1
|
Scholey J, Nano T, Singhrao K, Mohamad O, Singer L, Larson PEZ, Descovich M. Linac- and CyberKnife-based MRI-only treatment planning of prostate SBRT using an optimized synthetic CT calibration curve. J Appl Clin Med Phys 2024; 25:e14411. [PMID: 38837851 PMCID: PMC11492401 DOI: 10.1002/acm2.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE CT Hounsfield Units (HUs) are converted to electron density using a calibration curve obtained from physical measurements of an electron density phantom. HU values assigned to an MRI-derived synthetic computed tomography (sCT) may present a different relationship with electron density compared to CT HU. Correct assignment of sCT HU values is critical for accurate dose calculation and delivery. The goals of this work were to develop a sCT calibration curve using patient data acquired on a clinically commissioned CT scanner and assess for CyberKnife- and volumetric modulated arc therapy (VMAT)-based MR-only treatment planning of prostate SBRT. METHODS Same-day CT and MRI simulation in the treatment position were performed on 10 patients treated with SBRT to the prostate. Dixon in-phase and out-of-phase MRIs were acquired on a 3T scanner using a 3D T1-weighted gradient-echo sequence to generate sCTs using a commercial sCT algorithm. CT and sCT datasets were co-registered and HU values compared using mean absolute error (MAE). An optimized HU-to-density calibration curve was created based on average HU values across an institutional patient database for each of the four sCT tissue types. Clinical CyberKnife and VMAT treatment plans were generated on each patient CT and recomputed onto corresponding sCTs. Dose distributions computed using CT and sCT were compared using gamma criteria and dose-volume-histograms. RESULTS For the optimized calibration curve, HU values were -96, 37, 204, and 1170 and relative electron densities were 0.95, 1.04, 1.1, and 1.7 for adipose, soft tissue, inner bone, and outer bone, respectively. The proposed sCT protocol produced total MAE of 94 ± 20HU. Gamma values mean ± std (min-max) were 98.9% ± 0.9% (97.1%-100%) and 97.7% ± 1.3% (95.3%-99.3%) for VMAT and CyberKnife plans, respectively. CONCLUSION MRI-derived sCT using the proposed approach shows excellent dosimetric agreement with conventional CT simulation, demonstrating the feasibility of MRI-derived sCT for prostate SBRT treatment planning.
Collapse
Affiliation(s)
- Jessica Scholey
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Tomi Nano
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kamal Singhrao
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Osama Mohamad
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lisa Singer
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Martina Descovich
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
2
|
Singhrao K, Zubair M, Nano T, Scholey JE, Descovich M. End-to-end validation of fiducial tracking accuracy in robotic radiosurgery using MRI-only simulation imaging. Med Phys 2024; 51:31-41. [PMID: 38055419 DOI: 10.1002/mp.16857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Image-guided radiation-therapy (IGRT)-based robotic radiosurgery using magnetic resonance imaging (MRI)-only simulation could allow for improved target definition with highly conformal radiotherapy treatments. Fiducial marker (FM)-based alignment is used with robotic radiosurgery treatments of sites such as the prostate because it aids in accurate target localization. Synthetic CT (sCT) images are generated in the MRI-only workflow but FMs used for IGRT appear as signal voids in MRIs and do not appear in MR-generated sCTs, hindering the ability to use sCTs for fiducial-based IGRT. PURPOSE In this study we evaluate the fiducial tracking accuracy for a novel artificial fiducial insertion method in sCT images that allows for fiducial marker tracking in robotic radiosurgery, using MRI-only simulation imaging (MRI-only workflow). METHODS Artificial fiducial markers were inserted into sCT images at the site of the real marker implantation as visible in MRI. Two phantoms were used in this study. A custom anthropomorphic pelvis phantom was designed to validate the tracking accuracy for a variety of artificial fiducials in an MRI-only workflow. A head phantom containing a hidden target and orthogonal film pair inserts was used to perform end-to-end tests of artificial fiducial configurations inserted in sCT images. The setup and end-to-end targeting accuracy of the MRI-only workflow were compared to the computed tomography (CT)-based standard. Each phantom had six FMs implanted with a minimum spacing of 2 cm. For each phantom a bulk-density sCT was generated, and artificial FMs were inserted at the implantation location. Several methods of FM insertion were tested including: (1) replacing HU with a fixed value (10000HU) (voxel-burned); (2) using a representative fiducial image derived from a linear combination of fiducial templates (composite-fiducial); (3) computationally simulating FM signal voids using a digital phantom containing FMs and inserting the corresponding signal void into sCT images (simulated-fiducial). All tests were performed on a CyberKnife system (Accuray, Sunnyvale, CA). Treatment plans and digital-reconstructed-radiographs were generated from the original CT and sCTs with embedded fiducials and used to align the phantom on the treatment couch. Differences in the initial phantom alignment (3D translations/rotations) and tracking parameters between CT-based plans and sCT-based plans were analyzed. End-to-end plans for both scenarios were generated and analyzed following our clinical protocol. RESULTS For all plans, the fiducial tracking algorithm was able to identify the fiducial locations. The mean FM-extraction uncertainty for the composite and simulated FMs was below 48% for fiducials in both the anthropomorphic pelvis and end-to-end phantoms, which is below the 70% treatment uncertainty threshold. The total targeting error was within tolerance (<0.95 mm) for end-to-end tests of sCT images with the composite and head-on simulated FMs (0.26, 0.44, and 0.35 mm for the composite fiducial in sCT, head-on simulated fiducial in sCT, and fiducials in original CT, respectively. CONCLUSIONS MRI-only simulation for robotic radiosurgery could potentially improve treatment accuracy and reduce planning margins. Our study has shown that using a composite-derived or simulated FM in conjunction with sCT images, MRI-only workflow can provide clinically acceptable setup accuracy in line with CT-based standards for FM-based robotic radiosurgery.
Collapse
Affiliation(s)
- Kamal Singhrao
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammad Zubair
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| | - Tomi Nano
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| | - Jessica E Scholey
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| | - Martina Descovich
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Ghose S, Ju Y, McDonough E, Ho J, Karunamurthy A, Chadwick C, Cho S, Rose R, Corwin A, Surrette C, Martinez J, Williams E, Sood A, Al-Kofahi Y, Falo LD, Börner K, Ginty F. 3D reconstruction of skin and spatial mapping of immune cell density, vascular distance and effects of sun exposure and aging. Commun Biol 2023; 6:718. [PMID: 37468758 PMCID: PMC10356782 DOI: 10.1038/s42003-023-04991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/11/2023] [Indexed: 07/21/2023] Open
Abstract
Mapping the human body at single cell resolution in three dimensions (3D) is important for understanding cellular interactions in context of tissue and organ organization. 2D spatial cell analysis in a single tissue section may be limited by cell numbers and histology. Here we show a workflow for 3D reconstruction of multiplexed sequential tissue sections: MATRICS-A (Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial - Analysis). We demonstrate MATRICS-A in 26 serial sections of fixed skin (stained with 18 biomarkers) from 12 donors aged between 32-72 years. Comparing the 3D reconstructed cellular data with the 2D data, we show significantly shorter distances between immune cells and vascular endothelial cells (56 µm in 3D vs 108 µm in 2D). We also show 10-70% more T cells (total) within 30 µm of a neighboring T helper cell in 3D vs 2D. Distances of p53, DDB2 and Ki67 positive cells to the skin surface were consistent across all ages/sun exposure and largely localized to the lower stratum basale layer of the epidermis. MATRICS-A provides a framework for analysis of 3D spatial cell relationships in healthy and aging organs and could be further extended to diseased organs.
Collapse
Affiliation(s)
- Soumya Ghose
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Yingnan Ju
- Indiana University, 107 South Indiana Ave, Bloomington, IN, 47405, USA
| | | | - Jonhan Ho
- University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | | | | | - Sanghee Cho
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Rachel Rose
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Alex Corwin
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | | | - Jessica Martinez
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Eric Williams
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Anup Sood
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Yousef Al-Kofahi
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Louis D Falo
- University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - Katy Börner
- Indiana University, 107 South Indiana Ave, Bloomington, IN, 47405, USA.
| | - Fiona Ginty
- GE Research Center, 1 Research Circle, Niskayuna, NY, 12309, USA.
| |
Collapse
|
4
|
Brooks RL, McCallum HM, Pearson RA, Pilling K, Wyatt J. Are cone beam CT image matching skills transferrable from planning CT to planning MRI for MR-only prostate radiotherapy? Br J Radiol 2021; 94:20210146. [PMID: 33914617 PMCID: PMC8248228 DOI: 10.1259/bjr.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objectives: Treatment verification for MR-only planning has focused on fiducial marker matching, however, these are difficult to identify on MR. An alternative is using the MRI for soft-tissue matching with cone beam computed tomography images (MR-CBCT). However, therapeutic radiographers have limited experience of MRI. This study aimed to assess transferability of therapeutic radiographers CT-CBCT prostate image matching skills to MR-CBCT image matching. Methods: 23 therapeutic radiographers with 3 months–5 years’ experience of online daily CT-CBCT soft-tissue matching prostate cancer patients participated. Each observer completed a baseline assessment of 10 CT-CBCT prostate soft-tissue image matches, followed by 10 MR-CBCT prostate soft-tissue image match assessment. A MRI anatomy training intervention was delivered and the 10 MR-CBCT prostate soft-tissue image match assessment was repeated. Limits of agreement were calculated as the disagreement of the observers with mean of all observers. Results: Limits of agreement at CT-CBCT baseline were 2.8 mm, 2.8 mm, 0.7 mm (vertical, longitudinal, lateral). MR-CBCT matches prior to training were 3.3 mm, 3.1 mm, 0.9 mm, and after training 2.6 mm, 2.4 mm, 1.1 mm (vertical, longitudinal, lateral). Results show similar limits of agreement across the assessments, and variation reduced following the training intervention. Conclusion: This suggests therapeutic radiographers’ prostate CBCT image matching skills are transferrable to a MRI planning scan, since MR-CBCT matching has comparable observer variation to CT-CBCT matching. Advances in knowledge: This is the first publication assessing interobserver MR-CBCT prostate soft tissue matching in an MR-only pathway.
Collapse
Affiliation(s)
- Rachel L Brooks
- Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hazel M McCallum
- Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel A Pearson
- Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Karen Pilling
- Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jonathan Wyatt
- Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Goudschaal K, Beeksma F, Boon M, Bijveld M, Visser J, Hinnen K, van Kesteren Z. Accuracy of an MR-only workflow for prostate radiotherapy using semi-automatically burned-in fiducial markers. Radiat Oncol 2021; 16:37. [PMID: 33608008 PMCID: PMC7893889 DOI: 10.1186/s13014-021-01768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The benefit of MR-only workflow compared to current CT-based workflow for prostate radiotherapy is reduction of systematic errors in the radiotherapy chain by 2-3 mm. Nowadays, MRI is used for target delineation while CT is needed for position verification. In MR-only workflows, MRI based synthetic CT (sCT) replaces CT. Intraprostatic fiducial markers (FMs) are used as a surrogate for the position of the prostate improving targeting. However, FMs are not visible on sCT. Therefore, a semi-automatic method for burning-in FMs on sCT was developed. Accuracy of MR-only workflow using semi-automatically burned-in FMs was assessed and compared to CT/MR workflow. METHODS Thirty-one prostate cancer patients receiving radiotherapy, underwent an additional MR sequence (mDIXON) to create an sCT for MR-only workflow simulation. Three sources of accuracy in the CT/MR- and MR-only workflow were investigated. To compare image registrations for target delineation, the inter-observer error (IOE) of FM-based CT-to-MR image registrations and soft-tissue-based MR-to-MR image registrations were determined on twenty patients. Secondly, the inter-observer variation of the resulting FM positions was determined on twenty patients. Thirdly, on 26 patients CBCTs were retrospectively registered on sCT with burned-in FMs and compared to CT-CBCT registrations. RESULTS Image registration for target delineation shows a three times smaller IOE for MR-only workflow compared to CT/MR workflow. All observers agreed in correctly identifying all FMs for 18 out of 20 patients (90%). The IOE in CC direction of the center of mass (COM) position of the markers was within the CT slice thickness (2.5 mm), the IOE in AP and RL direction were below 1.0 mm and 1.5 mm, respectively. Registrations for IGRT position verification in MR-only workflow compared to CT/MR workflow were equivalent in RL-, CC- and AP-direction, except for a significant difference for random error in rotation. CONCLUSIONS MR-only workflow using sCT with burned-in FMs is an improvement compared to the current CT/MR workflow, with a three times smaller inter observer error in CT-MR registration and comparable CBCT registration results between CT and sCT reference scans. Trial registry Medical Research Involving Human Subjects Act (WMO) does apply to this study and was approved by the Medical Ethics review Committee of the Academic Medical Center. Registration number: NL65414.018.18. Date of registration: 21-08-2018.
Collapse
Affiliation(s)
- Karin Goudschaal
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - F. Beeksma
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - M. Boon
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - M. Bijveld
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - J. Visser
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - K. Hinnen
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Z. van Kesteren
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Gustafsson CJ, Swärd J, Adalbjörnsson SI, Jakobsson A, Olsson LE. Development and evaluation of a deep learning based artificial intelligence for automatic identification of gold fiducial markers in an MRI-only prostate radiotherapy workflow. Phys Med Biol 2020; 65:225011. [PMID: 33179610 DOI: 10.1088/1361-6560/abb0f9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identification of prostate gold fiducial markers in magnetic resonance imaging (MRI) images is challenging when CT images are not available, due to misclassifications from intra-prostatic calcifications. It is also a time consuming task and automated identification methods have been suggested as an improvement for both objectives. Multi-echo gradient echo (MEGRE) images have been utilized for manual fiducial identification with 100% detection accuracy. The aim is therefore to develop an automatic deep learning based method for fiducial identification in MRI images intended for MRI-only prostate radiotherapy. MEGRE images from 326 prostate cancer patients with fiducials were acquired on a 3T MRI, post-processed with N4 bias correction, and the fiducial center of mass (CoM) was identified. A 9 mm radius sphere was created around the CoM as ground truth. A deep learning HighRes3DNet model for semantic segmentation was trained using image augmentation. The model was applied to 39 MRI-only patients and 3D probability maps for fiducial location and segmentation were produced and spatially smoothed. In each of the three largest probability peaks, a 9 mm radius sphere was defined. Detection sensitivity and geometric accuracy was assessed. To raise awareness of potential false findings a 'BeAware' score was developed, calculated from the total number and quality of the probability peaks. All datasets, annotations and source code used were made publicly available. The detection sensitivity for all fiducials were 97.4%. Thirty-six out of thirty-nine patients had all fiducial markers correctly identified. All three failed patients generated a user notification using the BeAware score. The mean absolute difference between the detected fiducial and ground truth CoM was 0.7 ± 0.9 [0 3.1] mm. A deep learning method for automatic fiducial identification in MRI images was developed and evaluated with state-of-the-art results. The BeAware score has the potential to notify the user regarding patients where the proposed method is uncertain.
Collapse
Affiliation(s)
- Christian Jamtheim Gustafsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden. Department of Translational Sciences, Medical Radiation Physics, Lund University, Malmö, Sweden
| | | | | | | | | |
Collapse
|
7
|
Singhrao K, Fu J, Parikh NR, Mikaeilian AG, Ruan D, Kishan AU, Lewis JH. A generative adversarial network‐based (GAN‐based) architecture for automatic fiducial marker detection in prostate MRI‐only radiotherapy simulation images. Med Phys 2020; 47:6405-6413. [DOI: 10.1002/mp.14498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/02/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kamal Singhrao
- Department of Radiation Oncology University of California, Los Angeles Los Angeles CA 90095 USA
| | - Jie Fu
- Department of Radiation Oncology University of California, Los Angeles Los Angeles CA 90095 USA
| | - Neil R. Parikh
- Department of Radiation Oncology University of California, Los Angeles Los Angeles CA 90095 USA
| | - Argin G. Mikaeilian
- Department of Radiation Oncology University of California, Los Angeles Los Angeles CA 90095 USA
| | - Dan Ruan
- Department of Radiation Oncology University of California, Los Angeles Los Angeles CA 90095 USA
| | - Amar U. Kishan
- Department of Radiation Oncology University of California, Los Angeles Los Angeles CA 90095 USA
| | - John H. Lewis
- Department of Radiation Oncology Cedars‐Sinai Medical Center Los Angeles CA 90048 USA
| |
Collapse
|
8
|
Persson E, Jamtheim Gustafsson C, Ambolt P, Engelholm S, Ceberg S, Bäck S, Olsson LE, Gunnlaugsson A. MR-PROTECT: Clinical feasibility of a prostate MRI-only radiotherapy treatment workflow and investigation of acceptance criteria. Radiat Oncol 2020; 15:77. [PMID: 32272943 PMCID: PMC7147064 DOI: 10.1186/s13014-020-01513-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Retrospective studies on MRI-only radiotherapy have been presented. Widespread clinical implementations of MRI-only workflows are however limited by the absence of guidelines. The MR-PROTECT trial presents an MRI-only radiotherapy workflow for prostate cancer using a new single sequence strategy. The workflow incorporated the commercial synthetic CT (sCT) generation software MriPlanner™ (Spectronic Medical, Helsingborg, Sweden). Feasibility of the workflow and limits for acceptance criteria were investigated for the suggested workflow with the aim to facilitate future clinical implementations. METHODS An MRI-only workflow including imaging, post imaging tasks, treatment plan creation, quality assurance and treatment delivery was created with questionnaires. All tasks were performed in a single MR-sequence geometry, eliminating image registrations. Prospective CT-quality assurance (QA) was performed prior treatment comparing the PTV mean dose between sCT and CT dose-distributions. Retrospective analysis of the MRI-only gold fiducial marker (GFM) identification, DVH- analysis, gamma evaluation and patient set-up verification using GFMs and cone beam CT were performed. RESULTS An MRI-only treatment was delivered to 39 out of 40 patients. The excluded patient was too large for the predefined imaging field-of-view. All tasks could successfully be performed for the treated patients. There was a maximum deviation of 1.2% in PTV mean dose was seen in the prospective CT-QA. Retrospective analysis showed a maximum deviation below 2% in the DVH-analysis after correction for rectal gas and gamma pass-rates above 98%. MRI-only patient set-up deviation was below 2 mm for all but one investigated case and a maximum of 2.2 mm deviation in the GFM-identification compared to CT. CONCLUSIONS The MR-PROTECT trial shows the feasibility of an MRI-only prostate radiotherapy workflow. A major advantage with the presented workflow is the incorporation of a sCT-generation method with multi-vendor capability. The presented single sequence approach are easily adapted by other clinics and the general implementation procedure can be replicated. The dose deviation and the gamma pass-rate acceptance criteria earlier suggested was achievable, and these limits can thereby be confirmed. GFM-identification acceptance criteria are depending on the choice of identification method and slice thickness. Patient positioning strategies needs further investigations to establish acceptance criteria.
Collapse
Affiliation(s)
- Emilia Persson
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden.
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Inga-Marie Nilssons gata 49, 205 02, Malmö, Sweden.
| | - Christian Jamtheim Gustafsson
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Inga-Marie Nilssons gata 49, 205 02, Malmö, Sweden
| | - Petra Ambolt
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
| | - Silke Engelholm
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
| | - Sofie Ceberg
- Department of Medical Radiation Physics, Lund University, Barngatan 4, 222 85, Lund, Sweden
| | - Sven Bäck
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
| | - Lars E Olsson
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Inga-Marie Nilssons gata 49, 205 02, Malmö, Sweden
| | - Adalsteinn Gunnlaugsson
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
| |
Collapse
|
9
|
Singhrao K, Ruan D, Fu J, Gao Y, Chee G, Yang Y, King C, Hu P, Kishan AU, Lewis JH. Quantification of fiducial marker visibility for MRI-only prostate radiotherapy simulation. Phys Med Biol 2020; 65:035015. [PMID: 31881546 DOI: 10.1088/1361-6560/ab65db] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To objectively compare the suitability of MRI pulse sequences and commercially available fiducial markers (FMs) for MRI-only prostate radiotherapy simulation. Most FMs appear as small signal voids in MRI images making them difficult to differentiate from tissue heterogeneities such as calcifications. In this study we use quantitative metrics to objectively evaluate the visibility of FMs in 27 patients and an anthropomorphic phantom with a variety of standard clinical MRI pulse sequences and commercially available FMs. FM visibility was quantified using the local contrast-to-noise-ratio (lCNR), the difference between the 80th and 20th percentile iso-intensity FM volumes (V fall) and the largest iso-intensity volume that can be distinguished from background: apparent-marker-volume (AMV). A larger lCNR and AMV, and smaller V fall represents a more easily identifiable FM. The number of non-marker objects visualized by each pulse sequence was calculated using FM-derived template-matching. The FM-based target-registration-error (TRE) between each MRI and the planning-CT image was calculated. Fiducial marker visibility was rated by two medical physicists with over three years of experience examining MRI-only prostate simulation images. The rater's classification accuracy was quantified using the F 1 score, which is the harmonic mean of the rater's precision and recall. These quantitative metrics and human observer ratings were used to evaluate FM identifiability in images from nine subtypes of T 1-weighted, T 2-weighted and gradient echo (GRE) pulse sequences in a 27-patient study. A phantom study was conducted to quantify the visibility of 8 commercially available FMs. In the patient study, the largest mean lCNR and AMV and, smallest normalized V fall were produced by the 3.0 T multiple-echo GRE pulse sequence (T 1-VIBE, 2° flip angle, 1.23 ms and 2.45 ms echo-times). This pulse sequence produced no false marker detections and TREs less than 2 mm in the left-right, anterior-posterior and cranial-caudal directions, respectively. Human observers rated the 1.23 ms echo-time GRE images with the best average marker visibility score of 100% and an F 1 score of 1. In the phantom study, the Gold-Anchor GA-200X-20-B (deployed in a folded configuration) produced the largest sequence averaged lCNR and AMV measurements at 16.1 and 16.7 mm3, respectively. Using quantitative visibility and distinguishability metrics and human observer ratings, the patient study demonstrated that multiple-echo GRE images produced the best gold FM visibility and distinguishability. The phantom study demonstrated that markers manufactured from platinum or iron-doped gold quantitatively produced superior visibility compared to their pure gold counterparts.
Collapse
Affiliation(s)
- Kamal Singhrao
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Greer P, Martin J, Sidhom M, Hunter P, Pichler P, Choi JH, Best L, Smart J, Young T, Jameson M, Afinidad T, Wratten C, Denham J, Holloway L, Sridharan S, Rai R, Liney G, Raniga P, Dowling J. A Multi-center Prospective Study for Implementation of an MRI-Only Prostate Treatment Planning Workflow. Front Oncol 2019; 9:826. [PMID: 31555587 PMCID: PMC6727318 DOI: 10.3389/fonc.2019.00826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: This project investigates the feasibility of implementation of MRI-only prostate planning in a prospective multi-center study. Method and Materials: A two-phase implementation model was utilized where centers performed retrospective analysis of MRI-only plans for five patients followed by prospective MRI-only planning for subsequent patients. Feasibility was assessed if at least 23/25 patients recruited to phase 2 received MRI-only treatment workflow. Whole-pelvic MRI scans (T2 weighted, isotropic 1.6 mm voxel 3D sequence) were converted to pseudo-CT using an established atlas-based method. Dose plans were generated using MRI contoured anatomy with pseudo-CT for dose calculation. A conventional CT scan was acquired subsequent to MRI-only plan approval for quality assurance purposes (QA-CT). 3D Gamma evaluation was performed between pseudo-CT calculated plan dose and recalculation on QA-CT. Criteria was 2%, 2 mm criteria with 20% low dose threshold. Gold fiducial marker positions for image guidance were compared between pseudo-CT and QA-CT scan prior to treatment. Results: All 25 patients recruited to phase 2 were treated using the MRI-only workflow. Isocenter dose differences between pseudo-CT and QA-CT were −0.04 ± 0.93% (mean ± SD). 3D Gamma dose comparison pass-rates were 99.7% ± 0.5% with mean gamma 0.22 ± 0.07. Results were similar for the two centers using two different scanners. All gamma comparisons exceeded the 90% pass-rate tolerance with a minimum gamma pass-rate of 98.0%. In all cases the gold fiducial markers were correctly identified on MRI and the distances of all seeds to centroid were within the tolerance of 1.0 mm of the distances on QA-CT (0.07 ± 0.41 mm), with a root-mean-square difference of 0.42 mm. Conclusion: The results support the hypothesis that an MRI-only prostate workflow can be implemented safely and accurately with appropriate quality assurance methods.
Collapse
Affiliation(s)
- Peter Greer
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Jarad Martin
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Mark Sidhom
- Liverpool Hospital Cancer Therapy Centre, South West Sydney Local Health District, Sydney, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Perry Hunter
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Peter Pichler
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Jae Hyuk Choi
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Leah Best
- Hunter New England Imaging, HNE Health Service, Newcastle, NSW, Australia
| | - Joanne Smart
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Tony Young
- Liverpool Hospital Cancer Therapy Centre, South West Sydney Local Health District, Sydney, NSW, Australia.,School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Michael Jameson
- Liverpool Hospital Cancer Therapy Centre, South West Sydney Local Health District, Sydney, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Tess Afinidad
- Liverpool Hospital Cancer Therapy Centre, South West Sydney Local Health District, Sydney, NSW, Australia
| | - Chris Wratten
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - James Denham
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Lois Holloway
- Liverpool Hospital Cancer Therapy Centre, South West Sydney Local Health District, Sydney, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Swetha Sridharan
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Robba Rai
- Liverpool Hospital Cancer Therapy Centre, South West Sydney Local Health District, Sydney, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Gary Liney
- Liverpool Hospital Cancer Therapy Centre, South West Sydney Local Health District, Sydney, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Parnesh Raniga
- The Australian E-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Jason Dowling
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia.,The Australian E-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Kim JI, Park JM, Choi CH, An HJ, Kim YJ, Kim JH. Retrospective study comparing MR-guided radiation therapy (MRgRT) setup strategies for prostate treatment: repositioning vs. replanning. Radiat Oncol 2019; 14:139. [PMID: 31387593 PMCID: PMC6683369 DOI: 10.1186/s13014-019-1349-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study compared adaptive replanning and repositioning corrections based on soft-tissue matching for prostate cancer by using the magnetic resonance-guided radiation therapy (MRgRT) system. METHODS A total of 19 patients with prostate cancer were selected retrospectively. Weekly magnetic resonance image (MRI) scans were acquired for 5 weeks for each patient to observe the anatomic changes during the treatment course. Initial intensity-modulated radiation therapy (IMRT) plans (iIMRT) were generated for each patient with 13 coplanar 60Co beams on a ViewRay™ system. Two techniques were applied: patient repositioning and replanning. For patient repositioning, one plan was created: soft-tissue (prostate) matching (Soft). The dose distribution was calculated for each MRI with the beam delivery parameters from the initial IMRT plan. The replanning technique was used to generate the Adaptive plan, which was the reoptimized plan for the weekly MRI. The dose-volumetric parameters of the planning target volume (PTV), bladder, and rectum were calculated for all plans. During the treatment course, the PTV, bladder, and rectum were evaluated for changes in volume and the effect on dosimetric parameters. The differences between the dose-volumetric parameters of the plans were examined through the Wilcoxon test. The initial plan was used as a baseline to compare the differences. RESULTS The Adaptive plan showed better target coverage during the treatment period, but the change was not significant in the Soft plan. There were significant differences in D98%, D95%, and D2% in PTV between the Soft and Adaptive plans (p < 0.05) except for Dmean. There was no significant change in Dmax and Dmean as the treatment progressed with all plans. All indices for the Adaptive plan stayed the same compared to those of iIMRT during the treatment course. There were significant differences in D15%, D25%, D35%, and D50% in the bladder between the Soft and Adaptive plans. The Adaptive plan showed the worse dose sparing than the Soft plan for the bladder according to each dosimetric index. In contrast to the bladder, the Adaptive plan achieved better sparing than the Soft plan during the treatment course. The significant differences were only observed in D15% and D35% between the Soft and Adaptive plans (p < 0.05). CONCLUSIONS Patient repositioning based on the target volume (Soft plan) can relatively retain the target coverage for patients and the OARs remain at a clinically tolerance level during the treatment course. The Adaptive plan did not clinically improve for the dose delivered to OARs, it kept the dose delivered to the target volume constant. However, the Adaptive plan is beneficial when the organ positions and volumes change considerable during treatment.
Collapse
Affiliation(s)
- Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Center for Convergence Research on Robotics, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Hyun Joon An
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yi-Jun Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Nosrati R, Paudel M, Ravi A, Pejovic-Milic A, Morton G, Stanisz GJ. Potential applications of the quantitative susceptibility mapping (QSM) in MR-guided radiation therapy. ACTA ACUST UNITED AC 2019; 64:145013. [DOI: 10.1088/1361-6560/ab2623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Beld E, Moerland MA, van der Voort van Zyp JRN, Viergever MA, Lagendijk JJW, Seevinck PR. MRI artifact simulation for clinically relevant MRI sequences for guidance of prostate HDR brachytherapy. Phys Med Biol 2019; 64:095006. [PMID: 30947159 DOI: 10.1088/1361-6560/ab15ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For the purpose of magnetic resonance imaging (MRI) guidance of prostate high-dose-rate (HDR) brachytherapy, this paper presents a study on the potential of clinically relevant MRI sequences to facilitate tracking or localization of brachytherapy devices (HDR source/titanium needle), and which could simultaneously be used to visualize the anatomy. The tracking or localization involves simulation of the MRI artifact in combination with a template matching algorithm. Simulations of the MRI artifacts induced by an HDR brachytherapy source and a titanium needle were implemented for four types of sequences: spoiled gradient echo, spin echo, balanced steady-state free precession (bSSFP) and bSSFP with spectral attenuated inversion recovery (SPAIR) fat suppression. A phantom study was conducted in which mentioned sequences (in 2D) as well as the volumetric MRI sequences of the current clinical scan protocol were applied to obtain the induced MRI artifacts for an HDR source and a titanium needle. Localization of the objects was performed by a phase correlation based template matching algorithm. The simulated images demonstrated high correspondences with the acquired MR images, and allowed localization of the objects. A comparison between the object positions obtained for all applied MRI sequences showed deviations (from the average position) of 0.2-0.3 mm, proving that all MRI sequences were suitable for localization of the objects, irrespective of their 2D or volumetric nature. This study demonstrated that the MRI artifact induced by an HDR source or a titanium needle could be simulated for the four investigated types of MRI sequences (spoiled gradient echo, spin echo, bSSFP and bSSFP-SPAIR), valuable for real-time object localization in clinical practice. This leads to more flexibility in the choice of MRI sequences for guidance of HDR brachytherapy, as they are suitable for both object localization and anatomy visualization.
Collapse
Affiliation(s)
- Ellis Beld
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands. Author to whom correspondence may be addressed
| | | | | | | | | | | |
Collapse
|
14
|
McNabb E, Wong R, Noseworthy MD. Differentiating platinum coated brachytherapy seeds and gold fiducial markers with varying off-resonant frequency offsets. Magn Reson Imaging 2019; 60:68-75. [PMID: 30959177 DOI: 10.1016/j.mri.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE To develop an off-resonant frequency filtered method to selectively differentiate between implanted gold fiducial markers and platinum coated brachytherapy seeds. MATERIALS AND METHODS The magnetic susceptibilities for gold fiducial markers and brachytherapy seeds differ in magnitude and also in their signs, resulting in B0-field inhomogeneity patterns with opposite main lobes. A pulse sequence used to localize brachytherapy seeds with positive contrast, centre-out radial sampling with off-resonance reception (co-RASOR), was used to reconstruct images with a range of off-resonant frequency offsets. The proposed method utilizes two frequency filters to selectively reconstruct maximum intensity projections through band-pass regions where each seed has its maximal localized hyperintensity. Seeds were simulated and then placed in gel and tissue phantoms to validate the technique using orthogonal 2D slices with seeds both parallel and perpendicular to the B0-field. RESULTS Dual-plane 2D co-RASOR sequences were reconstructed off-resonance with applied frequency filters to create two projections displaying each seed, which were then colour-coded to negative and positive frequencies. Phantom validation showed that each seed contains its maximal CNR in opposing frequency regions as predicted. Local maxima can also appear in both negative and positive frequency regions. The relative difference between the signal of each seed and these local maxima ranged from 1.19 to 3.73, and an image threshold was determined in all cases. Tissue validation showed the technique differentiates seeds correctly and is limited by the hyperintensity patterns observed in the co-RASOR method. CONCLUSIONS Dual-plane co-RASOR offers sub-millimetre positive contrast from implanted seeds that contain unique off-resonant frequency maxima, which frequency filters can selectively differentiate.
Collapse
Affiliation(s)
- Evan McNabb
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Raimond Wong
- Juravinski Cancer Centre, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Noseworthy
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Radiology, McMaster University, Hamilton, Ontario, Canada; Imaging Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
de Muinck Keizer DM, Pathmanathan AU, Andreychenko A, Kerkmeijer LGW, van der Voort van Zyp JRN, Tree AC, van den Berg CAT, de Boer JCJ. Fiducial marker based intra-fraction motion assessment on cine-MR for MR-linac treatment of prostate cancer. Phys Med Biol 2019; 64:07NT02. [PMID: 30794995 DOI: 10.1088/1361-6560/ab09a6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have developed a method to determine intrafraction motion of the prostate through automatic fiducial marker (FM) tracking on 3D cine-magnetic resonance (MR) images with high spatial and temporal resolution. Twenty-nine patients undergoing prostate stereotactic body radiotherapy (SBRT), with four implanted cylindrical gold FMs, had cine-MR imaging sessions after each of five weekly fractions. Each cine-MR examination consisted of 55 sequentially obtained 3D datasets ('dynamics'), acquired over a 11 s period, covering a total of 10 min. FM locations in the first dynamic were manually identified by a clinician, FM centers in subsequent dynamics were automatically determined. Center of mass (COM) translations and rotations were determined by calculating the rigid transformations between the FM template of the first and subsequent dynamics. The algorithm was applied to 7315 dynamics over 133 scans of 29 patients and the obtained results were validated by comparing the COM locations recorded by the clinician at the halfway-dynamic (after 5 min) and end dynamic (after 10 min). The mean COM translations at 10 min were X: 0.0 [Formula: see text] 0.8 mm, Y: 1.0 [Formula: see text] 1.9 mm and Z: 0.9 [Formula: see text] 2.0 mm. The mean rotation results at 10 min were X: 0.1 [Formula: see text] 3.9°, Y: 0.0 [Formula: see text] 1.3° and Z: 0.1 [Formula: see text] 1.2°. The tracking success rate was 97.7% with a mean 3D COM error of 1.1 mm. We have developed a robust, fast and accurate FM tracking algorithm for cine-MR data, which allows for continuous monitoring of prostate motion during MR-guided radiotherapy (MRgRT). These results will be used to validate automatic prostate tracking based on soft-tissue contrast.
Collapse
Affiliation(s)
- D M de Muinck Keizer
- Department of Radiotherapy, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands. Joint first author. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pathmanathan AU, McNair HA, Schmidt MA, Brand DH, Delacroix L, Eccles CL, Gordon A, Herbert T, van As NJ, Huddart RA, Tree AC. Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy. Br J Radiol 2019; 92:20180948. [PMID: 30676772 PMCID: PMC6540870 DOI: 10.1259/bjr.20180948] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE: With increasing incorporation of MRI in radiotherapy, we investigate two MRI sequences for prostate delineation in radiographer-led image guidance. METHODS: Five therapeutic radiographers contoured the prostate individually on CT, T2 weighted (T2W) and T2* weighted (T2*W) imaging for 10 patients. Contours were analysed with Monaco ADMIRE (research v. 2.0) to assess interobserver variability and accuracy by comparison with a gold standard clinician contour. Observers recorded time taken for contouring and scored image quality and confidence in contouring. RESULTS: There is good agreement when comparing radiographer contours to the gold-standard for all three imaging types with Dice similarity co-efficient 0.91-0.94, Cohen's κ 0.85-0.91, Hausdorff distance 4.6-7.6 mm and mean distance between contours 0.9-1.2 mm. In addition, there is good concordance between radiographers across all imaging modalities. Both T2W and T2*W MRI show reduced interobserver variability and improved accuracy compared to CT, this was statistically significant for T2*W imaging compared to CT across all four comparison metrics. Comparing MRI sequences reveals significantly reduced interobserver variability and significantly improved accuracy on T2*W compared to T2W MRI for DSC and Cohen's κ. Both MRI sequences scored significantly higher compared to CT for image quality and confidence in contouring, particularly T2*W. This was also reflected in the shorter time for contouring, measuring 15.4, 9.6 and 9.8 min for CT, T2W and T2*W MRI respectively. Conclusion: Therapeutic radiographer prostate contours are more accurate, show less interobserver variability and are more confidently and quickly outlined on MRI compared to CT, particularly using T2*W MRI. Advances in knowledge: Our work is relevant for MRI sequence choice and development of the roles of the interprofessional team in the advancement of MRI-guided radiotherapy.
Collapse
Affiliation(s)
| | - Helen A McNair
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | | | - Louise Delacroix
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | - Alexandra Gordon
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | - Trina Herbert
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | | | | |
Collapse
|
17
|
Pathmanathan AU, Schmidt MA, Brand DH, Kousi E, van As NJ, Tree AC. Improving fiducial and prostate capsule visualization for radiotherapy planning using MRI. J Appl Clin Med Phys 2019; 20:27-36. [PMID: 30756456 PMCID: PMC6414142 DOI: 10.1002/acm2.12529] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/06/2018] [Accepted: 12/10/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Intraprostatic fiducial markers (FM) improve the accuracy of radiotherapy (RT) delivery. Here we assess geometric integrity and contouring consistency using a T2*-weighted (T2*W) sequence alone, which allows visualization of the FM. MATERIAL AND METHODS Ten patients scanned within the Prostate Advances in Comparative Evidence (PACE) trial (NCT01584258) had prostate images acquired with computed tomography (CT) and Magnetic Resonance (MR) Imaging: T2-weighted (T2W) and T2*W sequences. The prostate was contoured independently on each imaging dataset by three clinicians. Interobserver variability was assessed using comparison indices with Monaco ADMIRE (research version 2.0, Elekta AB) and examined for statistical differences between imaging sets. CT and MR images of two test objects were acquired to assess geometric distortion and accuracy of marker positioning. The first was a linear test object comprising straight tubes in three orthogonal directions, the second was a smaller test object with markers suspended in gel. RESULTS Interobserver variability for prostate contouring was lower for both T2W and T2*W compared to CT, this was statistically significant when comparing CT and T2*W images. All markers are visible in T2*W images with 29/30 correctly identified, only 3/30 are visible in T2W images. Assessment of geometric distortion revealed in-plane displacements were under 0.375 mm in MRI, and through plane displacements could not be detected. The signal loss in the MR images is symmetric in relation to the true marker position shown in CT images. CONCLUSION Prostate T2*W images are geometrically accurate, and yield consistent prostate contours. This single sequence can be used to identify FM and for prostate delineation in a mixed MR-CT workflow.
Collapse
Affiliation(s)
- Angela U Pathmanathan
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Maria A Schmidt
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Douglas H Brand
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Evanthia Kousi
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Nicholas J van As
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Alison C Tree
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| |
Collapse
|
18
|
Gustafsson C, Persson E, Gunnlaugsson A, Olsson LE. Using C-Arm X-ray images from marker insertion to confirm the gold fiducial marker identification in an MRI-only prostate radiotherapy workflow. J Appl Clin Med Phys 2018; 19:185-192. [PMID: 30354010 PMCID: PMC6236813 DOI: 10.1002/acm2.12478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/30/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer radiotherapy workflows, solely based on magnetic resonance imaging (MRI), are now in clinical use. In these workflows, intraprostatic gold fiducial markers (GFM) show similar signal behavior as calcifications and bleeding in T2‐weighted MRI‐images. Accurate GFM identification in MRI‐only radiotherapy workflows is therefore a major challenge. C‐arm X‐ray images (CkV‐images), acquired at GFM implantation, could provide GFM position information and be used to confirm correct identification in T2‐weighted MRI‐images. This would require negligible GFM migration between implantation and MRI‐imaging. Marker migration was therefore investigated. The aim of this study was to show the feasibility of using CkV‐images to confirm GFM identification in an MRI‐only prostate radiotherapy workflow. An anterior‐posterior digitally reconstructed radiograph (DRR)‐image and a mirrored posterior‐anterior CkV‐image were acquired two weeks apart for 16 patients in an MRI‐only radiotherapy workflow. The DRR‐image originated from synthetic CT‐images (created from MRI‐images). A common image geometry was defined between the DRR‐ and CkV‐image for each patient. A rigid registration between the GFM center of mass (CoM) coordinates was performed and the distance between each of the GFM in the DRR‐ and registered CkV‐image was calculated. The same methodology was used to assess GFM migration for 31 patients in a CT‐based radiotherapy workflow. The distance calculated was considered a measure of GFM migration. A statistical test was performed to assess any difference between the cohorts. The mean absolute distance difference for the GFM CoM between the DRR‐ and CkV‐image in the MRI‐only cohort was 1.7 ± 1.4 mm. The mean GFM migration was 1.2 ± 0.7 mm. No significant difference between the measured total distances of the two cohorts could be detected (P = 0.37). This demonstrated that, a C‐Arm X‐ray image acquired from the GFM implantation procedure could be used to confirm GFM identification from MRI‐images. GFM migration was present but did not constitute a problem.
Collapse
Affiliation(s)
- Christian Gustafsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Emilia Persson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Adalsteinn Gunnlaugsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Lars E Olsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| |
Collapse
|
19
|
McNabb E, Wong R, Noseworthy MD. Resolution and registration in dual-plane co-RASOR MR. Phys Med Biol 2018; 63:215005. [PMID: 30260799 DOI: 10.1088/1361-6560/aae4d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance imaging (MRI) has superior soft tissue contrast and lower interobserver variability compared to computed tomography and advances in equipment and pseudo-CT estimation have allowed for MR-only radiation therapy planning. Dedicated MR sequences have been used to localize paramagnetic structures with positive contrast, and most implanted seeds are gold fiducial markers (GFMs). We used a fast, dual-plane co-RASOR sequence to localize implanted GFMs with positive contrast in phantom and tissue to assess their resolution and registration accuracy of registration to CT. Off-resonant reconstructions of co-RASOR images were able to resolve GFMs down to 5 mm apart at 12 cm FOV. No systematic biases were observed by comparing registration of co-RASOR and bSSFP to CT images in an MR-compatible Lego phantom with a set of highly visible known points. The standard deviations of the MR to CT distance errors were <0.5 mm in all directions. We separated the component due to registration by comparing the two MR sequences, which had a maximum standard deviation of 0.36 mm in the SI-direction. Registration using the positive contrast points in a porcine sample phantom showed increased errors, but co-RASOR still performs acceptably with a target registration error of <0.75 mm. The dual-plane co-RASOR sequence could then be used for both registration and image tracking when performing MR-only radiation therapy planning.
Collapse
Affiliation(s)
- Evan McNabb
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
20
|
Bouwman JG, Custers BA, Bakker CJG, Viergever MA, Seevinck PR. isoPhasor: a generic and precise marker visualization, localization, and quantification method based on phase saddles in 3D MR imaging. Magn Reson Med 2018; 81:2038-2051. [PMID: 30346055 DOI: 10.1002/mrm.27493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE To derive a generic approach for accurate localization and characterization of susceptibility markers in MRI, compatible with many common types of pulse sequences, sampling trajectories, and acceleration methods. THEORY AND METHODS A susceptibility marker's dipolar phase evolution creates 3 saddles in the phase gradient of the spatial encoding, for each sampled data point in k-space. The signal originating from these saddles can be focused at the location of the marker to create positive contrast. The required phase shift can be calculated from the scan parameters and the marker properties, providing a marker detection algorithm generic for different scan types. The method was validated numerically and experimentally for a broad range of spherical susceptibility markers (0.3 < radius < 1.6 mm, 10 < |∆χ| < 3300 ppm), under various conditions. RESULTS For all numerical and experimental phantoms, the average localization error was below one third of the voxel size, whereas the average error in magnetic strength quantification was 7%. The experiments included different pulse sequences (gradient echo, spin echo [SE], and free induction decay scans), sampling strategies (Cartesian, radial), and acceleration methods (echo planar imaging EPI, turbo SE). CONCLUSION Spherical markers can be identified from their phase saddles, enabling clear visualization, precise localization, and accurate quantification of their magnetic strength, in a wide range of clinically relevant pulse sequences and sampling strategies.
Collapse
Affiliation(s)
- Job G Bouwman
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bram A Custers
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chris J G Bakker
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Seevinck
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Kerkmeijer LGW, Maspero M, Meijer GJ, van der Voort van Zyp JRN, de Boer HCJ, van den Berg CAT. Magnetic Resonance Imaging only Workflow for Radiotherapy Simulation and Planning in Prostate Cancer. Clin Oncol (R Coll Radiol) 2018; 30:692-701. [PMID: 30244830 DOI: 10.1016/j.clon.2018.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 01/06/2023]
Abstract
Magnetic resonance imaging (MRI) is often combined with computed tomography (CT) in prostate radiotherapy to optimise delineation of the target and organs-at-risk (OAR) while maintaining accurate dose calculation. Such a dual-modality workflow requires two separate imaging sessions, and it has some fundamental and logistical drawbacks. Due to the availability of new MRI hardware and software solutions, CT examinations can be omitted for prostate radiotherapy simulations. All information for treatment planning, including electron density maps and bony anatomy, can nowadays be obtained with MRI. Such an MRI-only simulation workflow reduces delineation ambiguities, eases planning logistics, and improves patient comfort; however, careful validation of the complete MRI-only workflow is warranted. The first institutes are now adopting this MRI-only workflow for prostate radiotherapy. In this article, we will review technology and workflow requirements for an MRI-only prostate simulation workflow.
Collapse
Affiliation(s)
- L G W Kerkmeijer
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands.
| | - M Maspero
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - G J Meijer
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | | | - H C J de Boer
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - C A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
22
|
Tenhunen M, Korhonen J, Kapanen M, Seppälä T, Koivula L, Collan J, Saarilahti K, Visapää H. MRI-only based radiation therapy of prostate cancer: workflow and early clinical experience. Acta Oncol 2018; 57:902-907. [PMID: 29488426 DOI: 10.1080/0284186x.2018.1445284] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is the most comprehensive imaging modality for radiation therapy (RT) target delineation of most soft tissue tumors including prostate cancer. We have earlier presented step by step the MRI-only based workflow for RT planning and image guidance for localized prostate cancer. In this study we present early clinical experiences of MRI-only based planning. MATERIAL AND METHODS We have analyzed the technical planning workflow of the first 200 patients having received MRI-only planned radiation therapy for localized prostate cancer in Helsinki University Hospital Cancer center. Early prostate specific antigen (PSA) results were analyzed from n = 125 MRI-only patients (n = 25 RT only, n = 100 hormone treatment + RT) and were compared with the corresponding computed tomography (CT) planned patient group. RESULTS Technically the MRI-only planning procedure was suitable for 92% of the patients, only 8% of the patients required supplemental CT imaging. Early PSA response in the MRI-only planned group showed similar treatment results compared with the CT planned group and with an equal toxicity level. CONCLUSION Based on this retrospective study, MRI-only planning procedure is an effective and safe way to perform RT for localized prostate cancer. It is suitable for the majority of the patients.
Collapse
Affiliation(s)
- Mikko Tenhunen
- Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Juha Korhonen
- Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Mika Kapanen
- Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Tiina Seppälä
- Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Lauri Koivula
- Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Juhani Collan
- Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | | | - Harri Visapää
- Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
23
|
Maspero M, Seevinck PR, Willems NJW, Sikkes GG, de Kogel GJ, de Boer HCJ, van der Voort van Zyp JRN, van den Berg CAT. Evaluation of gold fiducial marker manual localisation for magnetic resonance-only prostate radiotherapy. Radiat Oncol 2018; 13:105. [PMID: 29871656 PMCID: PMC5989467 DOI: 10.1186/s13014-018-1029-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/13/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The use of intraprostatic gold fiducial markers (FMs) ensures highly accurate and precise image-guided radiation therapy for patients diagnosed with prostate cancer thanks to the ease of localising FMs on photon-based imaging, like Computed Tomography (CT) images. Recently, Magnetic Resonance (MR)-only radiotherapy has been proposed to simplify the workflow and reduce possible systematic uncertainties. A critical, determining factor in the accuracy of such an MR-only simulation will be accurate FM localisation using solely MR images. PURPOSE The aim of this study is to evaluate the performances of manual MR-based FM localisation within a clinical environment. METHODS We designed a study in which 5 clinically involved radiation therapy technicians (RTTs) independently localised the gold FMs implanted in 16 prostate cancer patients in two scenarios: employing a single MR sequence or a combination of sequences. Inter-observer precision and accuracy were assessed for the two scenarios for localisation in terms of 95% limit of agreement on single FMs (LoA)/ centre of mass (LoA CM) and inter-marker distances (IDs), respectively. RESULTS The number of precisely located FMs (LoA <2 mm) increased from 38/48 to 45/48 FMs when localisation was performed using multiple sequences instead of single one. When performing localisation on multiple sequences, imprecise localisation of the FMs (3/48 FMs) occurred for 1/3 implanted FMs in three different patients. In terms of precision, we obtained LoA CM within 0.25 mm in all directions over the precisely located FMs. In terms of accuracy, IDs difference of manual MR-based localisation versus CT-based localisation was on average (±1 STD) 0.6 ±0.6 mm. CONCLUSIONS For both the investigated scenarios, the results indicate that when FM classification was correct, the precision and accuracy are high and comparable to CT-based FM localisation. We found that use of multiple sequences led to better localisation performances compared with the use of single sequence. However, we observed that, due to the presence of calcification and motion, the risk of mislocated patient positioning is still too high to allow the sole use of manual FM localisation. Finally, strategies to possibly overcome the current challenges were proposed.
Collapse
Affiliation(s)
- Matteo Maspero
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands.
| | - Peter R Seevinck
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands
| | - Nicole J W Willems
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands
| | - Gonda G Sikkes
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands
| | - Geja J de Kogel
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands
| | - Hans C J de Boer
- Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands
| | | | | |
Collapse
|
24
|
Bera K, Velcheti V, Madabhushi A. Novel Quantitative Imaging for Predicting Response to Therapy: Techniques and Clinical Applications. Am Soc Clin Oncol Educ Book 2018; 38:1008-1018. [PMID: 30231314 PMCID: PMC6152883 DOI: 10.1200/edbk_199747] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The current standard of Response Evaluation Criteria in Solid Tumors (RECIST)-based tumor response evaluation is limited in its ability to accurately monitor treatment response. Radiomics, an approach involving computerized extraction of several quantitative imaging features, has shown promise in predicting as well as monitoring response to therapy. In this article, we provide a brief overview of radiomic approaches and the various analytical methods and techniques, specifically in the context of predicting and monitoring treatment response for non-small cell lung cancer (NSCLC). We briefly summarize some of the various types of radiomic features, including tumor shape and textural patterns, both within the tumor and within the adjacent tumor microenvironment. Additionally, we also discuss work in delta-radiomics or change in radiomic features (e.g., texture within the nodule) across longitudinally interspersed images in time for monitoring changes in therapy. We discuss the utility of these approaches for NSCLC, specifically the role of radiomics as a prognostic marker for treatment effectiveness and early therapy response, including chemoradiation, immunotherapy, and trimodality therapy.
Collapse
Affiliation(s)
- Kaustav Bera
- From the Case Western Reserve University, Cleveland, OH; Cleveland Clinic Foundation, Cleveland, OH
| | - Vamsidhar Velcheti
- From the Case Western Reserve University, Cleveland, OH; Cleveland Clinic Foundation, Cleveland, OH
| | - Anant Madabhushi
- From the Case Western Reserve University, Cleveland, OH; Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
25
|
Beld E, Moerland MA, Zijlstra F, Viergever MA, Lagendijk JJW, Seevinck PR. MR-based source localization for MR-guided HDR brachytherapy. Phys Med Biol 2018. [PMID: 29516866 DOI: 10.1088/1361-6560/aab50b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4-0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15-1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.
Collapse
Affiliation(s)
- E Beld
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Kemppainen R, Vaara T, Joensuu T, Kiljunen T. Accuracy and precision of patient positioning for pelvic MR-only radiation therapy using digitally reconstructed radiographs. Phys Med Biol 2018; 63:055009. [PMID: 29405121 DOI: 10.1088/1361-6560/aaad21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Magnetic resonance imaging (MRI) has in recent years emerged as an imaging modality to drive precise contouring of targets and organs at risk in external beam radiation therapy. Moreover, recent advances in MRI enable treatment of cancer without computed tomography (CT) simulation. A commercially available MR-only solution, MRCAT, offers a single-modality approach that provides density information for dose calculation and generation of positioning reference images. We evaluated the accuracy of patient positioning based on MRCAT digitally reconstructed radiographs (DRRs) by comparing to standard CT based workflow. MATERIALS AND METHODS Twenty consecutive prostate cancer patients being treated with external beam radiation therapy were included in the study. DRRs were generated for each patient based on the planning CT and MRCAT. The accuracy assessment was performed by manually registering the DRR images to planar kV setup images using bony landmarks. A Bayesian linear mixed effects model was used to separate systematic and random components (inter- and intra-observer variation) in the assessment. In addition, method agreement was assessed using a Bland-Altman analysis. RESULTS The systematic difference between MRCAT and CT based patient positioning, averaged over the study population, were found to be (mean [95% CI]) -0.49 [-0.85 to -0.13] mm, 0.11 [-0.33 to +0.57] mm and -0.05 [-0.23 to +0.36] mm in vertical, longitudinal and lateral directions, respectively. The increases in total random uncertainty were estimated to be below 0.5 mm for all directions, when using MR-only workflow instead of CT. CONCLUSIONS The MRCAT pseudo-CT method provides clinically acceptable accuracy and precision for patient positioning for pelvic radiation therapy based on planar DRR images. Furthermore, due to the reduction of geometric uncertainty, compared to dual-modality workflow, the approach is likely to improve the total geometric accuracy of pelvic radiation therapy.
Collapse
Affiliation(s)
- R Kemppainen
- Philips MR Therapy, Äyritie 4, FI-01510, Vantaa, Finland. Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2 C, FI-02150 Espoo, Finland
| | | | | | | |
Collapse
|
27
|
Abstract
Over the past decade, the application of magnetic resonance imaging (MRI) has increased, and there is growing evidence to suggest that improvements in the accuracy of target delineation in MRI-guided radiation therapy may improve clinical outcomes in a variety of cancer types. However, some considerations should be recognized including patient motion during image acquisition and geometric accuracy of images. Moreover, MR-compatible immobilization devices need to be used when acquiring images in the treatment position while minimizing patient motion during the scan time. Finally, synthetic CT images (i.e. electron density maps) and digitally reconstructed radiograph images should be generated from MRI images for dose calculation and image guidance prior to treatment. A short review of the concepts and techniques that have been developed for implementation of MRI-only workflows in radiation therapy is provided in this document.
Collapse
Affiliation(s)
- Amir M. Owrangi
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Peter B. Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia
- Department of Radiation Oncology, Calvary Mater Hospital, Newcastle, NSW, 2298, Australia
| | - Carri K. Glide-Hurst
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
28
|
Tanaka O, Komeda H, Hattori M, Hirose S, Yama E, Matsuo M. Comparison of MRI sequences in ideal fiducial maker-based radiotherapy for prostate cancer. Rep Pract Oncol Radiother 2017; 22:502-506. [PMID: 29123458 DOI: 10.1016/j.rpor.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/11/2017] [Accepted: 10/07/2017] [Indexed: 12/31/2022] Open
Abstract
Aim Prostate contouring using CT alone is difficult. To overcome the uncertainty, CT/MRI registration using a fiducial marker is generally performed. However, visualization of the marker itself can be difficult with MRI. This study aimed to determine the optimal MRI pulse sequence for defining the marker as well as the prostate outline among five sequences. Materials and methods A total of 21 consecutive patients with prostate cancer were enrolled. Two gold fiducial markers were placed before CT/MRI examination. We used the following five sequences: T1-weighted spin-echo (T1WI; TR/TE, 400-650/8 ms); T2-weighted fast spin-echo (T2WI; 4000/80); T2*-2D-weighted gradient echo (T2*2D; 700/18); T2*-3D-weighted gradient echo (T2*3D; TR/TE1/deltaTE, 37/14/7.3); and contrast-enhanced T1-weighted spin-echo (CE-T1WI; 400-650/8). Qualitative image analysis of the sequences was performed by three observers. These observers subjectively scored all images on a scale of 1-3 (1 = unclear, 2 = moderate, 3 = well visualized). A higher score indicated better visualization. Results T2WI was significantly superior to the other sequences in terms of prostate definition. T2*2D and T2*3D were strongly superior to the other sequences and were significantly superior in terms of fiducial marker definition. Conclusions T2*2D and T2*3D are superior to the other sequences for prostate contouring and marker identification. Therefore, we recommend initial T2*3D and T2*2D examinations.
Collapse
Affiliation(s)
- Osamu Tanaka
- Department of Radiation Oncology, Gifu Municipal Hospital, Japan
| | - Hisao Komeda
- Department of Urology, Gifu Municipal Hospital, Japan
| | | | - Shigeki Hirose
- Department of Radiation Oncology, Gifu Municipal Hospital, Japan
| | - Eiichi Yama
- Department of Radiation Oncology, Gifu Municipal Hospital, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University School of Medicine, Japan
| |
Collapse
|
29
|
Koivula L, Kapanen M, Seppälä T, Collan J, Dowling JA, Greer PB, Gustafsson C, Gunnlaugsson A, Olsson LE, Wee L, Korhonen J. Intensity-based dual model method for generation of synthetic CT images from standard T2-weighted MR images - Generalized technique for four different MR scanners. Radiother Oncol 2017; 125:411-419. [PMID: 29097012 DOI: 10.1016/j.radonc.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies have shown that it is possible to conduct entire radiotherapy treatment planning (RTP) workflow using only MR images. This study aims to develop a generalized intensity-based method to generate synthetic CT (sCT) images from standard T2-weighted (T2w) MR images of the pelvis. MATERIALS AND METHODS This study developed a generalized dual model HU conversion method to convert standard T2w MR image intensity values to synthetic HU values, separately inside and outside of atlas-segmented bone volume contour. The method was developed and evaluated with 20 and 35 prostate cancer patients, respectively. MR images with scanning sequences in clinical use were acquired with four different MR scanners of three vendors. RESULTS For the generated synthetic CT (sCT) images of the 35 prostate patients, the mean (and maximal) HU differences in soft and bony tissue volumes were 16 ± 6 HUs (34 HUs) and -46 ± 56 HUs (181 HUs), respectively, against the true CT images. The average of the PTV mean dose difference in sCTs compared to those in true CTs was -0.6 ± 0.4% (-1.3%). CONCLUSIONS The study provides a generalized method for sCT creation from standard T2w images of the pelvis. The method produced clinically acceptable dose calculation results for all the included scanners and MR sequences.
Collapse
Affiliation(s)
- Lauri Koivula
- Department of Radiation Oncology, Cancer Center, Helsinki University Central Hospital, Finland; Department of Physics, University of Helsinki, Finland; Medical Imaging and Radiation Therapy, Kymenlaakso Central Hospital, Kymenlaakso Social and Health Services (Carea), Kotka, Finland.
| | - Mika Kapanen
- Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Finland
| | - Tiina Seppälä
- Department of Radiation Oncology, Cancer Center, Helsinki University Central Hospital, Finland
| | - Juhani Collan
- Department of Radiation Oncology, Cancer Center, Helsinki University Central Hospital, Finland
| | - Jason A Dowling
- CSIRO Health and Biosecurity, The Australian e-Health & Research Centre, Herston, Australia
| | - Peter B Greer
- School of Mathematical and Physical Sciences, The University of Newcastle, Australia; Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Australia
| | - Christian Gustafsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden; Department of Medical Physics, Lund University, Malmö, Sweden
| | - Adalsteinn Gunnlaugsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Lars E Olsson
- Department of Medical Physics, Lund University, Malmö, Sweden; Department of Translational Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Leonard Wee
- MAASTRO Clinic, School of Oncology and Developmental Biology, Maastricht University, The Netherlands; Department of Medical Physics, Oncology Services, Vejle Hospital, Denmark
| | - Juha Korhonen
- Department of Radiation Oncology, Cancer Center, Helsinki University Central Hospital, Finland; Medical Imaging and Radiation Therapy, Kymenlaakso Central Hospital, Kymenlaakso Social and Health Services (Carea), Kotka, Finland; Department of Radiology, Helsinki University Central Hospital, Finland; Department of Nuclear Medicine, Helsinki University Central Hospital, Finland
| |
Collapse
|
30
|
Maspero M, van den Berg CAT, Zijlstra F, Sikkes GG, de Boer HCJ, Meijer GJ, Kerkmeijer LGW, Viergever MA, Lagendijk JJW, Seevinck PR. Evaluation of an automatic MR-based gold fiducial marker localisation method for MR-only prostate radiotherapy. ACTA ACUST UNITED AC 2017; 62:7981-8002. [DOI: 10.1088/1361-6560/aa875f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Zijlstra F, Moerland MA, van der Voort van Zyp JRN, Noteboom JL, Viergever MA, Seevinck PR. Challenges in MR-only seed localization for postimplant dosimetry in permanent prostate brachytherapy. Med Phys 2017; 44:5051-5060. [PMID: 28777451 DOI: 10.1002/mp.12505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE An MR-only postimplant dosimetry workflow for low dose rate (LDR) brachytherapy could reduce patient burden, improve accuracy, and improve cost efficiency. However, localization of brachytherapy seeds on MRI scans remains a major challenge for this type of workflow. In this study, we propose and validate an MR-only seed localization method and identify remaining challenges. METHODS AND MATERIALS The localization method was based on template matching of simulations of complex-valued imaging artifacts around metal brachytherapy seeds. The method was applied to MRI scans of 25 prostate cancer patients who underwent LDR brachytherapy and for whom postimplant dosimetry was performed after 4 weeks. The seed locations found with the MR-only method were validated against the seed locations found on CT. The circumstances in which detection errors were made were classified to gain an insight in the nature of the errors. RESULTS A total of 1490 of 1557 (96%) seeds were correctly detected, while 67 false-positive errors were made. The correctly detected seed locations had a high spatial accuracy with an average error of 0.8 mm compared with CT. A majority of the false positives occurred near other seeds. Most false negatives were found in either stranded configurations without spacers or near other seeds. CONCLUSIONS The low detection error rate and high localization accuracy obtained by the complex-valued template matching approach are promising for future clinical application of MR-only dosimetry. The most important remaining challenge is robustness with regard to configurations of multiple seeds in close vicinity, such as in strands of seeds without spacers. This issue could potentially be resolved by simulating specific configurations of multiple seeds or by constraining the treatment planning to avoid these configurations, which could make the proposed method competitive with CT-based seed localization.
Collapse
Affiliation(s)
- Frank Zijlstra
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marinus A Moerland
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Juus L Noteboom
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Seevinck
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Gustafsson C, Korhonen J, Persson E, Gunnlaugsson A, Nyholm T, Olsson LE. Registration free automatic identification of gold fiducial markers in MRI target delineation images for prostate radiotherapy. Med Phys 2017; 44:5563-5574. [DOI: 10.1002/mp.12516] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 08/06/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Christian Gustafsson
- Department of Hematology, Oncology and Radiation Physics; Skåne University Hospital; Lund 221 85 Sweden
- Department of Medical Radiation Physics; Lund University; Malmö 205 02 Sweden
| | - Juha Korhonen
- Department of Nuclear Medicine; Helsinki University Central Hospital; Helsinki 00290 Finland
- Department of Radiology; Helsinki University Central Hospital; Helsinki 00290 Finland
- Department of Radiation Therapy; Comprehensive Cancer Center; Helsinki University Central Hospital; Helsinki 00290 Finland
| | - Emilia Persson
- Department of Hematology, Oncology and Radiation Physics; Skåne University Hospital; Lund 221 85 Sweden
- Department of Medical Radiation Physics; Lund University; Malmö 205 02 Sweden
| | - Adalsteinn Gunnlaugsson
- Department of Hematology, Oncology and Radiation Physics; Skåne University Hospital; Lund 221 85 Sweden
| | - Tufve Nyholm
- Department of Radiation Sciences; Umeå University; Umeå 90187 Sweden
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala 95105 Sweden
| | - Lars E. Olsson
- Department of Medical Radiation Physics; Lund University; Malmö 205 02 Sweden
| |
Collapse
|
33
|
Persson E, Gustafsson C, Nordström F, Sohlin M, Gunnlaugsson A, Petruson K, Rintelä N, Hed K, Blomqvist L, Zackrisson B, Nyholm T, Olsson LE, Siversson C, Jonsson J. MR-OPERA: A Multicenter/Multivendor Validation of Magnetic Resonance Imaging-Only Prostate Treatment Planning Using Synthetic Computed Tomography Images. Int J Radiat Oncol Biol Phys 2017; 99:692-700. [PMID: 28843375 DOI: 10.1016/j.ijrobp.2017.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/12/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To validate the dosimetric accuracy and clinical robustness of a commercially available software for magnetic resonance (MR) to synthetic computed tomography (sCT) conversion, in an MR imaging-only workflow for 170 prostate cancer patients. METHODS AND MATERIALS The 4 participating centers had MriPlanner (Spectronic Medical), an atlas-based sCT generation software, installed as a cloud-based service. A T2-weighted MR sequence, covering the body contour, was added to the clinical protocol. The MR images were sent from the MR scanner workstation to the MriPlanner platform. The sCT was automatically returned to the treatment planning system. Four MR scanners and 2 magnetic field strengths were included in the study. For each patient, a CT-treatment plan was created and approved according to clinical practice. The sCT was rigidly registered to the CT, and the clinical treatment plan was recalculated on the sCT. The dose distributions from the CT plan and the sCT plan were compared according to a set of dose-volume histogram parameters and gamma evaluation. Treatment techniques included volumetric modulated arc therapy, intensity modulated radiation therapy, and conventional treatment using 2 treatment planning systems and different dose calculation algorithms. RESULTS The overall (multicenter/multivendor) mean dose differences between sCT and CT dose distributions were below 0.3% for all evaluated organs and targets. Gamma evaluation showed a mean pass rate of 99.12% (0.63%, 1 SD) in the complete body volume and 99.97% (0.13%, 1 SD) in the planning target volume using a 2%/2-mm global gamma criteria. CONCLUSIONS Results of the study show that the sCT conversion method can be used clinically, with minimal differences between sCT and CT dose distributions for target and relevant organs at risk. The small differences seen are consistent between centers, indicating that an MR imaging-only workflow using MriPlanner is robust for a variety of field strengths, vendors, and treatment techniques.
Collapse
Affiliation(s)
- Emilia Persson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden; Department of Medical Physics, Lund University, Malmö, Sweden.
| | - Christian Gustafsson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden; Department of Medical Physics, Lund University, Malmö, Sweden
| | - Fredrik Nordström
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maja Sohlin
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adalsteinn Gunnlaugsson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Karin Petruson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niina Rintelä
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Hed
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lennart Blomqvist
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Tufve Nyholm
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars E Olsson
- Department of Medical Physics, Lund University, Malmö, Sweden
| | | | - Joakim Jonsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
34
|
Dinis Fernandes C, Dinh CV, Steggerda MJ, ter Beek LC, Smolic M, van Buuren LD, Pos FJ, van der Heide UA. Prostate fiducial marker detection with the use of multi-parametric magnetic resonance imaging. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2017. [DOI: 10.1016/j.phro.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|