1
|
Demirtaş CK, Can M, Karadeniz Ö, Çilengiroğlu ÖV, Ertay T, Kaya GÇ. Energy window optimization in bremsstrahlung imaging after Yttrium-90 microsphere therapy. Biomed Phys Eng Express 2024; 10:025028. [PMID: 38306962 DOI: 10.1088/2057-1976/ad25ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
In imaging of Yttrium-90 patients treated hepatic primary and metastatic cancers, bremsstrahlung photons produced in a wide energy range is used. However, the image quality depends on acquisition energy window. This research aimed energy window optimization for Yttrium-90 bremsstrahlung imaging and 48 patients with various types of cancer received radioembolization therapy were investigated. Patients were imaged using a GE Healthcare Optima NM/CT 640 series gamma camera system with a medium energy general-purpose (MEGP) collimator and planar images were acquired with 8 different energy windows in the 55-400 keV energy range. The data set, formed with the % FOV, contrast, and spatial resolution of image quality parameters calculated from these images, was statistically examined with ANOVA and Tukey tests. According to the visual evaluations and ANOVA/Tukey test results, it was statistically concluded that energy window of 90-110 keV is the optimal energy window while 60-400 keV energy ranges show the lowest image quality for Y-90 bremsstrahlung imaging.
Collapse
Affiliation(s)
- C Kayaş Demirtaş
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| | - M Can
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
- Program of Nuclear Medicine Techniques, Vocational School of Health Services, Dokuz Eylül University, 35330, İnciralti, İzmir, Turkey
| | - Ö Karadeniz
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
- Department of Physics, Faculty of Sciences, Dokuz Eylül University, 35390, Tınaztepe, Izmir, Turkey
| | - Ö Vupa Çilengiroğlu
- Department of Statistics, Faculty of Sciences, Dokuz Eylül University, 35390, Tınaztepe, Izmir, Turkey
| | - T Ertay
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
- Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylül University, 35340, Inciraltı, Izmir, Turkey
| | - G Çapa Kaya
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
- Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylül University, 35340, Inciraltı, Izmir, Turkey
| |
Collapse
|
2
|
Riveira-Martin M, Akhavanallaf A, Mansouri Z, Bianchetto Wolf N, Salimi Y, Ricoeur A, Mainta I, Garibotto V, López Medina A, Zaidi H. Predictive value of 99mTc-MAA-based dosimetry in personalized 90Y-SIRT planning for liver malignancies. EJNMMI Res 2023; 13:63. [PMID: 37395912 DOI: 10.1186/s13550-023-01011-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Selective internal radiation therapy with 90Y radioembolization aims to selectively irradiate liver tumours by administering radioactive microspheres under the theragnostic assumption that the pre-therapy injection of 99mTc labelled macroaggregated albumin (99mTc-MAA) provides an estimation of the 90Y microspheres biodistribution, which is not always the case. Due to the growing interest in theragnostic dosimetry for personalized radionuclide therapy, a robust relationship between the delivered and pre-treatment radiation absorbed doses is required. In this work, we aim to investigate the predictive value of absorbed dose metrics calculated from 99mTc-MAA (simulation) compared to those obtained from 90Y post-therapy SPECT/CT. RESULTS A total of 79 patients were analysed. Pre- and post-therapy 3D-voxel dosimetry was calculated on 99mTc-MAA and 90Y SPECT/CT, respectively, based on Local Deposition Method. Mean absorbed dose, tumour-to-normal ratio, and absorbed dose distribution in terms of dose-volume histogram (DVH) metrics were obtained and compared for each volume of interest (VOI). Mann-Whitney U-test and Pearson's correlation coefficient were used to assess the correlation between both methods. The effect of the tumoral liver volume on the absorbed dose metrics was also investigated. Strong correlation was found between simulation and therapy mean absorbed doses for all VOIs, although simulation tended to overestimate tumour absorbed doses by 26%. DVH metrics showed good correlation too, but significant differences were found for several metrics, mostly on non-tumoral liver. It was observed that the tumoral liver volume does not significantly affect the differences between simulation and therapy absorbed dose metrics. CONCLUSION This study supports the strong correlation between absorbed dose metrics from simulation and therapy dosimetry based on 90Y SPECT/CT, highlighting the predictive ability of 99mTc-MAA, not only in terms of mean absorbed dose but also of the dose distribution.
Collapse
Affiliation(s)
- Mercedes Riveira-Martin
- Genetic Oncology, Radiobiology and Radiointeraction Research Group, Galicia Sur Health Research Institute, Vigo, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Azadeh Akhavanallaf
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Zahra Mansouri
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Nicola Bianchetto Wolf
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Alexis Ricoeur
- Service of Radiology, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Ismini Mainta
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland
- Centre for Biomedical Imaging (CIBM), Geneva, Switzerland
- Geneva Neuroscience Centre, Geneva University, Geneva, Switzerland
| | - Antonio López Medina
- Department of Medical Physics and RP, Hospital do Meixoeiro (GALARIA), Vigo, Spain.
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, 1211, Geneva, Switzerland.
- Geneva Neuroscience Centre, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Jha AK, Bradshaw TJ, Buvat I, Hatt M, Kc P, Liu C, Obuchowski NF, Saboury B, Slomka PJ, Sunderland JJ, Wahl RL, Yu Z, Zuehlsdorff S, Rahmim A, Boellaard R. Nuclear Medicine and Artificial Intelligence: Best Practices for Evaluation (the RELAINCE Guidelines). J Nucl Med 2022; 63:1288-1299. [PMID: 35618476 PMCID: PMC9454473 DOI: 10.2967/jnumed.121.263239] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/11/2022] [Indexed: 01/26/2023] Open
Abstract
An important need exists for strategies to perform rigorous objective clinical-task-based evaluation of artificial intelligence (AI) algorithms for nuclear medicine. To address this need, we propose a 4-class framework to evaluate AI algorithms for promise, technical task-specific efficacy, clinical decision making, and postdeployment efficacy. We provide best practices to evaluate AI algorithms for each of these classes. Each class of evaluation yields a claim that provides a descriptive performance of the AI algorithm. Key best practices are tabulated as the RELAINCE (Recommendations for EvaLuation of AI for NuClear medicinE) guidelines. The report was prepared by the Society of Nuclear Medicine and Molecular Imaging AI Task Force Evaluation team, which consisted of nuclear-medicine physicians, physicists, computational imaging scientists, and representatives from industry and regulatory agencies.
Collapse
Affiliation(s)
- Abhinav K Jha
- Department of Biomedical Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri;
| | - Tyler J Bradshaw
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Irène Buvat
- LITO, Institut Curie, Université PSL, U1288 Inserm, Orsay, France
| | - Mathieu Hatt
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Prabhat Kc
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, Connecticut
| | | | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Maryland
| | - Piotr J Slomka
- Department of Imaging, Medicine, and Cardiology, Cedars-Sinai Medical Center, California
| | | | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri
| | - Zitong Yu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | | | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Canada; and
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers, Netherlands
| |
Collapse
|
4
|
Gulec SA, McGoron AJ. Radiomicrosphere Dosimetry: Principles and Current State of the Art. Semin Nucl Med 2022; 52:215-228. [DOI: 10.1053/j.semnuclmed.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
İnce C, Karadeniz Ö, Ertay T, Durak H. Collimator and energy window optimization for YTTRIUM-90 bremsstrahlung SPECT imaging. Appl Radiat Isot 2020; 167:109453. [PMID: 33039763 DOI: 10.1016/j.apradiso.2020.109453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
The optimal collimator and energy window for Yttrium-90 bremsstrahlung SPECT imaging was investigated in the study. Yttrium-90 images were acquired with a dual-head gamma camera, equipped with parallel hole collimators and 90Y vial for different energy windows ranging from 56 to 232 keV. Image quality parameters (sensitivity, %FOV, and S/B) were examined for the energy window and collimator combinations. It is concluded that the optimal SPECT imaging was achieved using FBP Method with a HEGP collimator and the energy window of 90-110 keV.
Collapse
Affiliation(s)
- Caner İnce
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| | - Özlem Karadeniz
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Physics, Faculty of Sciences, Dokuz Eylül University, 35390, Tınaztepe, İzmir, Turkey.
| | - Türkan Ertay
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| | - Hatice Durak
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| |
Collapse
|
6
|
Effect of ME Collimator Characteristic, Energy Window Width, and Reconstruction Algorithm Selection on Imaging Performance of Yttrium-90: Simulation Study. Nucl Med Mol Imaging 2019; 53:414-422. [DOI: 10.1007/s13139-019-00619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022] Open
|
7
|
Seo Y. Quantitative Imaging of Alpha-Emitting Therapeutic Radiopharmaceuticals. Nucl Med Mol Imaging 2019; 53:182-188. [PMID: 31231438 DOI: 10.1007/s13139-019-00589-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 11/24/2022] Open
Abstract
Targeted alpha therapy (TAT) is an active area of drug development as a highly specific and highly potent therapeutic modality that can be applied to many types of late-stage cancers. In order to properly evaluate its safety and efficacy, understanding biokinetics of alpha-emitting radiopharmaceuticals is essential. Quantitative imaging of alpha-emitting radiopharmaceuticals is often possible via imaging of gammas and positrons produced during complex decay chains of these radionuclides. Analysis of the complex decay chains for alpha-emitting radionuclides (Tb-149, At-211, Bi-212 (decayed from Pb-212), Bi-213, Ra-223, Ac-225, and Th-227) with relevance to imageable signals is attempted in this mini-review article. Gamma camera imaging, single-photon emission computed tomography, positron emission tomography, bremsstrahlung radiation imaging, Cerenkov luminescence imaging, and Compton cameras are briefly discussed as modalities for imaging alpha-emitting radiopharmaceuticals.
Collapse
Affiliation(s)
- Youngho Seo
- 1Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
- 2Department of Radiation Oncology, University of California, San Francisco, CA USA
- 3Bakar Computational Health Sciences Institute, University of California, San Francisco, CA USA
- UC Berkeley - UCSF Bioengineering Graduate Program, Berkeley and San Francisco, CA USA
- 5Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- 6UCSF Physics Research Laboratory, 185 Berry Street, Suite 350, San Francisco, CA 94143-0946 USA
| |
Collapse
|
8
|
Bouzekraoui Y, Bentayeb F, Asmi H, Bonutti F. Energy Window and Contrast Optimization for Single-photon Emission Computed Tomography Bremsstrahlung Imaging with Yttrium-90. Indian J Nucl Med 2019; 34:125-128. [PMID: 31040523 PMCID: PMC6481209 DOI: 10.4103/ijnm.ijnm_150_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose In yttrium-90 (Y-90) single-photon emission computed tomography (SPECT) imaging, the choice of the acquisition energy window is not trivial, due to the continuous and broad energy distribution of the bremsstrahlung photons. In this work, we investigate the effects of the energy windows on the image contrast to noise ratio (CNR), in order to select the optimal energy window for Y-90 imaging. Materials and Methods We used the Monte Carlo SIMIND code to simulate the Jaszczak phantom which consists of the six hot spheres filled with Y-90 and ranging from 9.5 to 31.8 mm in diameter. Siemens Symbia gamma camera fitted with a high-energy collimator was simulated. To evaluate the effect of the energy windows on the image contrast, five narrow and large energy windows were assessed. Results The optimal energy window obtained for Y-90 bremsstrahlung SPECT imaging was 120-150 keV. Furthermore, the results obtained for CNR indicate that the high detection is only for the three large spheres. Conclusion The optimization of energy window in Y-90 bremsstrahlung has the potential to improve the image quality.
Collapse
Affiliation(s)
- Youssef Bouzekraoui
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Farida Bentayeb
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Hicham Asmi
- Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
| | - Faustino Bonutti
- Department of Medical Physics, Academic Hospital of Udine, Udine, Italy
| |
Collapse
|
9
|
Siman W, Mikell JK, Kappadath SC. Practical reconstruction protocol for quantitative (90)Y bremsstrahlung SPECT/CT. Med Phys 2017; 43:5093. [PMID: 27587040 DOI: 10.1118/1.4960629] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To develop a practical background compensation (BC) technique to improve quantitative (90)Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. METHODS All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2-16 cm) positioned below a (90)Y source and set at different distances (15-35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar (90)Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical (90)Y images. RESULTS The authors found that the most appropriate imaging EW range was 90-125 keV. BC was modeled as 0.53× images in the EW of 310-410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. CONCLUSIONS The proposed EW-based BC model was developed for (90)Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity quantification compared to SPECT with AC only. The proposed methodology can readily be used to tailor (90)Y SPECT/CT acquisition and reconstruction protocols with different SPECT/CT systems for quantification and improved image quality in clinical settings.
Collapse
Affiliation(s)
- W Siman
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - J K Mikell
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - S C Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| |
Collapse
|
10
|
Ghaly M, Links JM, Frey EC. Collimator optimization and collimator-detector response compensation in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer. Phys Med Biol 2016; 61:2109-23. [PMID: 26894376 DOI: 10.1088/0031-9155/61/5/2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators used for MPS. When the IO-MM and CHO used a geometric or no model of the CDR, the optimal collimator shifted toward higher resolution than that obtained using the IO and the CHO with full CDR modeling. With the optimal collimator, the IO-MM and CHO using geometric modeling gave similar performance to full CDR modeling. Collimators with poorer resolution were optimal when CDR modeling was used. The agreement of rankings between the IO-MM and CHO confirmed that the IO-MM is useful for optimization tasks when model mismatch is present due to its substantially reduced computational burden compared to the CHO.
Collapse
Affiliation(s)
- Michael Ghaly
- The Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
11
|
Roshan HR, Mahmoudian B, Gharepapagh E, Azarm A, Pirayesh Islamian J. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study. Appl Radiat Isot 2016; 108:124-128. [PMID: 26720261 DOI: 10.1016/j.apradiso.2015.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/19/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022]
Abstract
Treatment efficacy of radioembolization using Yttrium-90 ((90)Y) microspheres is assessed by the (90)Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of (90)Y microspheres distribution. One of the main reasons of the poor image quality in (90)Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the (90)Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the (90)Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a (90)Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35-3.3mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for (90)Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3mm. Geometry of the ME parallel-hole collimator and energy window are indeed important indicators of the image quality in (90)Y bremsstrahlung imaging. The obtained optimal ME collimator and optimal energy window have the potential to improve the image contrast of (90)Y bremsstrahlung images. Subsequently, high quality (90)Y bremsstrahlung images can provide reliable estimate of the (90)Y microsphere activity distribution after radioembolization.
Collapse
Affiliation(s)
- Hoda Rezaei Roshan
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Department of Radiology, Radiotherapy and Nuclear Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Gharepapagh
- Department of Radiology, Radiotherapy and Nuclear Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Azarm
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Pirayesh Islamian
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Roshan HR, Azarm A, Mahmoudian B, Islamian JP. Advances in SPECT for Optimizing the Liver Tumors Radioembolization Using Yttrium-90 Microspheres. World J Nucl Med 2015; 14:75-80. [PMID: 26097416 PMCID: PMC4455176 DOI: 10.4103/1450-1147.157120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Radioembolization (RE) with Yttrium-90 ((90)Y) microspheres is an effective treatment for unresectable liver tumors. The activity of the microspheres to be administered should be calculated based on the type of microspheres. Technetium-99m macroaggregated albumin ((99m)Tc-MAA) single photon emission computed tomography/computed tomography (SPECT/CT) is a reliable assessment before RE to ensure the safe delivery of microspheres into the target. (90)Y bremsstrahlung SPECT imaging as a posttherapeutic assessment approach enables the reliable determination of absorbed dose, which is indispensable for the verification of treatment efficacy. This article intends to provide a review of the methods of optimizing (90)Y bremsstrahlung SPECT imaging to improve the treatment efficacy of liver tumor RE using (90)Y microspheres.
Collapse
Affiliation(s)
- Hoda Rezaei Roshan
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Azarm
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Department of Radiology, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Pirayesh Islamian
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Song YS, Paeng JC, Kim HC, Chung JW, Cheon GJ, Chung JK, Lee DS, Kang KW. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation With Treatment Efficacy. Medicine (Baltimore) 2015; 94:e945. [PMID: 26061323 PMCID: PMC4616469 DOI: 10.1097/md.0000000000000945] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by (99m)Tc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on (99m)Tc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on ⁹⁰Y-microsphere PET/CT is an effective method to predict treatment efficacy.
Collapse
Affiliation(s)
- Yoo Sung Song
- From the Department of Nuclear Medicine, Seoul National University Hospital (YSS, JCP, GJC, J-KC, DSL, KWK); Department of Nuclear Medicine, Seoul National University Bundang Hospital (YSS); and Department of Radiology, Seoul National University Hospital, Seoul, Korea (H-CK, JWC)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Theranostic Imaging of Yttrium-90. BIOMED RESEARCH INTERNATIONAL 2015; 2015:481279. [PMID: 26106608 PMCID: PMC4464848 DOI: 10.1155/2015/481279] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
Abstract
This paper overviews Yttrium-90 ((90)Y) as a theranostic and nuclear medicine imaging of (90)Y radioactivity with bremsstrahlung imaging and positron emission tomography. In addition, detection and optical imaging of (90)Y radioactivity using Cerenkov luminescence will also be reviewed. Methods and approaches for qualitative and quantitative (90)Y imaging will be briefly discussed. Although challenges remain for (90)Y imaging, continued clinical demand for predictive imaging response assessment and target/nontarget dosimetry will drive research and technical innovation to provide greater clinical utility of (90)Y as a theranostic agent.
Collapse
|
15
|
Ghaly M, Links JM, Frey E. Optimization of energy window and evaluation of scatter compensation methods in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer. J Med Imaging (Bellingham) 2015; 2:015502. [PMID: 26029730 PMCID: PMC4447606 DOI: 10.1117/1.jmi.2.1.015502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/03/2015] [Indexed: 11/14/2022] Open
Abstract
We used the ideal observer (IO) and IO with model mismatch (IO-MM) applied in the projection domain and an anthropomorphic channelized Hotelling observer (CHO) applied to reconstructed images to optimize the acquisition energy window width and to evaluate various scatter compensation methods in the context of a myocardial perfusion single-photon emission computed tomography (SPECT) defect detection task. The IO has perfect knowledge of the image formation process and thus reflects the performance with perfect compensation for image-degrading factors. Thus, using the IO to optimize imaging systems could lead to suboptimal parameters compared with those optimized for humans interpreting SPECT images reconstructed with imperfect or no compensation. The IO-MM allows incorporating imperfect system models into the IO optimization process. We found that with near-perfect scatter compensation, the optimal energy window for the IO and CHO was similar; in its absence, the IO-MM gave a better prediction of the optimal energy window for the CHO using different scatter compensation methods. These data suggest that the IO-MM may be useful for projectiondomain optimization when MM is significant and that the IO is useful when followed by reconstruction with good models of the image formation process.
Collapse
Affiliation(s)
- Michael Ghaly
- Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, United States
| | - Jonathan M. Links
- Johns Hopkins University, Department of Environmental Health Sciences, Baltimore, Maryland, United States
| | - Eric Frey
- Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, United States
| |
Collapse
|
16
|
Xu J, Tsui BMW. Quantifying the Importance of the Statistical Assumption in Statistical X-ray CT Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:61-73. [PMID: 24001989 DOI: 10.1109/tmi.2013.2280383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Statistical image reconstruction (SIR) is a promising approach to reducing radiation dose in clinical computerized tomography (CT) scans. Clinical CT scanners use energy-integrating detectors. The CT signal follows a compound Poisson distribution, its probability density function (PDF) does not have an analytical form hence cannot be used in an SIR method. The goal of this work is to quantify the effects of using an approximate statistical assumption in SIR methods for clinical CT applications. We apply a pseudo-Ideal Observer (pIO) to simulated CT projection data of the fanbeam geometry at different dose levels. The simulation models the polychromatic X-ray tube spectrum, the effects of the bowtie filter, and the energy-integrating detectors. The pIO uses a pseudo likelihood function (pLF) to calculate the pseudo likelihood ratio, which is the decision variable used by the pIO in a binary detection task. The pLF is an approximation to the true LF of the underlying data. The pIO has inferior performance than the IO unless the pLF coincides with the LF; this performance difference quantifies the closeness between the pseudo likelihood and the exact one. Using lesion detectability in a signal known exactly, background known exactly binary detection task as a figure-of-merit, our results show that at down to 0.1% of a reference tube current level I0, the pIO that uses a Poisson approximation, or a matched variance Gaussian approximation in either the transmission or the line integral domain, achieves 99% the performance of the IO. The constant variance Gaussian approximation has only 70%-80% of the IO performance. At tube currents lower than 0.1% I0, the performance difference is more substantial. We conclude that at current clinical dose levels, it is important to account for the mean-dependent variance in CT projection data in SIR problem formulation, the exact PDF of the CT signal is not as important.
Collapse
|
17
|
Rong X, Frey EC. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT. Med Phys 2013; 40:082504. [PMID: 23927349 PMCID: PMC3732303 DOI: 10.1118/1.4813297] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/01/2013] [Accepted: 06/23/2013] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. METHODS To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more general, the authors simulated multiple tumors of various sizes in the liver. The authors realistically simulated human anatomy using a digital phantom and the image formation process using a previously validated and computationally efficient method for modeling the image-degrading effects including object scatter, attenuation, and the full collimator-detector response (CDR). The scatter kernels and CDR function tables used in the modeling method were generated using a previously validated Monte Carlo simulation code. RESULTS The hole length, hole diameter, and septal thickness of the obtained optimal collimator were 84, 3.5, and 1.4 mm, respectively. Compared to a commercial high-energy general-purpose collimator, the optimal collimator improved the resolution and FOM by 27% and 18%, respectively. CONCLUSIONS The proposed collimator optimization method may be useful for improving quantitative SPECT imaging for radionuclides with complex energy spectra. The obtained optimal collimator provided a substantial improvement in quantitative performance for the microsphere radioembolization task considered.
Collapse
Affiliation(s)
- Xing Rong
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287-0859, USA.
| | | |
Collapse
|