakis S, Myers P, Esquivel C, Mavroidis P, Papanikolaou N. Characterization of a novel 2D array dosimeter for patient-specific quality assurance with volumetric arc therapy. Med Phys 2013; 40:071731. [PMID: 23822435 DOI: 10.1118/1.4812415] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sotirios Stathakis
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | | | | | |
Collapse
|