1
|
Aootaphao S, Thongvigitmanee SS, Puttawibul P, Thajchayapong P. Truncation effect reduction for fast iterative reconstruction in cone-beam CT. BMC Med Imaging 2022; 22:160. [PMID: 36064374 PMCID: PMC9446701 DOI: 10.1186/s12880-022-00881-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Iterative reconstruction for cone-beam computed tomography (CBCT) has been applied to improve image quality and reduce radiation dose. In a case where an object’s actual projection is larger than a flat panel detector, CBCT images contain truncated data or incomplete projections, which degrade image quality inside the field of view (FOV). In this work, we propose truncation effect reduction for fast iterative reconstruction in CBCT imaging.
Methods The volume matrix size of the FOV and the height of projection images were extrapolated to a suitable size. These extended projections were reconstructed by fast iterative reconstruction. Moreover, a smoothing parameter for noise regularization in iterative reconstruction was modified to reduce the accumulated error while processing. The proposed work was evaluated by image quality measurements and compared with conventional filtered backprojection (FBP). To validate the proposed method, we used a head phantom for evaluation and preliminarily tested on a human dataset. Results In the experimental results, the reconstructed images from the head phantom showed enhanced image quality. In addition, fast iterative reconstruction can be run continuously while maintaining a consistent mean-percentage-error value for many iterations. The contrast-to-noise ratio of the soft-tissue images was improved. Visualization of low contrast in the ventricle and soft-tissue images was much improved compared to those from FBP using the same dose index of 5 mGy. Conclusions Our proposed method showed satisfactory performance to reduce the truncation effect, especially inside the FOV with better image quality for soft-tissue imaging. The convergence of fast iterative reconstruction tends to be stable for many iterations.
Collapse
Affiliation(s)
- Sorapong Aootaphao
- Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand. .,Medical Imaging System Research Team, Assistive Technology and Medical Devices Research Center, National Science and Technology Development Agency, Pathum Thani, Thailand.
| | - Saowapak S Thongvigitmanee
- Medical Imaging System Research Team, Assistive Technology and Medical Devices Research Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | | |
Collapse
|
2
|
Jacobson MW, Lehmann M, Huber P, Wang A, Myronakis M, Shi M, Ferguson D, Valencia-Lozano I, Hu YH, Baturin P, Harris T, Fueglistaller R, Williams C, Morf D, Berbeco R. Abbreviated on-treatment CBCT using roughness penalized mono-energization of kV-MV data and a multi-layer MV imager. Phys Med Biol 2021; 66:10.1088/1361-6560/abddd2. [PMID: 33472189 PMCID: PMC11103584 DOI: 10.1088/1361-6560/abddd2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
Simultaneous acquisition of cone beam CT (CBCT) projections using both the kV and MV imagers of an image guided radiotherapy system reduces set-up scan times-a benefit to lung cancer radiation oncology patients-but increases noise in the 3D reconstruction. In this article, we present a kV-MV scan time reduction technique that uses two noise-reducing measures to achieve superior performance. The first is a high-DQE multi-layer MV imager prototype. The second is a beam hardening correction algorithm which combines poly-energetic modeling with edge-preserving, regularized smoothing of the projections. Performance was tested in real acquisitions of the Catphan 604 and a thorax phantom. Percent noise was quantified from voxel values in a soft tissue volume of interest (VOI) while edge blur was quantified from a VOI straddling a boundary between air and soft material. Comparisons in noise/resolution performance trade-off were made between our proposed approach, a dose-equivalent kV-only scan, and a kV-MV reconstruction technique previously published by Yinet al(2005Med. Phys.329). The proposed technique demonstrated lower noise as a function of spatial resolution than the baseline kV-MV method, notably a 50% noise reduction at typical edge blur levels. Our proposed method also exhibited fainter non-uniformity artifacts and in some cases superior contrast. Overall, we find that the combination of a multi-layer MV imager, acquiring at a LINAC source energy of 2.5 MV, and a denoised beam hardening correction algorithm enables noise, resolution, and dose performance comparable to standard kV-imager only set-up CBCT, but with nearly half the gantry rotation time.
Collapse
Affiliation(s)
- Matthew W Jacobson
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, 02115, United States of America
| | | | - Pascal Huber
- Varian Medical Systems, Baden-Dattwil, CH-5405, Switzerland
| | - Adam Wang
- Varian Medical Systems, Palo Alto, CA, 94304-1030, United States of America
| | - Marios Myronakis
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, 02115, United States of America
| | - Mengying Shi
- Medical Physics Program, Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Dianne Ferguson
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, 02115, United States of America
| | - Ingrid Valencia-Lozano
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, 02115, United States of America
| | - Yue-Houng Hu
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, 02115, United States of America
| | - Paul Baturin
- Varian Medical Systems, Palo Alto, CA, 94304-1030, United States of America
| | - Tom Harris
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, 02115, United States of America
| | | | - Christopher Williams
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, 02115, United States of America
| | - Daniel Morf
- Varian Medical Systems, Baden-Dattwil, CH-5405, Switzerland
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, 02115, United States of America
| |
Collapse
|
3
|
Zhang H, Capaldi D, Zeng D, Ma J, Xing L. Prior-image-based CT reconstruction using attenuation-mismatched priors. Phys Med Biol 2021; 66:064007. [PMID: 33729997 DOI: 10.1088/1361-6560/abe760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prior-image-based reconstruction (PIBR) methods are powerful tools for reducing radiation doses and improving the image quality of low-dose computed tomography (CT). Apart from anatomical changes, prior and current images can also have different attenuations because they originated from different scanners or from the same scanner but with different x-ray beam qualities (e.g., kVp settings, beam filters) during data acquisition. In such scenarios, with attenuation-mismatched priors, PIBR is challenging. In this work, we investigate a specific PIBR method, called statistical image reconstruction, using normal-dose image-induced nonlocal means regularization (SIR-ndiNLM), to address PIBR with such attenuation-mismatched priors and achieve quantitative low-dose CT imaging. We propose two corrective schemes for the original SIR-ndiNLM method, (1) a global histogram-matching approach and (2) a local attenuation correction approach, to account for the attenuation differences between the prior and current images in PIBR. We validate the efficacy of the proposed schemes using images acquired from dual-energy CT scanners to simulate attenuation mismatches. Meanwhile, we utilize different CT slices to simulate anatomical mismatches or changes between the prior and the current low-dose image. We observe that the original SIR-ndiNLM introduces artifacts to the reconstruction when an attenuation-mismatched prior is used. Furthermore, we find that a larger attenuation mismatch between the prior and current images results in more severe artifacts in the SIR-ndiNLM reconstruction. Our two proposed corrective schemes enable SIR-ndiNLM to effectively handle the attenuation mismatch and anatomical changes between the two images and successfully eliminate the artifacts. We demonstrate that the proposed techniques permit SIR-ndiNLM to leverage the attenuation-mismatched prior and achieve quantitative low-dose CT reconstruction from both low-flux and sparse-view data acquisitions. This work permits robust and reliable PIBR for CT data acquired using different beam settings.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation Oncology, Stanford University School of Medicine, California, United States of America. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | | | | | | | | |
Collapse
|
4
|
Sisniega A, Stayman JW, Capostagno S, Weiss CR, Ehtiati T, Siewerdsen JH. Accelerated 3D image reconstruction with a morphological pyramid and noise-power convergence criterion. Phys Med Biol 2021; 66:055012. [PMID: 33477131 DOI: 10.1088/1361-6560/abde97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Model-based iterative reconstruction (MBIR) for cone-beam CT (CBCT) offers better noise-resolution tradeoff and image quality than analytical methods for acquisition protocols with low x-ray dose or limited data, but with increased computational burden that poses a drawback to routine application in clinical scenarios. This work develops a comprehensive framework for acceleration of MBIR in the form of penalized weighted least squares optimized with ordered subsets separable quadratic surrogates. The optimization was scheduled on a set of stages forming a morphological pyramid varying in voxel size. Transition between stages was controlled with a convergence criterion based on the deviation between the mid-band noise power spectrum (NPS) measured on a homogeneous region of the evolving reconstruction and that expected for the converged image, computed with an analytical model that used projection data and the reconstruction parameters. A stochastic backprojector was developed by introducing a random perturbation to the sampling position of each voxel for each ray in the reconstruction within a voxel-based backprojector, breaking the deterministic pattern of sampling artifacts when combined with an unmatched Siddon forward projector. This fast, forward and backprojector pair were included into a multi-resolution reconstruction strategy to provide support for objects partially outside of the field of view. Acceleration from ordered subsets was combined with momentum accumulation stabilized with an adaptive technique that automatically resets the accumulated momentum when it diverges noticeably from the current iteration update. The framework was evaluated with CBCT data of a realistic abdomen phantom acquired on an imaging x-ray bench and with clinical CBCT data from an angiography robotic C-arm (Artis Zeego, Siemens Healthineers, Forchheim, Germany) acquired during a liver embolization procedure. Image fidelity was assessed with the structural similarity index (SSIM) computed with a converged reconstruction. The accelerated framework provided accurate reconstructions in 60 s (SSIM = 0.97) and as little as 27 s (SSIM = 0.94) for soft-tissue evaluation. The use of simple forward and backprojectors resulted in 9.3× acceleration. Accumulation of momentum provided extra ∼3.5× acceleration with stable convergence for 6-30 subsets. The NPS-driven morphological pyramid resulted in initial faster convergence, achieving similar SSIM with 1.5× lower runtime than the single-stage optimization. Acceleration of MBIR to provide reconstruction time compatible with clinical applications is feasible via architectures that integrate algorithmic acceleration with approaches to provide stable convergence, and optimization schedules that maximize convergence speed.
Collapse
Affiliation(s)
- A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD United States of America
| | | | | | | | | | | |
Collapse
|
5
|
Wu P, Sheth N, Sisniega A, Uneri A, Han R, Vijayan R, Vagdargi P, Kreher B, Kunze H, Kleinszig G, Vogt S, Lo SF, Theodore N, Siewerdsen JH. C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT. Phys Med Biol 2020; 65:165012. [PMID: 32428891 PMCID: PMC8650760 DOI: 10.1088/1361-6560/ab9454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Metal artifacts present a challenge to cone-beam CT (CBCT) image-guided surgery, obscuring visualization of metal instruments and adjacent anatomy-often in the very region of interest pertinent to the imaging/surgical tasks. We present a method to reduce the influence of metal artifacts by prospectively defining an image acquisition protocol-viz., the C-arm source-detector orbit-that mitigates metal-induced biases in the projection data. The metal artifact avoidance (MAA) method is compatible with simple mobile C-arms, does not require exact prior information on the patient or metal implants, and is consistent with 3D filtered backprojection (FBP), more advanced (e.g. polyenergetic) model-based image reconstruction (MBIR), and metal artifact reduction (MAR) post-processing methods. The MAA method consists of: (i) coarse localization of metal objects in the field-of-view (FOV) via two or more low-dose scout projection views and segmentation (e.g. a simple U-Net) in coarse backprojection; (ii) model-based prediction of metal-induced x-ray spectral shift for all source-detector vertices accessible by the imaging system (e.g. gantry rotation and tilt angles); and (iii) identification of a circular or non-circular orbit that reduces the variation in spectral shift. The method was developed, tested, and evaluated in a series of studies presenting increasing levels of complexity and realism, including digital simulations, phantom experiment, and cadaver experiment in the context of image-guided spine surgery (pedicle screw implants). The MAA method accurately predicted tilted circular and non-circular orbits that reduced the magnitude of metal artifacts in CBCT reconstructions. Realistic distributions of metal instrumentation were successfully localized (0.71 median Dice coefficient) from 2-6 low-dose scout views even in complex anatomical scenes. The MAA-predicted tilted circular orbits reduced root-mean-square error (RMSE) in 3D image reconstructions by 46%-70% and 'blooming' artifacts (apparent width of the screw shaft) by 20-45%. Non-circular orbits defined by MAA achieved a further ∼46% reduction in RMSE compared to the best (tilted) circular orbit. The MAA method presents a practical means to predict C-arm orbits that minimize spectral bias from metal instrumentation. Resulting orbits-either simple tilted circular orbits or more complex non-circular orbits that can be executed with a motorized multi-axis C-arm-exhibited substantial reduction of metal artifacts in raw CBCT reconstructions by virtue of higher fidelity projection data, which are in turn compatible with subsequent MAR post-processing and/or polyenergetic MBIR to further reduce artifacts.
Collapse
Affiliation(s)
- P Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wu P, Sisniega A, Stayman JW, Zbijewski W, Foos D, Wang X, Khanna N, Aygun N, Stevens RD, Siewerdsen JH. Cone-beam CT for imaging of the head/brain: Development and assessment of scanner prototype and reconstruction algorithms. Med Phys 2020; 47:2392-2407. [PMID: 32145076 PMCID: PMC7343627 DOI: 10.1002/mp.14124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Our aim was to develop a high-quality, mobile cone-beam computed tomography (CBCT) scanner for point-of-care detection and monitoring of low-contrast, soft-tissue abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents an integrated framework of hardware and algorithmic advances for improving soft-tissue contrast resolution and evaluation of its technical performance with human subjects. METHODS Four configurations of a CBCT scanner prototype were designed and implemented to investigate key aspects of hardware (including system geometry, antiscatter grid, bowtie filter) and technique protocols. An integrated software pipeline (c.f., a serial cascade of algorithms) was developed for artifact correction (image lag, glare, beam hardening and x-ray scatter), motion compensation, and three-dimensional image (3D) reconstruction [penalized weighted least squares (PWLS), with a hardware-specific statistical noise model]. The PWLS method was extended in this work to accommodate multiple, independently moving regions with different resolution (to address both motion compensation and image truncation). Imaging performance was evaluated quantitatively and qualitatively with 41 human subjects in the neurosciences critical care unit (NCCU) at our institution. RESULTS The progression of four scanner configurations exhibited systematic improvement in the quality of raw data by variations in system geometry (source-detector distance), antiscatter grid, and bowtie filter. Quantitative assessment of CBCT images in 41 subjects demonstrated: ~70% reduction in image nonuniformity with artifact correction methods (lag, glare, beam hardening, and scatter); ~40% reduction in motion-induced streak artifacts via the multi-motion compensation method; and ~15% improvement in soft-tissue contrast-to-noise ratio (CNR) for PWLS compared to filtered backprojection (FBP) at matched resolution. Each of these components was important to improve contrast resolution for point-of-care cranial imaging. CONCLUSIONS This work presents the first application of a high-quality, point-of-care CBCT system for imaging of the head/ brain in a neurological critical care setting. Hardware configuration iterations and an integrated software pipeline for artifacts correction and PWLS reconstruction mitigated artifacts and noise to achieve image quality that could be valuable for point-of-care detection and monitoring of a variety of intracranial abnormalities, including ICH and hydrocephalus.
Collapse
Affiliation(s)
- P Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - J W Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - W Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - D Foos
- Carestream Health, Rochester, NY, 14608, USA
| | - X Wang
- Carestream Health, Rochester, NY, 14608, USA
| | - N Khanna
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - N Aygun
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - R D Stevens
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
7
|
Hsieh SS, Hoffman JM, Noo F. Accelerating iterative coordinate descent using a stored system matrix. Med Phys 2020; 46:e801-e809. [PMID: 31811796 DOI: 10.1002/mp.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The computational burden associated with model-based iterative reconstruction (MBIR) is still a practical limitation. Iterative coordinate descent (ICD) is an optimization approach for MBIR that has sometimes been thought to be incompatible with modern computing architectures, especially graphics processing units (GPUs). The purpose of this work is to accelerate the previously released open-source FreeCT_ICD to include GPU acceleration and to demonstrate computational performance with ICD that is comparable with simultaneous update approaches. METHODS FreeCT_ICD uses a stored system matrix (SSM), which precalculates the forward projector in the form of a sparse matrix and then reconstructs on a rotating coordinate grid to exploit helical symmetry. In our GPU ICD implementation, we shuffle the sinogram memory ordering such that data access in the sinogram coalesce into fewer transactions. We also update NS voxels in the xy-plane simultaneously to improve occupancy. Conventional ICD updates voxels sequentially (NS = 1). Using NS > 1 eliminates existing convergence guarantees. Convergence behavior in a clinical dataset was therefore studied empirically. RESULTS On a pediatric dataset with sinogram size of 736 × 16 × 13860 reconstructed to a matrix size of 512 × 512 × 128, our code requires about 20 s per iteration on a single GPU compared to 2300 s per iteration for a 6-core CPU using FreeCT_ICD. After 400 iterations, the proposed and reference codes converge within 2 HU RMS difference (RMSD). Using a wFBP initialization, convergence within 10 HU RMSD is achieved within 4 min. Convergence is similar with NS values between 1 and 256, and NS = 16 was sufficient to achieve maximum performance. Divergence was not observed until NS > 1024. CONCLUSIONS With appropriate modifications, ICD may be able to achieve computational performance competitive with simultaneous update algorithms currently used for MBIR.
Collapse
Affiliation(s)
- Scott S Hsieh
- Department of Radiological Sciences, UCLA, Los Angeles, CA, 90024, USA
| | - John M Hoffman
- Department of Radiological Sciences, UCLA, Los Angeles, CA, 90024, USA
| | - Frederic Noo
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
| |
Collapse
|
8
|
Wu J, Wang X, Mou X, Chen Y, Liu S. Low Dose CT Image Reconstruction Based on Structure Tensor Total Variation Using Accelerated Fast Iterative Shrinkage Thresholding Algorithm. SENSORS 2020; 20:s20061647. [PMID: 32188068 PMCID: PMC7146515 DOI: 10.3390/s20061647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Low dose computed tomography (CT) has drawn much attention in the medical imaging field because of its ability to reduce the radiation dose. Recently, statistical iterative reconstruction (SIR) with total variation (TV) penalty has been developed to low dose CT image reconstruction. Nevertheless, the TV penalty has the drawback of creating blocky effects in the reconstructed images. To overcome the limitations of TV, in this paper we firstly introduce the structure tensor total variation (STV1) penalty into SIR framework for low dose CT image reconstruction. Then, an accelerated fast iterative shrinkage thresholding algorithm (AFISTA) is developed to minimize the objective function. The proposed AFISTA reconstruction algorithm was evaluated using numerical simulated low dose projection based on two CT images and realistic low dose projection data of a sheep lung CT perfusion. The experimental results demonstrated that our proposed STV1-based algorithm outperform FBP and TV-based algorithm in terms of removing noise and restraining blocky effects.
Collapse
Affiliation(s)
- Junfeng Wu
- Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710048, China;
- The Key Laboratory of Computer Network and Information Integration, Southeast University and Ministry of Education, Nanjing 210096, China;
- Correspondence:
| | - Xiaofeng Wang
- Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710048, China;
| | - Xuanqin Mou
- The Institute of Image processing and Pattern recognition, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Yang Chen
- The Key Laboratory of Computer Network and Information Integration, Southeast University and Ministry of Education, Nanjing 210096, China;
| | - Shuguang Liu
- Equipment Management and Unmanned Aerial Vehicle Engineering College, Air Force Engineering University, Xi’an 710051, China;
| |
Collapse
|
9
|
Zhang H, Sonke JJ. Pareto frontier analysis of spatio-temporal total-variation based four-dimensional cone-beam CT. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab46db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Zhang X, Uneri A, Webster Stayman J, Zygourakis CC, Lo SL, Theodore N, Siewerdsen JH. Known-component 3D image reconstruction for improved intraoperative imaging in spine surgery: A clinical pilot study. Med Phys 2019; 46:3483-3495. [PMID: 31180586 PMCID: PMC6692215 DOI: 10.1002/mp.13652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Intraoperative imaging plays an increased role in support of surgical guidance and quality assurance for interventional approaches. However, image quality sufficient to detect complications and provide quantitative assessment of the surgical product is often confounded by image noise and artifacts. In this work, we translated a three-dimensional model-based image reconstruction (referred to as "Known-Component Reconstruction," KC-Recon) for the first time to clinical studies with the aim of resolving both limitations. METHODS KC-Recon builds upon a penalized weighted least-squares (PWLS) method by incorporating models of surgical instrumentation ("known components") within a joint image registration-reconstruction process to improve image quality. Under IRB approval, a clinical pilot study was conducted with 17 spine surgery patients imaged under informed consent using the O-arm cone-beam CT system (Medtronic, Littleton MA) before and after spinal instrumentation. Volumetric images were generated for each patient using KC-Recon in comparison to conventional filtered backprojection (FBP). Imaging performance prior to instrumentation ("preinstrumentation") was evaluated in terms of soft-tissue contrast-to-noise ratio (CNR) and spatial resolution. The quality of images obtained after the instrumentation ("postinstrumentation") was assessed by quantifying the magnitude of metal artifacts (blooming and streaks) arising from pedicle screws. The potential low-dose advantages of the algorithm were tested by simulating low-dose data (down to one-tenth of the dose of standard protocols) from images acquired at normal dose. RESULTS Preinstrumentation images (at normal clinical dose and matched resolution) exhibited an average 24.0% increase in soft-tissue CNR with KC-Recon compared to FBP (N = 16, P = 0.02), improving visualization of paraspinal muscles, major vessels, and other soft-tissues about the spine and abdomen. For a total of 72 screws in postinstrumentation images, KC-Recon yielded a significant reduction in metal artifacts: 66.3% reduction in overestimation of screw shaft width due to blooming (P < 0.0001) and reduction in streaks at the screw tip (65.8% increase in attenuation accuracy, P < 0.0001), enabling clearer depiction of the screw within the pedicle and vertebral body for an assessment of breach. Depending on the imaging task, dose reduction up to an order of magnitude appeared feasible while maintaining soft-tissue visibility and metal artifact reduction. CONCLUSIONS KC-Recon offers a promising means to improve visualization in the presence of surgical instrumentation and reduce patient dose in image-guided procedures. The improved soft-tissue visibility could facilitate the use of cone-beam CT to soft-tissue surgeries, and the ability to precisely quantify and visualize instrument placement could provide a valuable check against complications in the operating room (cf., postoperative CT).
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | - Ali Uneri
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | - J. Webster Stayman
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | | | - Sheng‐fu L. Lo
- Department of NeurosurgeryJohns Hopkins Medical InstituteBaltimoreMD21287USA
| | - Nicholas Theodore
- Department of NeurosurgeryJohns Hopkins Medical InstituteBaltimoreMD21287USA
| | - Jeffrey H. Siewerdsen
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
- Department of NeurosurgeryJohns Hopkins Medical InstituteBaltimoreMD21287USA
| |
Collapse
|
11
|
Sisniega A, Stayman JW, Capostagno S, Weiss CR, Ehtiati T, Siewerdsen JH. Convergence criterion for MBIR based on the local noise-power spectrum: Theory and implementation in a framework for accelerated 3D image reconstruction with a morphological pyramid. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 11072. [PMID: 34267413 DOI: 10.1117/12.2534896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Model-based iterative reconstruction (MBIR) offers improved noise-resolution tradeoffs and artifact reduction in cone-beam CT compared to analytical reconstruction, but carries increased computational burden. An important consideration in minimizing computation time is reliable selection of the stopping criterion to perform the minimum number of iterations required to obtain the desired image quality. Most MBIR methods rely on a fixed number of iterations or relative metrics on image or cost-function evolution, and it would be desirable to use metrics that are more representative of the underlying image properties. A second front for reduction of computation time is the use of acceleration techniques (e.g. subsets or momentum). However, most of these techniques do not strictly guarantee convergence of the resulting MBIR method. A data-dependent analytical model of noise-power spectrum (NPS) for penalized weighted least squares (PWLS) reconstruction is proposed as an absolute metric of image properties for the fully converged volume. Distance to convergence is estimated as the root mean squared error (RMSE) between the estimated NPS and an NPS measured on a uniform region of interest (ROI) in the evolving volume. Iterations are stopped when the RMSE falls below a threshold directly related with the properties of the target image. Further acceleration was achieved by combining the spectral stopping criterion with a morphological pyramid (mPyr) in which the minimization of the PWLS cost-function is divided in a cascade of stages. The algorithm parameters (voxel size in this work) change between stages to achieve faster evolution in early stages, and a final stage with the target parameters to guarantee convergence. Transition between stages is governed by the spectral stopping criterion. The approach was evaluated on simulated CBCT data of a realistic digital abdomen phantom. Accuracy of the NPS model and evolution with time of the distance from the measured NPS was assessed in two ROIs. Performance of the spectrally-driven mPyr architecture was compared to a conventional, single stage, PWLS, and to two mPyr designs running a fixed number of iterations. The spectrally-driven mPyr achieved faster convergence, with 40% lower RMSE than the single stage PWLS, and between 10% and 20% RMSE reduction compared to other mPyr designs. The proposed spectral stopping criterion proved to be a suitable choice for a stopping rule, and, in particular, to govern mPyr stage transition.
Collapse
Affiliation(s)
- A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - J W Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - S Capostagno
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - C R Weiss
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD USA
| | - T Ehtiati
- Siemens Healthineers, Hoffman Estates, IL USA
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA.,Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
12
|
Gardner SJ, Mao W, Liu C, Aref I, Elshaikh M, Lee JK, Pradhan D, Movsas B, Chetty IJ, Siddiqui F. Improvements in CBCT Image Quality Using a Novel Iterative Reconstruction Algorithm: A Clinical Evaluation. Adv Radiat Oncol 2019; 4:390-400. [PMID: 31011685 PMCID: PMC6460237 DOI: 10.1016/j.adro.2018.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/31/2018] [Indexed: 11/03/2022] Open
Abstract
PURPOSE This study aimed to evaluate the clinical utility of a novel iterative cone beam computed tomography (CBCT) reconstruction algorithm for prostate and head and neck (HN) cancer. METHODS AND MATERIALS A total of 10 patients with HN and 10 patients with prostate cancer were analyzed. For each patient, raw CBCT acquisition data were used to reconstruct images with a currently available algorithm (FDK_CBCT) and novel iterative algorithm (Iterative_CBCT). Quantitative contouring variation analysis was performed using structures delineated by several radiation oncologists. For prostate, observers contoured the prostate, proximal 2 cm seminal vesicles, bladder, and rectum. For HN, observers contoured the brain stem, spinal canal, right-left parotid glands, and right-left submandibular glands. Observer contours were combined to form a reference consensus contour using the simultaneous truth and performance level estimation method. All observer contours then were compared with the reference contour to calculate the Dice coefficient, Hausdorff distance, and mean contour distance (prostate contour only). Qualitative image quality analysis was performed using a 5-point scale ranging from 1 (much superior image quality for Iterative_CBCT) to 5 (much inferior image quality for Iterative_CBCT). RESULTS The Iterative_CBCT data sets resulted in a prostate contour Dice coefficient improvement of approximately 2.4% (P = .029). The average prostate contour Dice coefficient for the Iterative_CBCT data sets was improved for all patients, with improvements up to approximately 10% for 1 patient. The mean contour distance results indicate an approximate 15% reduction in mean contouring error for all prostate regions. For the parotid contours, Iterative_CBCT data sets resulted in a Hausdorff distance improvement of approximately 2 mm (P < .01) and an approximate 2% improvement in Dice coefficient (P = .03). The Iterative_CBCT data sets were scored as equivalent or of better image quality for 97.3% (prostate) and 90.0% (HN) of the patient data sets. CONCLUSIONS Observers noted an improvement in image uniformity, noise level, and overall image quality for Iterative_CBCT data sets. In addition, expert observers displayed an improved ability to consistently delineate soft tissue structures, such as the prostate and parotid glands. Thus, the novel iterative reconstruction algorithm analyzed in this study is capable of improving the visualization for prostate and HN cancer image guided radiation therapy.
Collapse
Affiliation(s)
- Stephen J. Gardner
- Department of Radiation Oncology, Josephine Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mao W, Liu C, Gardner SJ, Siddiqui F, Snyder KC, Kumarasiri A, Zhao B, Kim J, Wen NW, Movsas B, Chetty IJ. Evaluation and Clinical Application of a Commercially Available Iterative Reconstruction Algorithm for CBCT-Based IGRT. Technol Cancer Res Treat 2019; 18:1533033818823054. [PMID: 30803367 PMCID: PMC6373994 DOI: 10.1177/1533033818823054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We have quantitatively evaluated the image quality of a new commercially available iterative cone-beam computed tomography reconstruction algorithm over standard cone-beam computed tomography image reconstruction results. METHODS This iterative cone-beam computed tomography reconstruction pipeline uses a finite element solver (AcurosCTS)-based scatter correction and a statistical (iterative) reconstruction in addition to a standard kernel-based correction followed by filtered back-projection-based Feldkamp-Davis-Kress cone-beam computed tomography reconstruction. Standard full-fan half-rotation Head, half-fan full-rotation Head, and standard Pelvis cone-beam computed tomography protocols have been investigated to scan a quality assurance phantom via the following image quality metrics: uniformity, HU constancy, spatial resolution, low contrast detection, noise level, and contrast-to-noise ratio. An anthropomorphic head phantom was scanned for verification of noise reduction. Clinical patient image data sets for 5 head/neck patients and 5 prostate patients were qualitatively evaluated. RESULTS Quality assurance phantom study results showed that relative to filtered back-projection-based cone-beam computed tomography, noise was reduced from 28.8 ± 0.3 HU to a range between 18.3 ± 0.2 and 5.9 ± 0.2 HU for Full-Fan Head scans, from 14.4 ± 0.2 HU to a range between 12.8 ± 0.3 and 5.2 ± 0.3 HU for Half-Fan Head scans, and from 6.2 ± 0.1 HU to a range between 3.8 ± 0.1 and 2.0 ± 0.2 HU for Pelvis scans, with the iterative cone-beam computed tomography algorithm. Spatial resolution was marginally improved while results for uniformity and HU constancy were similar. For the head phantom study, noise was reduced from 43.6 HU to a range between 24.8 and 13.0 HU for a Full-Fan Head and from 35.1 HU to a range between 22.9 and 14.0 HU for a Half-Fan Head scan. The patient data study showed that artifacts due to photon starvation and streak artifacts were all reduced, and image noise in specified target regions were reduced to 62% ± 15% for 10 patients. CONCLUSION Noise and contrast-to-noise ratio image quality characteristics were significantly improved using the iterative cone-beam computed tomography reconstruction algorithm relative to the filtered back-projection-based cone-beam computed tomography method. These improvements will enhance the accuracy of cone-beam computed tomography-based image-guided applications.
Collapse
Affiliation(s)
- Weihua Mao
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Chang Liu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Stephen J. Gardner
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Karen C. Snyder
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Akila Kumarasiri
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Bo Zhao
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Joshua Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Ning Winston Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Indrin J. Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
14
|
Mason JH, Perelli A, Nailon WH, Davies ME. Quantitative cone-beam CT reconstruction with polyenergetic scatter model fusion. Phys Med Biol 2018; 63:225001. [PMID: 30403191 DOI: 10.1088/1361-6560/aae794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Scatter can account for large errors in cone-beam CT (CBCT) due to its wide field of view, and its complicated nature makes its compensation difficult. Iterative polyenergetic reconstruction algorithms offer the potential to provide quantitative imaging in CT, but they are usually incompatible with scatter contaminated measurements. In this work, we introduce a polyenergetic convolutional scatter model that is directly fused into the reconstruction process, and exploits information readily available at each iteration for a fraction of additional computational cost. We evaluate this method with numerical and real CBCT measurements, and show significantly enhanced electron density estimation and artifact mitigation over pre-calculated fast adaptive scatter kernel superposition (fASKS). We demonstrate our approach has two levels of benefit: reducing the bias introduced by estimating scatter prior to reconstruction; and adapting to the spectral and spatial properties of the specimen.
Collapse
Affiliation(s)
- Jonathan H Mason
- School of Engineering, Institute for Digital Communications, University of Edinburgh, Edinburgh, EH9 3JL, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
15
|
Uneri A, Zhang X, Yi T, Stayman JW, Helm PA, Theodore N, Siewerdsen JH. Image quality and dose characteristics for an O-arm intraoperative imaging system with model-based image reconstruction. Med Phys 2018; 45:4857-4868. [PMID: 30180274 DOI: 10.1002/mp.13167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess the imaging performance and radiation dose characteristics of the O-arm CBCT imaging system (Medtronic Inc., Littleton MA) and demonstrate the potential for improved image quality and reduced dose via model-based image reconstruction (MBIR). METHODS Two main studies were performed to investigate previously unreported characteristics of the O-arm system. First is an investigation of dose and 3D image quality achieved with filtered back-projection (FBP) - including enhancements in geometric calibration, handling of lateral truncation and detector saturation, and incorporation of an isotropic apodization filter. Second is implementation of an MBIR algorithm based on Huber-penalized likelihood estimation (PLH) and investigation of image quality improvement at reduced dose. Each study involved measurements in quantitative phantoms as a basis for analysis of contrast-to-noise ratio and spatial resolution as well as imaging of a human cadaver to test the findings under realistic imaging conditions. RESULTS View-dependent calibration of system geometry improved the accuracy of reconstruction as quantified by the full-width at half maximum of the point-spread function - from 0.80 to 0.65 mm - and yielded subtle but perceptible improvement in high-contrast detail of bone (e.g., temporal bone). Standard technique protocols for the head and body imparted absorbed dose of 16 and 18 mGy, respectively. For low-to-medium contrast (<100 HU) imaging at fixed spatial resolution (1.3 mm edge-spread function) and fixed dose (6.7 mGy), PLH improved CNR over FBP by +48% in the head and +35% in the body. Evaluation at different dose levels demonstrated 30% increase in CNR at 62% of the dose in the head and 90% increase in CNR at 50% dose in the body. CONCLUSIONS A variety of improvements in FBP implementation (geometric calibration, truncation and saturation effects, and isotropic apodization) offer the potential for improved image quality and reduced radiation dose on the O-arm system. Further gains are possible with MBIR, including improved soft-tissue visualization, low-dose imaging protocols, and extension to methods that naturally incorporate prior information of patient anatomy and/or surgical instrumentation.
Collapse
Affiliation(s)
- A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - X Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - T Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - J W Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - P A Helm
- Medtronic Inc., Littleton, MA, 01460, USA
| | - N Theodore
- Department of Neurosurgery, Johns Hopkins Medical Institute, Baltimore, MD, 21287, USA
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neurosurgery, Johns Hopkins Medical Institute, Baltimore, MD, 21287, USA
| |
Collapse
|
16
|
Zhang H, Wang J, Zeng D, Tao X, Ma J. Regularization strategies in statistical image reconstruction of low-dose x-ray CT: A review. Med Phys 2018; 45:e886-e907. [PMID: 30098050 PMCID: PMC6181784 DOI: 10.1002/mp.13123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022] Open
Abstract
Statistical image reconstruction (SIR) methods have shown potential to substantially improve the image quality of low-dose x-ray computed tomography (CT) as compared to the conventional filtered back-projection (FBP) method. According to the maximum a posteriori (MAP) estimation, the SIR methods are typically formulated by an objective function consisting of two terms: (a) a data-fidelity term that models imaging geometry and physical detection processes in projection data acquisition, and (b) a regularization term that reflects prior knowledge or expectations of the characteristics of the to-be-reconstructed image. SIR desires accurate system modeling of data acquisition, while the regularization term also has a strong influence on the quality of reconstructed images. A variety of regularization strategies have been proposed for SIR in the past decades, based on different assumptions, models, and prior knowledge. In this paper, we review the conceptual and mathematical bases of these regularization strategies and briefly illustrate their efficacies in SIR of low-dose CT.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation OncologyStanford UniversityStanfordCA94304USA
| | - Jing Wang
- Department of Radiation OncologyUT Southwestern Medical CenterDallasTX75390USA
| | - Dong Zeng
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Xi Tao
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Jianhua Ma
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
17
|
Wu P, Stayman JW, Mow M, Zbijewski W, Sisniega A, Aygun N, Stevens R, Foos D, Wang X, Siewerdsen JH. Reconstruction-of-difference (RoD) imaging for cone-beam CT neuro-angiography. Phys Med Biol 2018; 63:115004. [PMID: 29722296 DOI: 10.1088/1361-6560/aac225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Timely evaluation of neurovasculature via CT angiography (CTA) is critical to the detection of pathology such as ischemic stroke. Cone-beam CTA (CBCT-A) systems provide potential advantages in the timely use at the point-of-care, although challenges of a relatively slow gantry rotation speed introduce tradeoffs among image quality, data consistency and data sparsity. This work describes and evaluates a new reconstruction-of-difference (RoD) approach that is robust to such challenges. A fast digital simulation framework was developed to test the performance of the RoD over standard reference reconstruction methods such as filtered back-projection (FBP) and penalized likelihood (PL) over a broad range of imaging conditions, grouped into three scenarios to test the trade-off between data consistency, data sparsity and peak contrast. Two experiments were also conducted using a CBCT prototype and an anthropomorphic neurovascular phantom to test the simulation findings in real data. Performance was evaluated primarily in terms of normalized root mean square error (NRMSE) in comparison to truth, with reconstruction parameters chosen to optimize performance in each case to ensure fair comparison. The RoD approach reduced NRMSE in reconstructed images by up to 50%-53% compared to FBP and up to 29%-31% compared to PL for each scenario. Scan protocols well suited to the RoD approach were identified that balance tradeoffs among data consistency, sparsity and peak contrast-for example, a CBCT-A scan with 128 projections acquired in 8.5 s over a 180° + fan angle half-scan for a time attenuation curve with ~8.5 s time-to-peak and 600 HU peak contrast. With imaging conditions such as the simulation scenarios of fixed data sparsity (i.e. varying levels of data consistency and peak contrast), the experiments confirmed the reduction of NRMSE by 34% and 17% compared to FBP and PL, respectively. The RoD approach demonstrated superior performance in 3D angiography compared to FBP and PL in all simulation and physical experiments, suggesting the possibility of CBCT-A on low-cost, mobile imaging platforms suitable to the point-of-care. The algorithm demonstrated accurate reconstruction with a high degree of robustness against data sparsity and inconsistency.
Collapse
Affiliation(s)
- P Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu J, Ma J, Zhang Y, Chen Y, Yang J, Shu H, Luo L, Coatrieux G, Yang W, Feng Q, Chen W. Discriminative Feature Representation to Improve Projection Data Inconsistency for Low Dose CT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2499-2509. [PMID: 28816658 DOI: 10.1109/tmi.2017.2739841] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In low dose computed tomography (LDCT) imaging, the data inconsistency of measured noisy projections can significantly deteriorate reconstruction images. To deal with this problem, we propose here a new sinogram restoration approach, the sinogram- discriminative feature representation (S-DFR) method. Different from other sinogram restoration methods, the proposed method works through a 3-D representation-based feature decomposition of the projected attenuation component and the noise component using a well-designed composite dictionary containing atoms with discriminative features. This method can be easily implemented with good robustness in parameter setting. Its comparison to other competing methods through experiments on simulated and real data demonstrated that the S-DFR method offers a sound alternative in LDCT.
Collapse
|
19
|
Mason JH, Perelli A, Nailon WH, Davies ME. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source. ACTA ACUST UNITED AC 2017; 62:8739-8762. [DOI: 10.1088/1361-6560/aa9162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Dang H, Stayman JW, Xu J, Zbijewski W, Sisniega A, Mow M, Wang X, Foos DH, Aygun N, Koliatsos VE, Siewerdsen JH. Task-based statistical image reconstruction for high-quality cone-beam CT. Phys Med Biol 2017; 62:8693-8719. [PMID: 28976368 DOI: 10.1088/1361-6560/aa90fd] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR-viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ([Formula: see text]). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in [Formula: see text], and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.
Collapse
Affiliation(s)
- Hao Dang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
A review of GPU-based medical image reconstruction. Phys Med 2017; 42:76-92. [PMID: 29173924 DOI: 10.1016/j.ejmp.2017.07.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 11/20/2022] Open
Abstract
Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing.
Collapse
|
22
|
Berker Y, Karp JS, Schulz V. Numerical algorithms for scatter-to-attenuation reconstruction in PET: empirical comparison of convergence, acceleration, and the effect of subsets. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017; 1:426-434. [PMID: 29527588 PMCID: PMC5842955 DOI: 10.1109/tns.2017.2713521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The use of scattered coincidences for attenuation correction of positron emission tomography (PET) data has recently been proposed. For practical applications, convergence speeds require further improvement, yet there exists a trade-off between convergence speed and the risk of non-convergence. In this respect, a maximum-likelihood gradient-ascent (MLGA) algorithm and a two-branch back-projection (2BP), which was previously proposed, were evaluated. METHODS MLGA was combined with the Armijo step size rule; and accelerated using conjugate gradients, Nesterov's momentum method, and data subsets of different sizes. In 2BP, we varied the subset size, an important determinant of convergence speed and computational burden. We used three sets of simulation data to evaluate the impact of a spatial scale factor. RESULTS AND DISCUSSION The Armijo step size allowed 10-fold increased step sizes compared to native MLGA. Conjugate gradients and Nesterov momentum lead to slightly faster, yet non-uniform convergence; improvements were mostly confined to later iterations, possibly due to the non-linearity of the problem. MLGA with data subsets achieved faster, uniform, and predictable convergence, with a speed-up factor equivalent to the number of subsets and no increase in computational burden. By contrast, 2BP computational burden increased linearly with the number of subsets due to repeated evaluation of the objective function, and convergence was limited to the case of many (and therefore small) subsets, which resulted in high computational burden. CONCLUSION Possibilities of improving 2BP appear limited. While general-purpose acceleration methods appear insufficient for MLGA, results suggest that data subsets are a promising way of improving MLGA performance.
Collapse
Affiliation(s)
- Yannick Berker
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA, and the Department of Physics of Molecular Imaging Systems, RWTH Aachen University, 52074 Aachen, Germany
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
23
|
Abstract
Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral separation on the order of the energy resolution of the PCD hardware.
Collapse
Affiliation(s)
- Darin P. Clark
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Cristian T. Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
24
|
Alessio AM, Kinahan PE, Sauer K, Kalra MK, De Man B. Comparison Between Pre-Log and Post-Log Statistical Models in Ultra-Low-Dose CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:707-720. [PMID: 28113926 PMCID: PMC5424567 DOI: 10.1109/tmi.2016.2627004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
X-ray detectors in clinical computed tomography (CT) usually operate in current-integrating mode. Their complicated signal statistics often lead to intractable likelihood functions for practical use in model-based image reconstruction (MBIR). It is therefore desirable to design simplified statistical models without losing the essential factors. Depending on whether the CT transmission data are logarithmically transformed, pre-log and post-log models are two major categories of choices in CT MBIR. Both being approximations, it remains an open question whether one model can notably improve image quality over the other on real scanners. In this study, we develop and compare several pre-log and post-log MBIR algorithms under a unified framework. Their reconstruction accuracy based on simulation and clinical datasets are evaluated. The results show that pre-log MBIR can achieve notably better quantitative accuracy than post-log MBIR in ultra-low-dose CT, although in less extreme cases, post-log MBIR with handcrafted pre-processing remains a competitive alternative. Pre-log MBIR could play a growing role in emerging ultra-low-dose CT applications.
Collapse
|
25
|
Gomes J, Gang GJ, Mathews A, Stayman JW. An Investigation of Low-Dose 3D Scout Scans for Computed Tomography. ACTA ACUST UNITED AC 2017; 10132. [PMID: 28596635 DOI: 10.1117/12.2255514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
PURPOSE Commonly 2D scouts or topograms are used prior to CT scan acquisition. However, low-dose 3D scouts could potentially provide additional information for more effective patient positioning and selection of acquisition protocols. We propose using model-based iterative reconstruction to reconstruct low exposure tomographic data to maintain image quality in both low-dose 3D scouts and reprojected topograms based on those 3D scouts. METHODS We performed tomographic acquisitions on a CBCT test-bench using a range of exposure settings from 16.6 to 231.9 total mAs. Both an anthropomorphic phantom and a 32 cm CTDI phantom were scanned. The penalized-likelihood reconstructions were made using Matlab and CUDA libraries and reconstruction parameters were tuned to determine the best regularization strength and delta parameter. RMS error between reconstructions and the highest exposure reconstruction were computed, and CTDIW values were reported for each exposure setting. RMS error for reprojected topograms were also computed. RESULTS We find that we are able to produce low-dose (0.417 mGy) 3D scouts that show high-contrast and large anatomical features while maintaining the ability to produce traditional topograms. CONCLUSIONS We demonstrated that iterative reconstruction can mitigate noise in very low exposure CT acquisitions to enable 3D CT scout. Such additional 3D information may lead to improved protocols for patient positioning and acquisition refinements as well as a number of advanced dose reduction strategies that require localization of anatomical features and quantities that are not provided by simple 2D topograms.
Collapse
Affiliation(s)
- Juliana Gomes
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205
| | - Grace J Gang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205
| | - Aswin Mathews
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205
| |
Collapse
|
26
|
Huang HM, Hsiao IT. Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization. PLoS One 2016; 11:e0153421. [PMID: 27073853 PMCID: PMC4830553 DOI: 10.1371/journal.pone.0153421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
In recent years, there has been increased interest in low-dose X-ray cone beam computed tomography (CBCT) in many fields, including dentistry, guided radiotherapy and small animal imaging. Despite reducing the radiation dose, low-dose CBCT has not gained widespread acceptance in routine clinical practice. In addition to performing more evaluation studies, developing a fast and high-quality reconstruction algorithm is required. In this work, we propose an iterative reconstruction method that accelerates ordered-subsets (OS) reconstruction using a power factor. Furthermore, we combine it with the total-variation (TV) minimization method. Both simulation and phantom studies were conducted to evaluate the performance of the proposed method. Results show that the proposed method can accelerate conventional OS methods, greatly increase the convergence speed in early iterations. Moreover, applying the TV minimization to the power acceleration scheme can further improve the image quality while preserving the fast convergence rate.
Collapse
Affiliation(s)
- Hsuan-Ming Huang
- Medical Physics Research Center, Institute of Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Nuclear Medicine and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ing-Tsung Hsiao
- Medical Physics Research Center, Institute of Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Nuclear Medicine and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Dang H, Stayman JW, Sisniega A, Xu J, Zbijewski W, Wang X, Foos DH, Aygun N, Koliatsos VE, Siewerdsen JH. Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging. Phys Med Biol 2015. [PMID: 26225912 DOI: 10.1088/0031-9155/60/16/6153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Non-contrast CT reliably detects fresh blood in the brain and is the current front-line imaging modality for intracranial hemorrhage such as that occurring in acute traumatic brain injury (contrast ~40-80 HU, size > 1 mm). We are developing flat-panel detector (FPD) cone-beam CT (CBCT) to facilitate such diagnosis in a low-cost, mobile platform suitable for point-of-care deployment. Such a system may offer benefits in the ICU, urgent care/concussion clinic, ambulance, and sports and military theatres. However, current FPD-CBCT systems face significant challenges that confound low-contrast, soft-tissue imaging. Artifact correction can overcome major sources of bias in FPD-CBCT but imparts noise amplification in filtered backprojection (FBP). Model-based reconstruction improves soft-tissue image quality compared to FBP by leveraging a high-fidelity forward model and image regularization. In this work, we develop a novel penalized weighted least-squares (PWLS) image reconstruction method with a noise model that includes accurate modeling of the noise characteristics associated with the two dominant artifact corrections (scatter and beam-hardening) in CBCT and utilizes modified weights to compensate for noise amplification imparted by each correction. Experiments included real data acquired on a FPD-CBCT test-bench and an anthropomorphic head phantom emulating intra-parenchymal hemorrhage. The proposed PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and PWLS with conventional weights (viz. at matched 0.50 mm spatial resolution, CNR = 11.9 compared to CNR = 5.6 and CNR = 9.9, respectively) and substantially reduced image noise especially in challenging regions such as skull base. The results support the hypothesis that with high-fidelity artifact correction and statistical reconstruction using an accurate post-artifact-correction noise model, FPD-CBCT can achieve image quality allowing reliable detection of intracranial hemorrhage.
Collapse
Affiliation(s)
- H Dang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|