1
|
Huber CM, Pavan TZ, Ullmann I, Heim C, Rupitsch SJ, Vossiek M, Alexiou C, Ermert H, Lyer S. A Review on Ultrasound-based Methods to Image the Distribution of Magnetic Nanoparticles in Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:210-234. [PMID: 39537544 DOI: 10.1016/j.ultrasmedbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention in biomedical engineering and imaging applications due to their unique magnetic and mechanical properties. With their high magnetization and small size, MNPs serve as excitation sources for magnetically heating to destroy tumors (magnetic hyperthermia) and magnetically controlled drug carriers in magnetic drug targeting. However, effectively visualizing the distribution of MNPs during research or potential clinical use with low-cost modalities remains a critical challenge. Although magnetic resonance imaging provides pre- and post-procedural imaging, it is considered to be high cost, and real-time imaging during clinical procedures is limited. In contrast, ultrasound-based imaging methods offer the advantage of providing the potential for immediate feedback during clinical use and are considered to be a low-cost modality. Ultrasound-based imaging techniques, including magnetomotive ultrasound, magnetoacoustic tomography, and thermoacoustic imaging, emerged as promising approaches for imaging the distribution of MNPs. These techniques offer the potential for real-time imaging, facilitating precise therapy monitoring. By exploring the strengths and limitations of various ultrasound-based imaging techniques for MNPs, this review seeks to provide comprehensive insights that can guide researchers in selecting suitable ultrasound-based modalities and inspire further advancements in this exciting field.
Collapse
Affiliation(s)
- Christian Marinus Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany; Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Theo Z Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Ingrid Ullmann
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Heim
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Stefan J Rupitsch
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Martin Vossiek
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Helmut Ermert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Liu H, Li Y, Liu G. Thermoacoustic tomography from magnetic nanoparticles by single-pulse magnetic field. Med Phys 2021; 49:521-531. [PMID: 34822174 DOI: 10.1002/mp.15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE A mechanism of single-pulse magnetic field (SMF) inducing magnetic nanoparticles (MNPs) to generate the thermoacoustic (TA) wave is proposed, and its feasibility is proved by simulation and experiment. METHODS According to the principle of dimensional consistency, it is proposed that the internal energy variation of MNPs under the adiabatic condition mainly stems from the accumulation of magnetization energy, which leads to the magnetothermal effect, and then the TA wave is excited by thermal expansion. The analytical model of the forward problem is derived based on the method of space-time separation. The magnetization curve of MNPs is obtained from Langevin theory, and a three-dimension simulation model based on the magnetization curve is established to analyze the generation process of the TA wave. In the Experimental section, a gel phantom with a 0.5 mm gap is prepared with the magnetic fluid injecting into the gap, and the cross-sectional image of the gel phantom is reconstructed by the image fusion algorithm based on B-scan imaging. RESULTS The simulation analysis shows that the generated TA signal can reflect the boundary information of the MNPs region, and when the MNPs are in the unsaturated magnetized region, the intensity of the TA signal is positively correlated with the concentration of MNPs. The B-scan imaging along the X-axis and Y-axis directions are obtained through the experimental data. After that, the phantom with 0.5 mm gap labeled by MNPs is faithfully reconstructed by combining image morphology processing and image fusion technology based on wavelet transform. CONCLUSIONS The results show that the TA tomography from MNPs by SMF uses MNPs as a contrast agent to reconstruct the size and shape of the marked phantom with submillimeter resolution, which is expected to reconstruct the image of the tumor labeled by MNPs in the future. However, it is also a certain challenge to use low-concentration MNPs to image in vivo.
Collapse
Affiliation(s)
- Hongjia Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Li
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoqiang Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Józefczak A, Kaczmarek K, Bielas R. Magnetic mediators for ultrasound theranostics. Theranostics 2021; 11:10091-10113. [PMID: 34815806 PMCID: PMC8581415 DOI: 10.7150/thno.62218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
The theranostics paradigm is based on the concept of combining therapeutic and diagnostic modalities into one platform to improve the effectiveness of treatment. Combinations of multiple modalities provide numerous medical advantages and are enabled by nano- and micron-sized mediators. Here we review recent advancements in the field of ultrasound theranostics and the use of magnetic materials as mediators. Several subdisciplines are described in detail, including controlled drug delivery and release, ultrasound hyperthermia, magneto-ultrasonic heating, sonodynamic therapy, magnetoacoustic imaging, ultrasonic wave generation by magnetic fields, and ultrasound tomography. The continuous progress and improvement in theranostic materials, methods, and physical computing models have created undeniable possibilities for the development of new approaches. We discuss the prospects of ultrasound theranostics and possible expansions of other studies to the theranostic context.
Collapse
Affiliation(s)
- Arkadiusz Józefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Katarzyna Kaczmarek
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, United Kingdom
| | - Rafał Bielas
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Piao D, Towner RA, Smith N, Chen WR. Erratum: Magneto-thermo-acoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis. Med. Phys. 40(6): p. 063301 (2013). Med Phys 2019; 46:4710. [PMID: 31625629 DOI: 10.1002/mp.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/05/2022] Open
Abstract
We correct one typographical error that has occurred in four equations in Med Phys, 2013. 40(6): p. 063301.
Collapse
Affiliation(s)
- Daqing Piao
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Imaging Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Imaging Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Wei R Chen
- Department of Engineering and Physics, University of Central Oklahoma, Edmond, Oklahoma, USA
| |
Collapse
|
5
|
Liu S, Zhang R, Zheng Z, Zheng Y. Electromagnetic⁻Acoustic Sensing for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3203. [PMID: 30248969 PMCID: PMC6210000 DOI: 10.3390/s18103203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022]
Abstract
This paper reviews the theories and applications of electromagnetic⁻acoustic (EMA) techniques (covering light-induced photoacoustic, microwave-induced thermoacoustic, magnetic-modulated thermoacoustic, and X-ray-induced thermoacoustic) belonging to the more general area of electromagnetic (EM) hybrid techniques. The theories cover excitation of high-power EM field (laser, microwave, magnetic field, and X-ray) and subsequent acoustic wave generation. The applications of EMA methods include structural imaging, blood flowmetry, thermometry, dosimetry for radiation therapy, hemoglobin oxygen saturation (SO₂) sensing, fingerprint imaging and sensing, glucose sensing, pH sensing, etc. Several other EM-related acoustic methods, including magnetoacoustic, magnetomotive ultrasound, and magnetomotive photoacoustic are also described. It is believed that EMA has great potential in both pre-clinical research and medical practice.
Collapse
Affiliation(s)
- Siyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Ruochong Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
6
|
Wissmeyer G, Pleitez MA, Rosenthal A, Ntziachristos V. Looking at sound: optoacoustics with all-optical ultrasound detection. LIGHT, SCIENCE & APPLICATIONS 2018; 7:53. [PMID: 30839640 PMCID: PMC6107019 DOI: 10.1038/s41377-018-0036-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 05/03/2023]
Abstract
Originally developed for diagnostic ultrasound imaging, piezoelectric transducers are the most widespread technology employed in optoacoustic (photoacoustic) signal detection. However, the detection requirements of optoacoustic sensing and imaging differ from those of conventional ultrasonography and lead to specifications not sufficiently addressed by piezoelectric detectors. Consequently, interest has shifted to utilizing entirely optical methods for measuring optoacoustic waves. All-optical sound detectors yield a higher signal-to-noise ratio per unit area than piezoelectric detectors and feature wide detection bandwidths that may be more appropriate for optoacoustic applications, enabling several biomedical or industrial applications. Additionally, optical sensing of sound is less sensitive to electromagnetic noise, making it appropriate for a greater spectrum of environments. In this review, we categorize different methods of optical ultrasound detection and discuss key technology trends geared towards the development of all-optical optoacoustic systems. We also review application areas that are enabled by all-optical sound detectors, including interventional imaging, non-contact measurements, magnetoacoustics, and non-destructive testing.
Collapse
Affiliation(s)
- Georg Wissmeyer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| | - Miguel A. Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| |
Collapse
|
7
|
Coene A, Crevecoeur G, Leliaert J, Dupré L. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements. Med Phys 2016; 42:5007-14. [PMID: 26328951 DOI: 10.1118/1.4927374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. METHODS To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. RESULTS The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of larger volumes can be obtained. The authors found that, by selectively exciting parts of the volume, the authors could increase the reconstruction quality even further while reducing the amount of measurements. Additionally, the inverse solution of this activation method degrades slower for increasing volumes. Finally, the methodology was applied to noisy EPR measurements: using the reduced EPR setup's symmetry and the partial activation method, an increase in reconstruction quality of ≈ 80% can be seen with a speedup of the measurements with 10%. CONCLUSIONS Applying the aforementioned requirements to the EPR setup and stabilizing the EPR measurements showed a tremendous increase in noise robustness, thereby making EPR a valuable method for quantitative imaging of multidimensional MNP distributions.
Collapse
Affiliation(s)
- A Coene
- Department of Electrical Energy, Systems and Automation, Ghent University, Zwijnaarde 9052, Belgium
| | - G Crevecoeur
- Department of Electrical Energy, Systems and Automation, Ghent University, Zwijnaarde 9052, Belgium
| | - J Leliaert
- Department of Electrical Energy, Systems and Automation, Ghent University, Zwijnaarde 9052, Belgium and Department of Solid State Sciences, Ghent University, Ghent 9000, Belgium
| | - L Dupré
- Department of Electrical Energy, Systems and Automation, Ghent University, Zwijnaarde 9052, Belgium
| |
Collapse
|
8
|
Kellnberger S, Rosenthal A, Myklatun A, Westmeyer GG, Sergiadis G, Ntziachristos V. Magnetoacoustic Sensing of Magnetic Nanoparticles. PHYSICAL REVIEW LETTERS 2016; 116:108103. [PMID: 27015511 DOI: 10.1103/physrevlett.116.108103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 06/05/2023]
Abstract
The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.
Collapse
Affiliation(s)
- Stephan Kellnberger
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, USA
- Chair for Biological Imaging, Technische Universität München, Trogerstraße 9, 81675 München, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
| | - Amir Rosenthal
- Chair for Biological Imaging, Technische Universität München, Trogerstraße 9, 81675 München, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
- Andrew and Erna Viterbi Faculty of Electrical Engineering, The Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ahne Myklatun
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
| | - Gil G Westmeyer
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Str. 22, 81675 München, Germany
| | - George Sergiadis
- Department of Electrical and Computer Engineering, Aristotle University, Egnatia Str., 54124 Thessaloniki, Greece
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, Technische Universität München, Trogerstraße 9, 81675 München, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
| |
Collapse
|
9
|
Gao F, Zheng Q, Zheng Y. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues. Med Phys 2014; 41:053302. [DOI: 10.1118/1.4871783] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|