1
|
Youssef Baby L, Bedran RS, Doumit A, El Hassan RH, Maalouf N. Past, present, and future of electrical impedance tomography and myography for medical applications: a scoping review. Front Bioeng Biotechnol 2024; 12:1486789. [PMID: 39726983 PMCID: PMC11670078 DOI: 10.3389/fbioe.2024.1486789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024] Open
Abstract
This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both. Ag/AgCl electrodes are prevalent, and current injection is preferred over voltage injection due to better resistance to electrode wear and impedance changes. Advances in digital processing and integrated circuits have shifted EIM and EIT toward digital acquisition, using voltage-controlled current sources (VCCSs) that support multiple frequencies. The review details powerful processing algorithms and reconstruction tools for EIT and EIM, examining their strengths and weaknesses. It also summarizes commercial devices and clinical applications: EIT is effective for detecting cancerous tissue and monitoring pulmonary issues, while EIM is used for neuromuscular disease detection and monitoring. The role of machine learning and deep learning in advancing diagnosis, treatment planning, and monitoring is highlighted. This review provides a roadmap for researchers on device evolution, algorithms, reconstruction tools, and datasets, offering clinicians and researchers information on commercial devices and clinical studies for effective use and innovative research.
Collapse
Affiliation(s)
- Lea Youssef Baby
- Electrical and Computer Engineering Department, Lebanese American University, Byblos, Lebanon
| | - Ryan Sam Bedran
- Electrical and Computer Engineering Department, Lebanese American University, Byblos, Lebanon
| | - Antonio Doumit
- Electrical and Computer Engineering Department, Lebanese American University, Byblos, Lebanon
| | - Rima H. El Hassan
- Electrical and Computer Engineering Department, Lebanese American University, Byblos, Lebanon
- Biomedial Engineering Department, SciNeurotech Lab, Polytechnique Montréal, Montréal, QC, Canada
| | - Noel Maalouf
- Electrical and Computer Engineering Department, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
2
|
Cheon SI, Kweon SJ, Kim Y, Koo J, Ha S, Je M. An Impedance Readout IC with Ratio-Based Measurement Techniques for Electrical Impedance Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22041563. [PMID: 35214475 PMCID: PMC8876594 DOI: 10.3390/s22041563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/02/2023]
Abstract
This paper presents an error-tolerant and power-efficient impedance measurement scheme for bioimpedance acquisition. The proposed architecture measures the magnitude and the real part of the target complex impedance, unlike other impedance measurement architectures measuring either the real/imaginary components or the magnitude and phase. The phase information of the target impedance is obtained by using the ratio between the magnitude and the real components. This can allow for avoiding direct phase measurements, which require fast, power-hungry circuit blocks. A reference resistor is connected in series with the target impedance to compensate for the errors caused by the delay in the sinusoidal signal generator and the amplifier at the front. Moreover, an additional magnitude measurement path is connected to the reference resistor to cancel out the nonlinearity of the proposed system and enhance the settling speed of the low-pass filter by a ratio-based detection. Thanks to this ratio-based detection, the accuracy is enhanced by 30%, and the settling time is improved by 87.7% compared to the conventional single-path detection. The proposed integrated circuit consumes only 513 μW for a wide frequency range of 10 Hz to 1 MHz, with the maximum magnitude and phase errors of 0.3% and 2.1°, respectively.
Collapse
Affiliation(s)
- Song-I Cheon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.-I.C.); (Y.K.); (J.K.)
| | - Soon-Jae Kweon
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| | - Youngin Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.-I.C.); (Y.K.); (J.K.)
| | - Jimin Koo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.-I.C.); (Y.K.); (J.K.)
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
- Tandon School of Engineering, New York University, New York, NY 10003, USA
| | - Minkyu Je
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.-I.C.); (Y.K.); (J.K.)
| |
Collapse
|
3
|
Luo Y, Huang D, Huang ZY, Hsiai TK, Tai YC. An Ex Vivo Study of Outward Electrical Impedance Tomography (OEIT) for Intravascular Imaging. IEEE Trans Biomed Eng 2022; 69:734-745. [PMID: 34383642 PMCID: PMC8837386 DOI: 10.1109/tbme.2021.3104300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Atherosclerosis is a chronic immuno-inflammatory condition emerging in arteries and considered the cause of a myriad of cardiovascular diseases. Atherosclerotic lesion characterization through invasive imaging modalities is essential in disease evaluation and determining intervention strategy. Recently, electrical properties of the lesions have been utilized in assessing its vulnerability mainly owing to its capability to differentiate lipid content existing in the lesion, albeit with limited detection resolution. Electrical impedance tomography is the natural extension of conventional spectrometric measurement by incorporating larger number of interrogating electrodes and advanced algorithm to achieve imaging of target objects and thus provides significantly richer information. It is within this context that we develop Outward Electrical Impedance Tomography (OEIT), aimed at intravascular imaging for atherosclerotic lesion characterization. METHODS We utilized flexible electronics to establish the 32-electrode OEIT device with outward facing configuration suitable for imaging of vessels. We conducted comprehensive studies through simulation model and ex vivo setup to demonstrate the functionality of OEIT. RESULTS Quantitative characterization for OEIT regarding its proximity sensing and conductivity differentiation was achieved using well-controlled experimental conditions. Imaging capability for OEIT was further verified with phantom setup using porcine aorta to emulate in vivo environment. CONCLUSION We have successfully demonstrated a novel tool for intravascular imaging, OEIT, with unique advantages for atherosclerosis detection. SIGNIFICANCE This study demonstrates for the first time a novel electrical tomography-based platform for intravascular imaging, and we believe it paves the way for further adaptation of OEIT for intravascular detection in more translational settings and offers great potential as an alternative imaging tool for medical diagnosis.
Collapse
Affiliation(s)
| | | | | | - Tzung K. Hsiai
- Department of Bioengineering, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chong Tai
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Tan H, Rossa C. Electrical Impedance Tomography for Robot-Aided Internal Radiation Therapy. Front Bioeng Biotechnol 2021; 9:698038. [PMID: 34235139 PMCID: PMC8256893 DOI: 10.3389/fbioe.2021.698038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
High dose rate brachytherapy (HDR) is an internal based radiation treatment for prostate cancer. The treatment can deliver radiation to the site of dominant tumor growth within the prostate. Imaging methods to delineate the dominant tumor are imperative to ensure the maximum success of HDR. This paper investigates the feasibility of using electrical impedance tomography (EIT) as the main imaging modality during robot-aided internal radiation therapy. A procedure utilizing brachytherapy needles in order to perform EIT for the purpose of robot-aided prostate cancer imaging is proposed. It is known that cancerous tissue exhibits different conductivity than healthy tissue. Using this information, it is hypothesized that a conductivity map of the tissue can be used to locate and delineate cancerous nodules via EIT. Multiple experiments were conducted using eight brachytherapy needle electrodes. Observations indicate that the imaging procedure is able to observe differences in tissue conductivity in a setting that approximates transperineal HDR and confirm that brachytherapy needles can be used as electrodes for this purpose. The needles can access the tissue at a specific depth that traditional EIT surface electrodes cannot. The results indicate the feasibility of using brachytherapy needles for EIT for the purpose internal radiation therapy.
Collapse
Affiliation(s)
- Hao Tan
- Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
| | - Carlos Rossa
- Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
| |
Collapse
|
5
|
Pathiraja AA, Weerakkody RA, von Roon AC, Ziprin P, Bayford R. The clinical application of electrical impedance technology in the detection of malignant neoplasms: a systematic review. J Transl Med 2020; 18:227. [PMID: 32513179 PMCID: PMC7282098 DOI: 10.1186/s12967-020-02395-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/29/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Electrical impedance technology has been well established for the last 20 years. Recently research has begun to emerge into its potential uses in the detection and diagnosis of pre-malignant and malignant conditions. The aim of this study was to systematically review the clinical application of electrical impedance technology in the detection of malignant neoplasms. METHODS A search of Embase Classic, Embase and Medline databases was conducted from 1980 to 22/02/2018 to identify studies reporting on the use of bioimpedance technology in the detection of pre-malignant and malignant conditions. The ability to distinguish between tissue types was defined as the primary endpoint, and other points of interest were also reported. RESULTS 731 articles were identified, of which 51 reported sufficient data for analysis. These studies covered 16 different cancer subtypes in a total of 7035 patients. As the studies took various formats, a qualitative analysis of each cancer subtype's data was undertaken. All the studies were able to show differences in electrical impedance and/or related metrics between malignant and normal tissue. CONCLUSIONS Electrical impedance technology provides a novel method for the detection of malignant tissue, with large studies of cervical, prostate, skin and breast cancers showing encouraging results. Whilst these studies provide promising insights into the potential of this technology as an adjunct in screening, diagnosis and intra-operative margin assessment, customised development as well as multi-centre clinical trials need to be conducted before it can be reliably employed in the clinical detection of malignant tissue.
Collapse
Affiliation(s)
- Angela A. Pathiraja
- Department of Surgery and Cancer, Imperial College London, London, UK
- St Mary’s Hospital, 10th Floor QEQM Building, Paddington, London, W2 1NY UK
| | - Ruwan A. Weerakkody
- Department of Surgery and Cancer, Imperial College London, London, UK
- St Mary’s Hospital, 10th Floor QEQM Building, Paddington, London, W2 1NY UK
| | - Alexander C. von Roon
- Department of Surgery and Cancer, Imperial College London, London, UK
- St Mary’s Hospital, 10th Floor QEQM Building, Paddington, London, W2 1NY UK
| | - Paul Ziprin
- Department of Surgery and Cancer, Imperial College London, London, UK
- St Mary’s Hospital, 10th Floor QEQM Building, Paddington, London, W2 1NY UK
| | - Richard Bayford
- Department of Natural Sciences, Middlesex University, London, UK
- School of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT UK
| |
Collapse
|
6
|
Baghbani R, Moradi MH, Shadmehr MB. The Development of a Four-Electrode Bio-Impedance Sensor for Identification and Localization of Deep Pulmonary Nodules. Ann Biomed Eng 2018; 46:1079-1090. [PMID: 29687239 DOI: 10.1007/s10439-018-2032-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 11/26/2022]
Abstract
Identifying and localizing of deep pulmonary nodules are among the main challenges that thoracic surgeons face during operations, particularly in thoracoscopic procedures. To facilitate this, we have tried to introduce a non-invasive and safe method by measuring the lung electrical bio-impedance spectrum with a four-electrode array sensor. To study the feasibility of this method, since any change in the depth or diameter of the nodule in the lung tissue is not practical, we used the finite element modeling of the lung tissue and pulmonary nodule to allow changes in the depth and diameter of the nodule, as well as the distance in between the injection electrodes. Accordingly, a bio-impedance sensor was designed and fabricated. By measuring the electrical impedance spectrum of pulmonary tissues in four different specimens with a frequency band of 50 kHz to 5 MHz, 4 pulmonary nodules at four different depths were identified. The obtained bio-impedance spectrum from the lung surface showed that the magnitude and phase of electrical bio-impedance of the tumoral tissue at each frequency is smaller than that of the healthy tissue. In addition, the frequency characteristic varies in the Nyquist curves for tumoral and healthy lung tissues.
Collapse
Affiliation(s)
- Rasool Baghbani
- Department of Biomedical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Mohammad Hassan Moradi
- Department of Biomedical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran.
| | - Mohammad Behgam Shadmehr
- Department of Thoracic Surgery, Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
|
8
|
Murphy EK, Mahara A, Khan S, Hyams ES, Schned AR, Pettus J, Halter RJ. Comparative study of separation between ex vivo prostatic malignant and benign tissue using electrical impedance spectroscopy and electrical impedance tomography. Physiol Meas 2017; 38:1242-1261. [PMID: 28282026 DOI: 10.1088/1361-6579/aa660e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Currently no efficient and reliable technique exists to routinely assess surgical margins during a radical prostatectomy. Electrical impedance spectroscopy (EIS) has been reported as a potential technique to provide surgeons with real-time intraoperative margin assessment. In addition to providing a quantified measure of margin status, a co-registered electrical impedance tomography (EIT) image presented on a surgeon's workstation could add value to the margin assessment process. APPROACH To investigate this, we conducted a comparative study between EIS and EIT to evaluate the potential these technologies might have for margin assessment. EIS and EIT data was acquired from ex vivo human prostates using a multi-electrode endoscopic impedance acquisition probe. MAIN RESULTS EIS and EIT show good predictive performance with a 0.76 and 0.80 area-under-curve (AUC), respectively, when considering discrete frequencies only. A machine learning (ML) algorithm is implemented to combine features, which improves the AUCs of EIS and EIT to 0.84 and 0.85, respectively. Single-step EIT takes significantly less time to reconstruct than multi-step EIT, yet provides similarly accurate classification results, making the single-step approach a potential candidate for real-time margin assessment. While the ML-based approach clearly exhibits benefits as compared to the single feature assessment, the decision to use EIS versus EIT is unclear since each approach performs better for different subsets of tissue classifications. SIGNIFICANCE The results presented in this paper corroborate our previous studies and present the strongest evidence yet that an intraoperative-capable impedance probe can be used to distinguish benign from malignant prostate tissues. An in vivo study with a large cohort will be necessary to definitively determine the preferred approach and to show the clinical effectiveness of using this technology for margin assessment.
Collapse
Affiliation(s)
- Ethan K Murphy
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States of America
| | | | | | | | | | | | | |
Collapse
|
9
|
Sanchez B, Rutkove SB. Electrical Impedance Myography and Its Applications in Neuromuscular Disorders. Neurotherapeutics 2017; 14:107-118. [PMID: 27812921 PMCID: PMC5233633 DOI: 10.1007/s13311-016-0491-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electrical impedance myography (EIM) refers to the specific application of electrical bioimpedance techniques for the assessment of neuromuscular disorders. In EIM, a weak, high-frequency electrical current is applied to a muscle or muscle group of interest and the resulting voltages measured. Among its advantages, the technique can be used noninvasively across a variety of disorders and requires limited subject cooperation and evaluator training to obtain accurate and repeatable data. Studies in both animals and human subjects support its potential utility as a primary diagnostic tool, as well as a biomarker for clinical trial or individual patient use. This review begins by providing an overview of the current state and technological advances in electrical impedance myography and its specific application to the study of muscle. We then provide a summary of the clinical and preclinical applications of EIM for neuromuscular conditions, and conclude with an evaluation of ongoing research efforts and future developments.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Department of Neurology, Division of Neuromuscular Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Seward B Rutkove
- Department of Neurology, Division of Neuromuscular Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Mahara A, Khan S, Murphy EK, Schned AR, Hyams ES, Halter RJ. 3D Microendoscopic Electrical Impedance Tomography for Margin Assessment During Robot-Assisted Laparoscopic Prostatectomy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1590-1601. [PMID: 25730825 DOI: 10.1109/tmi.2015.2407833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Radially configured microendoscopic electrical impedance probes intended for intraoperative surgical margin assessment during robot-assisted laparoscopic prostatectomy (RALP) were examined through simulation, bench-top experimentation, and ex vivo tissue studies. Three probe designs with 8, 9, and 17 electrodes, respectively, were analyzed through finite element method based simulations. One mm diameter spherical inclusions ( σinclusion = 1 S/m) are positioned at various locations within a hemispherical background ( σbackground = 0.1 S/m) of radius 5 mm. An 8-electrode configuration is not able to localize the inclusion at these positions while 9 and 17-electrode configurations are able to accurately reconstruct the inclusion at maximum depth of 1 mm and 3 mm, respectively. All three probe designs were constructed and evaluated using saline phantoms and ex vivo porcine and human prostate tissues. The 17-electrode probe performed best in saline phantom studies, accurately reconstructing high contrast, 1-mm-diameter metal cylindrical inclusions in a saline bath ( σsaline = 0.1 S/m) with a position and area error of 0.46 mm and 0.84 mm2, respectively. Additionally, the 17-electrode probe was able to adequately distinguish cancerous from benign tissues in three ex vivo human prostates. Simulations, bench-top saline experiments, and ex vivo tissue sampling suggest that for intraoperative surgical margin assessment during RALP, the 17-electrode probe (as compared to an 8 and 9 electrode probe) will be necessary to provide sufficient accuracy and sensitivity.
Collapse
|
11
|
Krishnan K, Liu J, Kohli K. Feature-space assessment of electrical impedance tomography coregistered with computed tomography in detecting multiple contrast targets. Med Phys 2015; 41:061903. [PMID: 24877814 DOI: 10.1118/1.4873326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. METHODS EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance and diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. RESULTS In detecting distilled and normal saline water in bolus medium, EIT as a stand-alone imaging system showed contrast discrimination of 47%, while the CT imaging system showed a discrimination of only 1.5%. The structural similarity index measure showed a drop of 24% with EIT imaging compared to CT imaging. The average detectability measure for CT imaging was found to be 2.375 ± 0.19 before fusion. After complementing with EIT information, the detectability measure increased to 11.06 ± 2.04. Based on the feature metrics, the functional imaging quality of CT and EIT were found to be 2.29% and 86%, respectively, before fusion. Structural imaging quality was found to be 66% for CT and 16% for EIT. After fusion, functional imaging quality improved in CT imaging from 2.29% to 42% and the structural imaging quality of EIT imaging changed from 16% to 66%. The improvement in image quality was also observed in detecting objects of different sizes. CONCLUSIONS The authors found a significant improvement in the contrast detectability performance of CT imaging when complemented with functional imaging information from EIT. Along with the feature assessment metrics, the concept of complementing CT with EIT imaging can lead to an EIT/CT imaging modality which might fully utilize the functional imaging abilities of EIT imaging, thereby enhancing the quality of care in the areas of cancer diagnosis and radiotherapy treatment planning.
Collapse
Affiliation(s)
- Kalpagam Krishnan
- Department of Physics, BC Cancer Agency, Fraser Valley Centre, 13750 96th Avenue, Surrey, British Columbia V3V 1Z2, Canada
| | - Jeff Liu
- Department of Physics, BC Cancer Agency, Fraser Valley Centre, 13750 96th Avenue, Surrey, British Columbia V3V 1Z2, Canada
| | - Kirpal Kohli
- Department of Physics, BC Cancer Agency, Fraser Valley Centre, 13750 96th Avenue, Surrey, British Columbia V3V 1Z2, Canada
| |
Collapse
|
12
|
Wan Y, Borsic A, Hartov A, Halter R. Incorporating a biopsy needle as an electrode in transrectal electrical impedance imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:6220-6223. [PMID: 23367350 PMCID: PMC3725641 DOI: 10.1109/embc.2012.6347415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previous studies have shown that prostate cancer may be detected by a combined transrectal ultrasound and electrical impedance tomography imaging system. However, the sensitivity of the imaging system is limited due to very little current established in the far field distant from the probe surface. Consequently, biopsy needles are introduced to the imaging system to provide current paths in the distal regions. This study demonstrates that image sensitivity can be improved by incorporating the needle electrodes. A phantom experiment is presented to show that contrast to the background is enhanced by 17.4% when imaging with needle electrodes. Simulated reconstructions and some preliminary clinical data also suggest the sensitivity improvement. In summary, TREIT with needle electrodes in the tissue may have great potential in future clinical prostate cancer detection.
Collapse
Affiliation(s)
- Yuqing Wan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03766, USA.
| | | | | | | |
Collapse
|