1
|
Rizwan A, Sridharan B, Park JH, Kim D, Vial JC, Kyhm K, Lim HG. Nanophotonic-enhanced photoacoustic imaging for brain tumor detection. J Nanobiotechnology 2025; 23:170. [PMID: 40045308 PMCID: PMC11881315 DOI: 10.1186/s12951-025-03204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Photoacoustic brain imaging (PABI) has emerged as a promising biomedical imaging modality, combining high contrast of optical imaging with deep tissue penetration of ultrasound imaging. This review explores the application of photoacoustic imaging in brain tumor imaging, highlighting the synergy between nanomaterials and state of the art optical techniques to achieve high-resolution imaging of deeper brain tissues. PABI leverages the photoacoustic effect, where absorbed light energy causes thermoelastic expansion, generating ultrasound waves that are detected and converted into images. This technique enables precise diagnosis, therapy monitoring, and enhanced clinical screening, specifically in the management of complex diseases such as breast cancer, lymphatic disorder, and neurological conditions. Despite integration of photoacoustic agents and ultrasound radiation, providing a comprehensive overview of current methodologies, major obstacles in brain tumor treatment, and future directions for improving diagnostic and therapeutic outcomes. The review underscores the significance of PABI as a robust research tool and medical method, with the potential to revolutionize brain disease diagnosis and treatment.
Collapse
Affiliation(s)
- Ali Rizwan
- Smart Gym-Based Translational Research Center for Active Senior'S Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jin Hyeong Park
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Daehun Kim
- Indusrty 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jean-Claude Vial
- Université Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
- Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Kwangseuk Kyhm
- Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Gyun Lim
- Smart Gym-Based Translational Research Center for Active Senior'S Healthcare, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Indusrty 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Su L, Rodríguez-Andina JJ, Li T. Standardization of metal coil configuration in thermoacoustic imaging. OPTICS LETTERS 2024; 49:6465-6468. [PMID: 39546695 DOI: 10.1364/ol.539348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Existing TAI systems mostly use metal wires to calibrate their spatial resolution. However, research on the imaging mechanism of the metal wire and the setting of the wire parameters that can affect the system's spatial resolution is not sufficient in this context. In general, there is a lack of understanding of the factors affecting spatial resolution. A TAI system, consisting of parallel plate irradiation structures has been developed. Results show that the source of the thermoacoustic signals is the ohmic loss generated by the induced electromotive force. Moreover, the pulse width of the induced electromotive force signal is narrower than that of the system excitation signal, which holds the potential benefits for improving the spatial resolution of the TAI.
Collapse
|
3
|
Gao S, Ashikaga H, Suzuki M, Mansi T, Kim YH, Ghesu FC, Kang J, Boctor EM, Halperin HR, Zhang HK. Cardiac-gated spectroscopic photoacoustic imaging for ablation-induced necrotic lesion visualization. JOURNAL OF BIOPHOTONICS 2024; 17:e202400126. [PMID: 39075610 DOI: 10.1002/jbio.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Radiofrequency (RF) ablation is a minimally invasive therapy for atrial fibrillation. Conventional RF procedures lack intraoperative monitoring of ablation-induced necrosis, complicating assessment of completeness. While spectroscopic photoacoustic (sPA) imaging shows promise in distinguishing ablated tissue, multi-spectral imaging is challenging in vivo due to low imaging quality caused by motion. Here, we introduce a cardiac-gated sPA imaging (CG-sPA) framework to enhance image quality using a motion-gated averaging filter, relying on image similarity. Necrotic extent was calculated based on the ratio between spectral unmixed ablated tissue contrast and total tissue contrast, visualizing as a continuous color map to highlight necrotic area. The validation of the concept was conducted in both ex vivo and in vivo swine models. The ablation-induced necrotic lesion was successfully detected throughout the cardiac cycle through CG-sPA imaging. The results suggest the CG-sPA imaging framework has great potential to be incorporated into clinical workflow to guide ablation procedures intraoperatively.
Collapse
Affiliation(s)
- Shang Gao
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Hiroshi Ashikaga
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Masahito Suzuki
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tommaso Mansi
- Siemens Healthineers, Digital Technology and Innovation, Princeton, New Jersey, USA
| | - Young-Ho Kim
- Siemens Healthineers, Digital Technology and Innovation, Princeton, New Jersey, USA
| | | | - Jeeun Kang
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
| | - Emad M Boctor
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
| | - Henry R Halperin
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haichong K Zhang
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Wang Z, Yang F, Zhang W, Xiong K, Yang S. Towards in vivo photoacoustic human imaging: Shining a new light on clinical diagnostics. FUNDAMENTAL RESEARCH 2024; 4:1314-1330. [PMID: 39431136 PMCID: PMC11489505 DOI: 10.1016/j.fmre.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Multiscale visualization of human anatomical structures is revolutionizing clinical diagnosis and treatment. As one of the most promising clinical diagnostic techniques, photoacoustic imaging (PAI), or optoacoustic imaging, bridges the spatial-resolution gap between pure optical and ultrasonic imaging techniques, by the modes of optical illumination and acoustic detection. PAI can non-invasively capture multiple optical contrasts from the endogenous agents such as oxygenated/deoxygenated hemoglobin, lipid and melanin or a variety of exogenous specific biomarkers to reveal anatomy, function, and molecular for biological tissues in vivo, showing significant potential in clinical diagnostics. In 2001, the worldwide first clinical prototype of the photoacoustic system was used to screen breast cancer in vivo, which opened the prelude to photoacoustic clinical diagnostics. Over the past two decades, PAI has achieved monumental discoveries and applications in human imaging. Progress towards preclinical/clinical applications includes breast, skin, lymphatics, bowel, thyroid, ovarian, prostate, and brain imaging, etc., and there is no doubt that PAI is opening new avenues to realize early diagnosis and precise treatment of human diseases. In this review, the breakthrough researches and key applications of photoacoustic human imaging in vivo are emphatically summarized, which demonstrates the technical superiorities and emerging applications of photoacoustic human imaging in clinical diagnostics, providing clinical translational orientations for the photoacoustic community and clinicians. The perspectives on potential improvements of photoacoustic human imaging are finally highlighted.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Gao S, Liu H, Post A, Jaworski L, Bernard D, John M, Cosgriff-Hernandez E, Razavi M, Zhang HK. Enhancing boundary detection of radiofrequency ablation lesions through photoacoustic mapping. Sci Rep 2024; 14:19370. [PMID: 39169048 PMCID: PMC11339419 DOI: 10.1038/s41598-024-68046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Atrial fibrillation (A-fib) is the most common type of heart arrhythmia, typically treated with radiofrequency catheter ablation to isolate the heart from abnormal electrical signals. Monitoring the formation of ablation-induced lesions is crucial for preventing recurrences and complications arising from excessive or insufficient ablation. Existing imaging modalities lack real-time feedback, and their intraoperative usage is in its early stages. A critical need exists for an imaging-based lesion indexing (LSI) method that directly reflects tissue necrosis formation. Previous studies have indicated that spectroscopic photoacoustic (sPA) imaging can differentiate ablated tissues from their non-ablated counterparts based on PA spectrum variation. In this paper, we introduce a method for detecting ablation lesion boundaries using sPA imaging. This approach utilizes ablation LSI, which quantifies the ratio between the signal from ablated tissue and the total tissue signal. We enhance boundary detection accuracy by adapting a regression model-based compensation. Additionally, the method was cross-validated with clinically used intraoperative monitoring parameters. The proposed method was validated with ex vivo porcine cardiac tissues with necrotic lesions created by different ablation durations. The PA-measured lesion size was compared with gross pathology. Statistical analysis demonstrates a strong correlation (R > 0.90) between the PA-detected lesion size and gross pathology. The PA-detected lesion size also exhibits a moderate to strong correlation (R > 0.75) with local impedance changes recorded during procedures. These results suggest that the introduced PA imaging-based LSI has great potential to be incorporated into the clinical workflow, guiding ablation procedures intraoperatively.
Collapse
Affiliation(s)
- Shang Gao
- Department of Robotics Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA.
| | - Haotian Liu
- Department of Robotics Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA
| | - Allison Post
- Electrophysiology Clinical Research and Innovations, The Texas Heart Institute, 6770 Bertner Ave, Houston, TX, 77030, USA
| | - Lukas Jaworski
- Electrophysiology Clinical Research and Innovations, The Texas Heart Institute, 6770 Bertner Ave, Houston, TX, 77030, USA
| | - Drew Bernard
- Electrophysiology Clinical Research and Innovations, The Texas Heart Institute, 6770 Bertner Ave, Houston, TX, 77030, USA
| | - Mathews John
- Electrophysiology Clinical Research and Innovations, The Texas Heart Institute, 6770 Bertner Ave, Houston, TX, 77030, USA
| | | | - Mehdi Razavi
- Electrophysiology Clinical Research and Innovations, The Texas Heart Institute, 6770 Bertner Ave, Houston, TX, 77030, USA
| | - Haichong K Zhang
- Department of Robotics Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA.
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA.
| |
Collapse
|
6
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
7
|
Jiang Z, Wang S, Xu Y, Sun L, Gonzalez G, Chen Y, Wu QJ, Xiang L, Ren L. Radiation-induced acoustic signal denoising using a supervised deep learning framework for imaging and therapy monitoring. Phys Med Biol 2023; 68:10.1088/1361-6560/ad0283. [PMID: 37820684 PMCID: PMC11000456 DOI: 10.1088/1361-6560/ad0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Radiation-induced acoustic (RA) imaging is a promising technique for visualizing the invisible radiation energy deposition in tissues, enabling new imaging modalities and real-time therapy monitoring. However, RA imaging signal often suffers from poor signal-to-noise ratios (SNRs), thus requiring measuring hundreds or even thousands of frames for averaging to achieve satisfactory quality. This repetitive measurement increases ionizing radiation dose and degrades the temporal resolution of RA imaging, limiting its clinical utility. In this study, we developed a general deep inception convolutional neural network (GDI-CNN) to denoise RA signals to substantially reduce the number of frames needed for averaging. The network employs convolutions with multiple dilations in each inception block, allowing it to encode and decode signal features with varying temporal characteristics. This design generalizes GDI-CNN to denoise acoustic signals resulting from different radiation sources. The performance of the proposed method was evaluated using experimental data of x-ray-induced acoustic, protoacoustic, and electroacoustic signals both qualitatively and quantitatively. Results demonstrated the effectiveness of GDI-CNN: it achieved x-ray-induced acoustic image quality comparable to 750-frame-averaged results using only 10-frame-averaged measurements, reducing the imaging dose of x-ray-acoustic computed tomography (XACT) by 98.7%; it realized proton range accuracy parallel to 1500-frame-averaged results using only 20-frame-averaged measurements, improving the range verification frequency in proton therapy from 0.5 to 37.5 Hz; it reached electroacoustic image quality comparable to 750-frame-averaged results using only a single frame signal, increasing the electric field monitoring frequency from 1 fps to 1k fps. Compared to lowpass filter-based denoising, the proposed method demonstrated considerably lower mean-squared-errors, higher peak-SNR, and higher structural similarities with respect to the corresponding high-frame-averaged measurements. The proposed deep learning-based denoising framework is a generalized method for few-frame-averaged acoustic signal denoising, which significantly improves the RA imaging's clinical utilities for low-dose imaging and real-time therapy monitoring.
Collapse
Affiliation(s)
- Zhuoran Jiang
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, United States of America
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, United States of America
- Contributed equally
| | - Siqi Wang
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
- Contributed equally
| | - Yifei Xu
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
| | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Q Jackie Wu
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, United States of America
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
- Department of Radiological Sciences, University of California, Irvine, CA 92697, United States of America
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA 92612, United States of America
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland, Baltimore, MD 21201, United States of America
| |
Collapse
|
8
|
Lin X, Shi H, Fan X, Wang J, Fu Z, Chen Y, Chen S, Chen X, Chen M. Handheld interventional ultrasound/photoacoustic puncture needle navigation based on deep learning segmentation. BIOMEDICAL OPTICS EXPRESS 2023; 14:5979-5993. [PMID: 38021141 PMCID: PMC10659795 DOI: 10.1364/boe.504999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Interventional ultrasound (US) has challenges in accurate localization of the puncture needle due to intrinsic acoustic interferences, which lead to blurred, indistinct, and even invisible needles in handheld linear array transducer-based US navigation, especially the incorrect needle tip positioning. Photoacoustic (PA) imaging can provide complementary image contrast, without additional data acquisition. Herein, we proposed an internal illumination to solely light up the needle tip in PA imaging. Then deep-learning-based feature segmentation alleviates acoustic interferences, enhancing the needle shaft-tip visibility. Further, needle shaft-tip compensation aligned the needle shaft in US image and the needle tip in the PA image. The experiments on phantom, ex vivo chicken breast, preclinical radiofrequency ablation and in vivo biopsy of sentinel lymph nodes were piloted. The target registration error can reach the submillimeter level, achieving precise puncture needle tracking ability with in-plane US/PA navigation.
Collapse
Affiliation(s)
- Xiangwei Lin
- School of Biomedical Engineering, Shenzhen University, 1066 Xueyuan Ave, Shenzhen 518057, China
| | - Hongji Shi
- School of Biomedical Engineering, Shenzhen University, 1066 Xueyuan Ave, Shenzhen 518057, China
| | - Xiaozhou Fan
- Department of Ultrasound, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Jiaxin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Huandong Road, Beijing 102488, China
| | - Zhenyu Fu
- School of Biomedical Engineering, Shenzhen University, 1066 Xueyuan Ave, Shenzhen 518057, China
| | - Yuqing Chen
- School of Biomedical Engineering, Shenzhen University, 1066 Xueyuan Ave, Shenzhen 518057, China
| | - Siping Chen
- School of Biomedical Engineering, Shenzhen University, 1066 Xueyuan Ave, Shenzhen 518057, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University, 1066 Xueyuan Ave, Shenzhen 518057, China
| | - Mian Chen
- School of Biomedical Engineering, Shenzhen University, 1066 Xueyuan Ave, Shenzhen 518057, China
| |
Collapse
|
9
|
Lee J, Kubelick KP, Choe A, Emelianov SY. Photoacoustic-guided ultrasound thermal imaging without prior knowledge of tissue composition. PHOTOACOUSTICS 2023; 33:100554. [PMID: 37693296 PMCID: PMC10492200 DOI: 10.1016/j.pacs.2023.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Thermal strain imaging (TSI) is a widely investigated ultrasound (US) thermometry technique that is based on the temperature-dependent change in speed of sound. However, a major challenge of TSI is a calibration process to account for material-dependent thermal strain. In this study, we leverage nanoparticle (NP)-mediated photoacoustic (PA) thermometry to calibrate thermal strain and guide US thermal imaging. By controlling the molecular composition of the sub-micrometer layer surrounding the NPs, PA thermometry becomes independent of the thermal characteristics of the overall background tissue where the NPs reside. Thus accurate temperature measurements are obtainable from sparse NP-mediated PA signals. These measurements are used to guide TSI, allowing US thermometry to produce an expanded temperature map over the entire region of interest without prior knowledge of tissue composition. Our feasibility study in tissue-mimicking phantoms demonstrates the potential to improve TSI by integrating a PA-based calibration method that complements and guides US thermometry.
Collapse
Affiliation(s)
- Jeungyoon Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kelsey P Kubelick
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ayoung Choe
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Stanislav Y Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Ruiter NV, Kripfgans OD. Medical ultrasound: Time-honored method or emerging research frontier? Z Med Phys 2023; 33:251-254. [PMID: 37302938 PMCID: PMC10517395 DOI: 10.1016/j.zemedi.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
11
|
Vera M, González MG, Vega LR. Invariant representations in deep learning for optoacoustic imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2888187. [PMID: 37140340 DOI: 10.1063/5.0139286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Image reconstruction in optoacoustic tomography (OAT) is a trending learning task highly dependent on measured physical magnitudes present at sensing time. A large number of different settings and also the presence of uncertainties or partial knowledge of parameters can lead to reconstruction algorithms that are specifically tailored and designed to a particular configuration, which could not be the one that will ultimately be faced in a final practical situation. Being able to learn reconstruction algorithms that are robust to different environments (e.g., the different OAT image reconstruction settings) or invariant to such environments is highly valuable because it allows us to focus on what truly matters for the application at hand and discard what are considered spurious features. In this work, we explore the use of deep learning algorithms based on learning invariant and robust representations for the OAT inverse problem. In particular, we consider the application of the ANDMask scheme due to its easy adaptation to the OAT problem. Numerical experiments are conducted showing that when out-of-distribution generalization (against variations in parameters such as the location of the sensors) is imposed, there is no degradation of the performance and, in some cases, it is even possible to achieve improvements with respect to standard deep learning approaches where invariance robustness is not explicitly considered.
Collapse
Affiliation(s)
- M Vera
- Universidad de Buenos Aires, Facultad de Ingeniería, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Godoy Cruz, 2290, C1425FQB Buenos Aires, Argentina
| | - M G González
- Universidad de Buenos Aires, Facultad de Ingeniería, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Godoy Cruz, 2290, C1425FQB Buenos Aires, Argentina
| | - L Rey Vega
- Universidad de Buenos Aires, Facultad de Ingeniería, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Godoy Cruz, 2290, C1425FQB Buenos Aires, Argentina
| |
Collapse
|
12
|
Zhao S, Hartanto J, Joseph R, Wu CH, Zhao Y, Chen YS. Hybrid photoacoustic and fast super-resolution ultrasound imaging. Nat Commun 2023; 14:2191. [PMID: 37072402 PMCID: PMC10113238 DOI: 10.1038/s41467-023-37680-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
The combination of photoacoustic (PA) imaging and ultrasound localization microscopy (ULM) with microbubbles has great potential in various fields such as oncology, neuroscience, nephrology, and immunology. Here we developed an interleaved PA/fast ULM imaging technique that enables super-resolution vascular and physiological imaging in less than 2 seconds per frame in vivo. By using sparsity-constrained (SC) optimization, we accelerated the frame rate of ULM up to 37 times with synthetic data and 28 times with in vivo data. This allows for the development of a 3D dual imaging sequence with a commonly used linear array imaging system, without the need for complicated motion correction. Using the dual imaging scheme, we demonstrated two in vivo scenarios challenging to image with either technique alone: the visualization of a dye-labeled mouse lymph node showing nearby microvasculature, and a mouse kidney microangiography with tissue oxygenation. This technique offers a powerful tool for mapping tissue physiological conditions and tracking the contrast agent biodistribution non-invasively.
Collapse
Affiliation(s)
- Shensheng Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jonathan Hartanto
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ritin Joseph
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Sun JP, Ren YT, Gao RX, Gao BH, He MJ, Qi H. Influence of the temperature-dependent dielectric constant on the photoacoustic effect of gold nanospheres. Phys Chem Chem Phys 2022; 24:29667-29682. [PMID: 36453140 DOI: 10.1039/d2cp03866h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photoacoustic imaging techniques with gold nanoparticles as contrast agents have received a great deal of attention. The photoacoustic response of gold nanoparticles strongly depends on the far-field optical properties, which essentially depend on the dielectric constant of the material. The dielectric constant of gold not only varies with wavelength but is also affected by temperature. However, the effect of the temperature dependence of the dielectric constant on gold nanoparticles' photoacoustic response has not been fully investigated. In this work, the Drude-Lorentz model and Mie theory are used to calculate the dielectric constant and absorption efficiency of gold nanospheres in aqueous solution, respectively. Then, the finite element method is used to simulate the heat transfer process of gold nanospheres and surrounding water. Finally, the one-dimensional velocity-stress equation is solved by the finite-difference time-domain method to obtain the photoacoustic response of gold nanospheres. The results show that under the irradiation of a high-fluence nanosecond pulse laser, ignoring the temperature dependence of the dielectric constant will lead to large errors in the photothermal response and the nonlinear photoacoustic signals (it can even exceed 20% and 30%). The relative error of the photothermal and photoacoustic response caused by ignoring the temperature-dependent dielectric constant is determined from both the temperature dependence of absorption efficiency and the maximum temperature increase of gold nanospheres. This work provides a new perspective for the photothermal and photoacoustic effects of gold nanospheres, which is meaningful for the development of high-resolution photoacoustic detectors and nano/microscale temperature measurement techniques.
Collapse
Affiliation(s)
- Jian-Ping Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China, 150001. .,Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin, China, 150001
| | - Ya-Tao Ren
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China, 150001. .,Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin, China, 150001.,Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ren-Xi Gao
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Bao-Hai Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China, 150001. .,Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin, China, 150001
| | - Ming-Jian He
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China, 150001. .,Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin, China, 150001
| | - Hong Qi
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China, 150001. .,Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin, China, 150001
| |
Collapse
|
14
|
Menger MM, Körbel C, Bauer D, Bleimehl M, Tobias AL, Braun BJ, Herath SC, Rollmann MF, Laschke MW, Menger MD, Histing T. Photoacoustic imaging for the study of oxygen saturation and total hemoglobin in bone healing and non-union formation. PHOTOACOUSTICS 2022; 28:100409. [PMID: 36213763 PMCID: PMC9535319 DOI: 10.1016/j.pacs.2022.100409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/14/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Non-union formation represents a major complication in trauma surgery. Adequate vascularization has been recognized as vital for bone healing. However, the role of vascularization in the pathophysiology of non-union formation remains elusive. This is due to difficulties in studying bone microcirculation in vivo. Therefore, we herein studied in a murine osteotomy model whether photoacoustic imaging may be used to analyze vascularization in bone healing and non-union formation. We found that oxygen saturation within the callus tissue is significantly lower in non-unions compared to unions and further declines over time. Moreover, the amount of total hemoglobin (HbT) within the callus tissue was markedly reduced in non-unions. Correlation analyses showed a strong positive correlation between microvessel density and HbT, indicating that photoacoustically determined HbT is a valid parameter to assess vascularization during bone healing. In summary, photoacoustic imaging is a promising approach to study vascular function and tissue oxygenation in bone regeneration.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Christina Körbel
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - David Bauer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Michelle Bleimehl
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Anne L. Tobias
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Benedikt J. Braun
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Steven C. Herath
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Mika F. Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Han S, Lee D, Kim S, Kim HH, Jeong S, Kim J. Contrast Agents for Photoacoustic Imaging: A Review Focusing on the Wavelength Range. BIOSENSORS 2022; 12:bios12080594. [PMID: 36004990 PMCID: PMC9406114 DOI: 10.3390/bios12080594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
Photoacoustic imaging using endogenous chromophores as a contrast has been widely applied in biomedical studies owing to its functional imaging capability at the molecular level. Various exogenous contrast agents have also been investigated for use in contrast-enhanced imaging and functional analyses. This review focuses on contrast agents, particularly in the wavelength range, for use in photoacoustic imaging. The basic principles of photoacoustic imaging regarding light absorption and acoustic release are introduced, and the optical characteristics of tissues are summarized according to the wavelength region. Various types of contrast agents, including organic dyes, semiconducting polymeric nanoparticles, gold nanoparticles, and other inorganic nanoparticles, are explored in terms of their light absorption range in the near-infrared region. An overview of the contrast-enhancing capacity and other functional characteristics of each agent is provided to help researchers gain insights into the development of contrast agents in photoacoustic imaging.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea;
| | - Dakyeon Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Hyung-Hoi Kim
- Department of Laboratory Medicine and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Korea
- Correspondence: (H.-H.K.); (S.J.); (J.K.)
| | - Sanghwa Jeong
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
- Correspondence: (H.-H.K.); (S.J.); (J.K.)
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea;
- Correspondence: (H.-H.K.); (S.J.); (J.K.)
| |
Collapse
|
16
|
Zhao Y, Zhang C, Liu S, Tian C. Ultrasound-guided adaptive photoacoustic tomography. OPTICS LETTERS 2022; 47:3960-3963. [PMID: 35913358 DOI: 10.1364/ol.462799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Image formation in photoacoustic tomography (PAT) is generally based on the assumption that biological tissues are acoustically homogeneous. However, this does not hold, especially when strongly heterogeneous tissues, such as bones and air cavities, are present. Tissue heterogeneity can cause acoustic reflection, refraction, and scattering at interfaces, which may create distortions and artifacts in final images. To mitigate this problem, we propose an adaptive photoacoustic (PA) image reconstruction method based on prior structural information of an acoustically heterogeneous region extracted from ultrasound images. The method works in three steps: acoustic heterogeneity identification via ultrasound imaging; acoustically heterogeneous region segmentation; and adaptive time-domain raw data truncation and image reconstruction. The data truncation is based on a variable cutoff time, which can be adaptively determined according to the relative position of a transducer and an acoustically heterogeneous region. Numerical and in vivo experimental imaging results of human fingers demonstrate that the proposed ultrasound-guided adaptive image reconstruction method can effectively suppress acoustic heterogeneity-induced artifacts and substantially improve image quality. This work provides a practical way to mitigate the influence of acoustic heterogeneity in PAT.
Collapse
|
17
|
Muhammad M, Prakash J, Liapis E, Ntziachristos V, Jüstel D. Weighted model-based optoacoustic reconstruction for partial-view geometries. JOURNAL OF BIOPHOTONICS 2022; 15:e202100334. [PMID: 35133073 DOI: 10.1002/jbio.202100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Acoustic heterogeneities in biological samples are known to cause artifacts in tomographic optoacoustic (photoacoustic) image reconstruction. A statistical weighted model-based reconstruction approach was previously introduced to mitigate such artifacts. However, this approach does not reliably provide high-quality reconstructions for partial-view imaging systems, which are common in preclinical and clinical optoacoustics. In this article, the capability of the weighted model-based algorithm is extended to generate optoacoustic reconstructions with less distortions for partial-view geometry data. This is achieved by manipulating the weighting scheme based on the detector geometry. Using partial-view optoacoustic tomography data from a tissue-mimicking phantom containing a strong acoustic reflector, tumors grafted onto mice, and a mouse brain with intact skull, the proposed partial-view-corrected weighted model-based algorithm is shown to mitigate reflection artifacts in reconstructed images without distorting structures or boundaries, compared with both conventional model-based and the weighted model-based algorithms. It is also demonstrated that the partial-view-corrected weighted model-based algorithm has the additional advantage of suppressing streaking artifacts due to the partial-view geometry itself in the presence of a very strong optoacoustic chromophore. Due to its enhanced performance, the partial-view-corrected weighted model-based algorithm may prove useful for improving the quality of partial-view multispectral optoacoustic tomography, leading to enhanced visualization of functional parameters such as tissue oxygenation.
Collapse
Affiliation(s)
- Marwan Muhammad
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Jaya Prakash
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | - Dominik Jüstel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
18
|
Gao S, Tsumura R, Vang DP, Bisland K, Xu K, Tsunoi Y, Zhang HK. Acoustic-resolution photoacoustic microscope based on compact and low-cost delta configuration actuator. ULTRASONICS 2022; 118:106549. [PMID: 34474357 PMCID: PMC8530928 DOI: 10.1016/j.ultras.2021.106549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 05/02/2023]
Abstract
The state-of-the-art configurations for acoustic-resolution photoacoustic (PA) microscope (AR-PAM) are large in size and expensive, hindering their democratization. While previous research on AR-PAMs introduced a low-cost light source to reduce the cost, few studies have investigated the possibility of optimizing the sensor actuation, particularly for the AR-PAM. Additionally, there is an unmet need to evaluate the image quality deterioration associated with the actuation inaccuracy. A low-cost actuation device is introduced to reduce the system size and cost of the AR-PAM while maintaining the image quality by implementing the advanced beamformers. This work proposes an AR-RAM incorporating the delta configuration actuator adaptable from a low-cost off-the-shelf 3D printer as the sensor actuation device. The image degradation due to the data acquisition positioning inaccuracy is evaluated in the simulation. We further assess the mitigation of potential actuation precision uncertainty through advanced 3D synthetic aperture focusing algorithms represented by the Delay-and-Sum (DAS) with Coherence Factor (DAS+CF) and Delay-Multiply-and-Sum (DMAS) algorithms. The simulation study demonstrated the tolerance of image quality on actuation inaccuracy and the effect of compensating the actuator motion precision error through advanced reconstruction algorithms. With those algorithms, the image quality degradation was suppressed to within 25% with the presence of 0.2 mm motion inaccuracy. The experimental evaluation using phantoms and an ex-vivo sample presented the applicability of low-cost delta configuration actuators for AR-PAMs. The measured full width at half maximum of the 0.2 mm diameter pencil-lead phantom were 0.45 ± 0.06 mm, 0.31 ± 0.04 mm, and 0.35 ± 0.07 mm, by applying the DAS, DAS+CF, and DMAS algorithms, respectively. AR-PAMs with a compact and low-cost delta configuration provide high-quality PA imaging with better accessibility for biomedical applications. The research evaluated the image degradation contributed by the actuation inaccuracy and suggested that the advanced beamformers are capable of suppressing the actuation inaccuracy.
Collapse
Affiliation(s)
- Shang Gao
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Ryosuke Tsumura
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Doua P Vang
- Worcester Polytechnic Institute, Department of Electrical and Computer Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Keion Bisland
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Keshuai Xu
- Johns Hopkins University, Department of Computer Science, Baltimore 21218, United States
| | - Yasuyuki Tsunoi
- National Defense Medical College Research Institute, Division of Bioinformation and Therapeutic Systems, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Haichong K Zhang
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Computer Science, 100 Institute Rd, Worcester 01609, United States.
| |
Collapse
|
19
|
Agrawal S, Suresh T, Garikipati A, Dangi A, Kothapalli SR. Modeling combined ultrasound and photoacoustic imaging: Simulations aiding device development and artificial intelligence. PHOTOACOUSTICS 2021; 24:100304. [PMID: 34584840 PMCID: PMC8452892 DOI: 10.1016/j.pacs.2021.100304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 05/07/2023]
Abstract
Combined ultrasound and photoacoustic (USPA) imaging has attracted several pre-clinical and clinical applications due to its ability to simultaneously display structural, functional, and molecular information of deep biological tissue in real time. However, the depth and wavelength dependent optical attenuation and the unknown optical and acoustic heterogeneities limit the USPA imaging performance in deep tissue regions. Novel instrumentation, image reconstruction, and artificial intelligence (AI) methods are currently being investigated to overcome these limitations and improve the USPA image quality. Effective implementation of these approaches requires a reliable USPA simulation tool capable of generating US based anatomical and PA based molecular contrasts of deep biological tissue. Here, we developed a hybrid USPA simulation platform by integrating finite element models of light (NIRFast) and ultrasound (k-Wave) propagations for co-simulation of B-mode US and PA images. The platform allows optimization of different design parameters for USPA devices, such as the aperture size and frequency of both light and ultrasound detector arrays. For designing tissue-realistic digital phantoms, a dictionary-based function has been added to k-Wave to generate various levels of ultrasound speckle contrast. The feasibility of modeling US imaging combined with optical fluence dependent multispectral PA imaging is demonstrated using homogeneous as well as heterogeneous tissue phantoms mimicking human organs (e.g., prostate and finger). In addition, we also demonstrate the potential of the simulation platform to generate large scale application-specific training and test datasets for AI enhanced USPA imaging. The complete USPA simulation codes together with the supplementary user guides have been posted to an open-source repository (https://github.com/KothapalliLabPSU/US-PA_simulation_codes).
Collapse
Affiliation(s)
- Sumit Agrawal
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Thaarakh Suresh
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ankit Garikipati
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ajay Dangi
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
20
|
Antholzer S, Haltmeier M. Discretization of Learned NETT Regularization for Solving Inverse Problems. J Imaging 2021; 7:239. [PMID: 34821870 PMCID: PMC8625045 DOI: 10.3390/jimaging7110239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Deep learning based reconstruction methods deliver outstanding results for solving inverse problems and are therefore becoming increasingly important. A recently invented class of learning-based reconstruction methods is the so-called NETT (for Network Tikhonov Regularization), which contains a trained neural network as regularizer in generalized Tikhonov regularization. The existing analysis of NETT considers fixed operators and fixed regularizers and analyzes the convergence as the noise level in the data approaches zero. In this paper, we extend the frameworks and analysis considerably to reflect various practical aspects and take into account discretization of the data space, the solution space, the forward operator and the neural network defining the regularizer. We show the asymptotic convergence of the discretized NETT approach for decreasing noise levels and discretization errors. Additionally, we derive convergence rates and present numerical results for a limited data problem in photoacoustic tomography.
Collapse
Affiliation(s)
| | - Markus Haltmeier
- Department of Mathematics, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria;
| |
Collapse
|
21
|
Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Na S, Wang LV. Photoacoustic computed tomography for functional human brain imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:4056-4083. [PMID: 34457399 PMCID: PMC8367226 DOI: 10.1364/boe.423707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 05/02/2023]
Abstract
The successes of magnetic resonance imaging and modern optical imaging of human brain function have stimulated the development of complementary modalities that offer molecular specificity, fine spatiotemporal resolution, and sufficient penetration simultaneously. By virtue of its rich optical contrast, acoustic resolution, and imaging depth far beyond the optical transport mean free path (∼1 mm in biological tissues), photoacoustic computed tomography (PACT) offers a promising complementary modality. In this article, PACT for functional human brain imaging is reviewed in its hardware, reconstruction algorithms, in vivo demonstration, and potential roadmap.
Collapse
Affiliation(s)
- Shuai Na
- Caltech Optical Imaging Laboratory, Andrew
and Peggy Cherng Department of Medical Engineering,
California Institute of Technology, 1200
East California Boulevard, Pasadena, CA 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew
and Peggy Cherng Department of Medical Engineering,
California Institute of Technology, 1200
East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory,
Department of Electrical Engineering, California
Institute of Technology, 1200 East California Boulevard,
Pasadena, CA 91125, USA
| |
Collapse
|
23
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
24
|
Wang M, Samant P, Wang S, Merill J, Chen Y, Ahmad S, Li D, Xiang L. Towards in vivo Dosimetry for Prostate Radiotherapy with a Transperineal Ultrasound Array: A Simulation Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:373-382. [PMID: 33969250 PMCID: PMC8104130 DOI: 10.1109/trpms.2020.3015109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-ray-induced acoustic computed tomography (XACT) is a promising imaging modality to monitor the position of the radiation beam and the deposited dose during external beam radiotherapy delivery. The purpose of this study was to investigate the feasibility of using a transperineal ultrasound transducer array for XACT imaging to guide the prostate radiotherapy. A customized two-dimensional (2D) matrix ultrasound transducer array with 10000 (100×100 elements) ultrasonic sensors with a central frequency of 1 MHz was designed on a 5 cm×5 cm plane to optimize three-dimensional (3D) volumetric imaging. The CT scan and dose treatment plan for a prostate patient undergoing intensity modulated radiation therapy (IMRT) were obtained. In-house simulation was developed to model the time varying X-ray induced acoustic (XA) signals detected by the transperineal ultrasound array. A 3D filtered back projection (FBP) algorithm has been used for 3D XACT image reconstruction. Results of this study will greatly enhance the potential of XACT imaging for real time in vivo dosimetry during radiotherapy.
Collapse
Affiliation(s)
- Mengxiao Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250358, China
| | - Pratik Samant
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Siqi Wang
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Jack Merill
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
| | - Dengwang Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250358, China
| | - Liangzhong Xiang
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
25
|
Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:825. [PMID: 34268438 PMCID: PMC8246214 DOI: 10.21037/atm-20-5877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. OMI technology refers to the optical information generated by the imaging target (such as tumors) due to drug intervention and other reasons. By collecting the optical information, researchers can track the motion trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-based machine learning (ML) technology, has been widely used in MI because of its powerful data processing capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
Collapse
Affiliation(s)
- Lin Yin
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Cao
- Peking University First Hospital, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | |
Collapse
|
26
|
Tian C, Zhang C, Zhang H, Xie D, Jin Y. Spatial resolution in photoacoustic computed tomography. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:036701. [PMID: 33434890 DOI: 10.1088/1361-6633/abdab9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Photoacoustic computed tomography (PACT) is a novel biomedical imaging modality and has experienced fast developments in the past two decades. Spatial resolution is an important criterion to measure the imaging performance of a PACT system. Here we survey state-of-the-art literature on the spatial resolution of PACT and analyze resolution degradation models from signal generation, propagation, reception, to image reconstruction. Particularly, the impacts of laser pulse duration, acoustic attenuation, acoustic heterogeneity, detector bandwidth, detector aperture, detector view angle, signal sampling, and image reconstruction algorithms are reviewed and discussed. Analytical expressions of point spread functions related to these impacting factors are summarized based on rigorous mathematical formulas. State-of-the-art approaches devoted to enhancing spatial resolution are also reviewed. This work is expected to elucidate the concept of spatial resolution in PACT and inspire novel image quality enhancement techniques.
Collapse
Affiliation(s)
- Chao Tian
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chenxi Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haoran Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dan Xie
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yi Jin
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
27
|
Choi S, Park EY, Park S, Kim JH, Kim C. Synchrotron X-ray induced acoustic imaging. Sci Rep 2021; 11:4047. [PMID: 33603050 PMCID: PMC7893053 DOI: 10.1038/s41598-021-83604-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
X-ray induced acoustic imaging (XAI) is an emerging biomedical imaging technique that can visualize X-ray absorption contrast at ultrasound resolution with less ionizing radiation exposure than conventional X-ray computed tomography. So far, medical linear accelerators or industrial portable X-ray tubes have been explored as X-ray excitation sources for XAI. Here, we demonstrate the first feasible synchrotron XAI (sXAI). The synchrotron generates X-rays, with a dominant energy of 4 to 30 keV, a pulse-width of 30 ps, a pulse-repetition period of 2 ns, and a bunch-repetition period of 940 ns. The X-ray induced acoustic (XA) signals are processed in the Fourier domain by matching the signal frequency with the bunch-repetition frequency. We successfully obtained two-dimensional XA images of various lead targets. This novel sXAI tool could complement conventional synchrotron applications.
Collapse
Affiliation(s)
- Seongwook Choi
- Department of Electrical Engineering and Creative IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eun-Yeong Park
- Department of Electrical Engineering and Creative IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sinyoung Park
- Department of Electrical Engineering and Creative IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong Hyun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Pohang Accelerator Laboratory, Pohang, Republic of Korea.
| | - Chulhong Kim
- Department of Electrical Engineering and Creative IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
28
|
Jeng GS, Li ML, Kim M, Yoon SJ, Pitre JJ, Li DS, Pelivanov I, O’Donnell M. Real-time interleaved spectroscopic photoacoustic and ultrasound (PAUS) scanning with simultaneous fluence compensation and motion correction. Nat Commun 2021; 12:716. [PMID: 33514737 PMCID: PMC7846772 DOI: 10.1038/s41467-021-20947-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For over two decades photoacoustic imaging has been tested clinically, but successful human trials have been limited. To enable quantitative clinical spectroscopy, the fundamental issues of wavelength-dependent fluence variations and inter-wavelength motion must be overcome. Here we propose a real-time, spectroscopic photoacoustic/ultrasound (PAUS) imaging approach using a compact, 1-kHz rate wavelength-tunable laser. Instead of illuminating tissue over a large area, the fiber-optic delivery system surrounding an US array sequentially scans a narrow laser beam, with partial PA image reconstruction for each laser pulse. The final image is then formed by coherently summing partial images. This scheme enables (i) automatic compensation for wavelength-dependent fluence variations in spectroscopic PA imaging and (ii) motion correction of spectroscopic PA frames using US speckle tracking in real-time systems. The 50-Hz video rate PAUS system is demonstrated in vivo using a murine model of labelled drug delivery.
Collapse
Affiliation(s)
- Geng-Shi Jeng
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA ,grid.260539.b0000 0001 2059 7017Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan
| | - Meng-Lin Li
- grid.38348.340000 0004 0532 0580Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - MinWoo Kim
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Soon Joon Yoon
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - John J. Pitre
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - David S. Li
- grid.34477.330000000122986657Department of Chemical Engineering, University of Washington, Seattle, WA USA
| | - Ivan Pelivanov
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Matthew O’Donnell
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|
29
|
Yang JM, Ghim CM. Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:239-341. [PMID: 33834440 DOI: 10.1007/978-981-33-6064-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After the emergence of the ultrasound, X-ray CT, PET, and MRI, photoacoustic tomography (PAT) is now in the phase of its exponential growth, with its expected full maturation being another form of mainstream clinical imaging modality. By combining the high contrast benefit of optical imaging and the high-resolution deep imaging capability of ultrasound, PAT can provide unprecedented anatomical image contrasts at clinically relevant depths as well as enable the use of a variety of functional and molecular imaging information, which is not possible with conventional imaging modalities. With these strengths, PAT has achieved numerous breakthroughs in various biomedical applications and also provided new technical platforms that may be able to resolve unmet issues in clinics. In this chapter, we provide an overview of the development of PAT technology for several major biomedical applications and provide an approximate projection of the future of PAT.
Collapse
Affiliation(s)
- Joon-Mo Yang
- Center for Photoacoustic Medical Instruments, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Cheol-Min Ghim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
30
|
Zhou J, Jokerst JV. Photoacoustic imaging with fiber optic technology: A review. PHOTOACOUSTICS 2020; 20:100211. [PMID: 33163358 PMCID: PMC7606844 DOI: 10.1016/j.pacs.2020.100211] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 09/19/2020] [Indexed: 05/03/2023]
Abstract
Photoacoustic imaging (PAI) has achieved remarkable growth in the past few decades since it takes advantage of both optical and ultrasound (US) imaging. In order to better promote the wide clinical applications of PAI, many miniaturized and portable PAI systems have recently been proposed. Most of these systems utilize fiber optic technologies. Here, we overview the fiber optic technologies used in PAI. This paper discusses three different fiber optic technologies: fiber optic light transmission, fiber optic US transmission, and fiber optic US detection. These fiber optic technologies are analyzed in different PAI modalities including photoacoustic microscopy (PAM), photoacoustic computed tomography (PACT), and minimally invasive photoacoustic imaging (MIPAI).
Collapse
Affiliation(s)
- Jingcheng Zhou
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
| |
Collapse
|
31
|
Rich LJ, Damasco JA, Bulmahn JC, Kutscher HL, Prasad PN, Seshadri M. Photoacoustic and Magnetic Resonance Imaging of Hybrid Manganese Dioxide-Coated Ultra-small NaGdF 4 Nanoparticles for Spatiotemporal Modulation of Hypoxia in Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12113294. [PMID: 33172178 PMCID: PMC7694772 DOI: 10.3390/cancers12113294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Tumor hypoxia is a documented negative prognostic factor that contributes to treatment resistance in head and neck cancer. In the present study, we use non-invasive magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) to evaluate the ability of ultra-small manganese dioxide coated nanoparticles to modulate tumor oxygenation in vitro and in vivo. Our results highlight the utility of MRI and PAI in mapping tumor hypoxia and nanoparticle delivery and demonstrate the potential of image-guided nanodelivery in alleviating tumor hypoxia in head and neck cancer. Abstract There is widespread interest in developing agents to modify tumor hypoxia in head and neck squamous cell carcinomas (HNSCC). Here, we report on the synthesis, characterization, and potential utility of ultra-small NaYF4:Nd3+/NaGdF4 nanocrystals coated with manganese dioxide (usNP-MnO2) for spatiotemporal modulation of hypoxia in HNSCC. Using a dual modality imaging approach, we first visualized the release of Mn2+ using T1-weighted magnetic resonance imaging (MRI) and modulation of oxygen saturation (%sO2) using photoacoustic imaging (PAI) in vascular channel phantoms. Combined MRI and PAI performed in patient-derived HNSCC xenografts following local and systemic delivery of the hybrid nanoparticles enabled mapping of intratumoral nanoparticle accumulation (based on T1 contrast enhancement) and improvement in tumor oxygenation (increased %sO2) within the tumor microenvironment. Our results demonstrate the potential of hybrid nanoparticles for the modulation of tumor hypoxia in head and neck cancer. Our findings also highlight the potential of combined MRI-PAI for simultaneous mapping nanoparticle delivery and oxygenation changes in tumors. Such imaging methods could be valuable in the precise selection of patients that are likely to benefit from hypoxia-modifying nanotherapies.
Collapse
Affiliation(s)
- Laurie J. Rich
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA;
| | - Jossana A. Damasco
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (J.A.D.); (J.C.B.); (H.L.K.)
| | - Julia C. Bulmahn
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (J.A.D.); (J.C.B.); (H.L.K.)
| | - Hilliard L. Kutscher
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (J.A.D.); (J.C.B.); (H.L.K.)
- Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Anesthesiology, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Paras N. Prasad
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (J.A.D.); (J.C.B.); (H.L.K.)
- Correspondence: (P.N.P.); (M.S.)
| | - Mukund Seshadri
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA;
- Department of Dentistry and Maxillofacial Prosthetics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Correspondence: (P.N.P.); (M.S.)
| |
Collapse
|
32
|
Chowdhury KB, Prakash J, Karlas A, Justel D, Ntziachristos V. A Synthetic Total Impulse Response Characterization Method for Correction of Hand-Held Optoacoustic Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3218-3230. [PMID: 32324545 DOI: 10.1109/tmi.2020.2989236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The impulse response of optoacoustic (photoacoustic) tomographic imaging system depends on several system components, the characteristics of which can influence the quality of reconstructed images. The effect of these system components on reconstruction quality have not been considered in detail so far. Here we combine sparse measurements of the total impulse response (TIR) with a geometric acoustic model to obtain a full characterization of the TIR of a handheld optoacoustic tomography system with concave limited-view acquisition geometry. We then use this synthetic TIR to reconstruct data from phantoms and healthy human volunteers, demonstrating improvements in image resolution and fidelity. The higher accuracy of optoacoustic tomographic reconstruction with TIR correction further improves the diagnostic capability of handheld optoacoustic tomographic systems.
Collapse
|
33
|
Farnia P, Mohammadi M, Najafzadeh E, Alimohamadi M, Makkiabadi B, Ahmadian A. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging. Biomed Phys Eng Express 2020; 6:045019. [PMID: 33444279 DOI: 10.1088/2057-1976/ab9a10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of intra-operative imaging system as an intervention solution to provide more accurate localization of complicated structures has become a necessity during the neurosurgery. However, due to the limitations of conventional imaging systems, high-quality real-time intra-operative imaging remains as a challenging problem. Meanwhile, photoacoustic imaging has appeared so promising to provide images of crucial structures such as blood vessels and microvasculature of tumors. To achieve high-quality photoacoustic images of vessels regarding the artifacts caused by the incomplete data, we proposed an approach based on the combination of time-reversal (TR) and deep learning methods. The proposed method applies a TR method in the first layer of the network which is followed by the convolutional neural network with weights adjusted to a set of simulated training data for the other layers to estimate artifact-free photoacoustic images. It was evaluated using a generated synthetic database of vessels. The mean of signal to noise ratio (SNR), peak SNR, structural similarity index, and edge preservation index for the test data were reached 14.6 dB, 35.3 dB, 0.97 and 0.90, respectively. As our results proved, by using the lower number of detectors and consequently the lower data acquisition time, our approach outperforms the TR algorithm in all criteria in a computational time compatible with clinical use.
Collapse
Affiliation(s)
- Parastoo Farnia
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran. Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
34
|
de Leon A, Wei P, Bordera F, Wegierak D, McMillen M, Yan D, Hemmingsen C, Kolios MC, Pentzer EB, Exner AA. Pickering Bubbles as Dual-Modality Ultrasound and Photoacoustic Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22308-22317. [PMID: 32307987 PMCID: PMC8985135 DOI: 10.1021/acsami.0c02091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microbubbles (MBs) stabilized by particle surfactants (i.e., Pickering bubbles) have better thermodynamic stability compared to MBs stabilized by small molecules as a result of steric hindrance against coalescence, higher diffusion resistance, and higher particle desorption energy. In addition, the use of particles to stabilize MBs that are typically used as an ultrasound (US) contrast agent can also introduce photoacoustic (PA) properties, thus enabling a highly effective dual-modality US and PA contrast agent. Here, we report the use of partially reduced and functionalized graphene oxide as the sole surfactant to stabilize perfluorocarbon gas bubbles in the preparation of a dual-modality US and PA agent, with high contrast in both imaging modes and without the need for small-molecule or polymer additives. This approach offers an increase in loading of the PA agent without destabilization and increased thickness of the MB shell compared to traditional systems, in which the focus is on adding a PA agent to existing MB formulations.
Collapse
Affiliation(s)
- Al de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Peiran Wei
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Filip Bordera
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Dana Wegierak
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Madelyn McMillen
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - David Yan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christina Hemmingsen
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Emily B Pentzer
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
35
|
Wang M, Zarafshani A, Samant P, Merrill J, Li D, Xiang L. Feasibility of Electroacoustic Tomography: A Simulation Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:889-897. [PMID: 31765310 DOI: 10.1109/tuffc.2019.2955900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The feasibility of electroacoustic tomography (EAT) was investigated for in situ monitoring the electric field distribution in soft tissue. EAT exploits the phenomenon that the amplitude of acoustic emission generated by an electric field is proportional to the electrical energy deposition in tissue. After detecting these acoustic waves with ultrasound transducers, an image of the electric field distribution can be reconstructed in real-time. In our computer simulations, the electric field distribution in soft tissue was generated by solving general partial differential equations (PDEs) using finite element analysis (FEA). The electric field distributions were converted into initial pressure distributions, and the propagation of the induced acoustic waves was simulated using K-Wave simulation. A circular array of 128 ultrasound transducers was placed around the target to detect the acoustic waves, and a time reversal reconstruction algorithm was used to reconstruct the EAT image. A different number of electrodes set at different distances with different voltage inputs on the electrodes were performed to simulate different electric field distributions during electroporation. It was found that the electrical energy deposition in reconstructed EAT imaging is decreased as the distance of the electrodes increases. We also have investigated the sensitivity of the EAT imaging with different voltage inputs. The minimal voltage we can detect with EAT is 970 V at the pulsewidth of 180 ns. The results of this study demonstrated that EAT is a feasible technique for monitoring the electric field distribution and guiding the electrotherapy in future clinical practice.
Collapse
|
36
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Poudel J, Na S, Wang LV, Anastasio MA. Iterative image reconstruction in transcranial photoacoustic tomography based on the elastic wave equation. Phys Med Biol 2020; 65:055009. [PMID: 31935694 PMCID: PMC7202377 DOI: 10.1088/1361-6560/ab6b46] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT of the brain is to compensate for aberrations and attenuation in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method can be employed that can model the heterogeneous elastic properties of the medium. In this study, an optimization-based image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward-adjoint operator pair based on a finite-difference time-domain discretization of the 3D elastic wave equation is utilized to compute penalized least squares estimates of the initial pressure distribution. Computer-simulation and experimental studies are conducted to investigate the robustness of the reconstruction method to model mismatch and its ability to effectively resolve cortical and superficial brain structures.
Collapse
Affiliation(s)
- Joemini Poudel
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, United States of America
| | | | | | | |
Collapse
|
38
|
Alaeian M, Orlande HRB, Machado JC. Temperature estimation of inflamed bowel by the photoacoustic inverse approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3300. [PMID: 31872962 DOI: 10.1002/cnm.3300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Local temperature increase is one of the five classical signs of regions with inflammations. This work is focused on the application of the photoacoustic technique for the estimation of the temperature field in the colon, as the solution of an inverse problem, for the detection of inflamed regions. Two-dimensional cases are examined here involving a cross section of the bowel, which characterize either the inflammation of the whole mucosa layer, or three small inflamed regions. The inverse problem is solved for a rotating laser inside the intestine lumen, which imposes pulses for the generation of the acoustic waves. One single ultrasound detector, also located at the laser rotating shaft, provides the simulated measurements for the inverse analysis. The inverse problem is solved here with the minimization of the maximum a posteriori objective function. Results show that the proposed technique can be applied for accurate estimations of the temperature distribution in the region of interest, which might be used for the diagnosis of inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- Mohsen Alaeian
- Department of Mechanical Engineering, DEM/PEM - Politécnica/COPPE, Rio de Janeiro, Brazil
| | - Helcio R B Orlande
- Department of Mechanical Engineering, DEM/PEM - Politécnica/COPPE, Rio de Janeiro, Brazil
| | - João Carlos Machado
- Biomedical Engineering Program - COPPE, Rio de Janeiro, Brazil
- Post-Graduation Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Lee J, Han S, Seong D, Lee J, Park S, Eranga Wijesinghe R, Jeon M, Kim J. Fully waterproof two-axis galvanometer scanner for enhanced wide-field optical-resolution photoacoustic microscopy. OPTICS LETTERS 2020; 45:865-868. [PMID: 32058491 DOI: 10.1364/ol.380032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
A large field-of-view and fast scanning of photoacoustic microscopy (PAM) relatively have been difficult to obtain due to the water-drowned structure of the system for the transmission of ultrasonic signals. Researchers have widely studied the achievement of a waterproof scanner for dynamic biological applications with a high-resolution and high signal-to-noise ratio. This Letter reports a novel, to the best of our knowledge, waterproof galvanometer scanner-based PAM system with a successfully attainable ${9.0}\;{\rm mm} \times {14.5}\;{\rm mm}$9.0mm×14.5mm scan region, amplitude scan rate of 40 kHz, and spatial resolution of 4.9 µm. The in vivo characterization of a mouse brain in intact-skull microvascular visualization demonstrated its capability in biomedical imaging and is anticipated to be an effective technique for various preclinical and clinical studies.
Collapse
|
40
|
Lee D, Park EY, Choi S, Kim H, Min JJ, Lee C, Kim C. GPU-accelerated 3D volumetric X-ray-induced acoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:752-761. [PMID: 32133222 PMCID: PMC7041460 DOI: 10.1364/boe.381963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 05/29/2023]
Abstract
X-ray acoustic imaging is a hybrid biomedical imaging technique that can acoustically monitor X-ray absorption distribution in biological tissues through the X-ray induced acoustic effect. In this study, we developed a 3D volumetric X-ray-induced acoustic computed tomography (XACT) system with a portable pulsed X-ray source and an arc-shaped ultrasound array transducer. 3D volumetric XACT images are reconstructed via the back-projection algorithm, accelerated by a custom-developed graphics processing unit (GPU) software. Compared with a CPU-based software, the GPU software reconstructs an image over 40 times faster. We have successfully acquired 3D volumetric XACT images of various lead targets, and this work shows that the 3D volumetric XACT system can monitor a high-resolution X-ray dose distribution and image X-ray absorbing structures inside biological tissues.
Collapse
Affiliation(s)
- Donghyun Lee
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
- These authors contributed equally to this work
| | - Eun-Yeong Park
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
- These authors contributed equally to this work
| | - Seongwook Choi
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
| | - Hyeongsub Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Chonnam 58128, South Korea
| | - Changho Lee
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Chonnam 58128, South Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
| |
Collapse
|
41
|
Boink YE, Manohar S, Brune C. A Partially-Learned Algorithm for Joint Photo-acoustic Reconstruction and Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:129-139. [PMID: 31180846 DOI: 10.1109/tmi.2019.2922026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In an inhomogeneously illuminated photoacoustic image, important information like vascular geometry is not readily available, when only the initial pressure is reconstructed. To obtain the desired information, algorithms for image segmentation are often applied as a post-processing step. In this article, we propose to jointly acquire the photoacoustic reconstruction and segmentation, by modifying a recently developed partially learned algorithm based on a convolutional neural network. We investigate the stability of the algorithm against changes in initial pressures and photoacoustic system settings. These insights are used to develop an algorithm that is robust to input and system settings. Our approach can easily be applied to other imaging modalities and can be modified to perform other high-level tasks different from segmentation. The method is validated on challenging synthetic and experimental photoacoustic tomography data in limited angle and limited view scenarios. It is computationally less expensive than classical iterative methods and enables higher quality reconstructions and segmentations than the state-of-the-art learned and non-learned methods.
Collapse
|
42
|
An Y, Meng H, Gao Y, Tong T, Zhang C, Wang K, Tian J. Application of machine learning method in optical molecular imaging: a review. SCIENCE CHINA INFORMATION SCIENCES 2020; 63:111101. [DOI: 10.1007/s11432-019-2708-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/22/2019] [Indexed: 08/30/2023]
|
43
|
Dixit N, Pauly JM, Scott GC. Thermo‐acoustic ultrasound for noninvasive temperature monitoring at lead tips during MRI. Magn Reson Med 2019; 84:1035-1047. [DOI: 10.1002/mrm.28152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Neerav Dixit
- Department of Electrical Engineering Stanford University Stanford CAUSA
| | - John M. Pauly
- Department of Electrical Engineering Stanford University Stanford CAUSA
| | - Greig C. Scott
- Department of Electrical Engineering Stanford University Stanford CAUSA
| |
Collapse
|
44
|
Biton S, Arbel N, Drozdov G, Gilboa G, Rosenthal A. Optoacoustic model-based inversion using anisotropic adaptive total-variation regularization. PHOTOACOUSTICS 2019; 16:100142. [PMID: 31737487 PMCID: PMC6849433 DOI: 10.1016/j.pacs.2019.100142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 05/13/2023]
Abstract
In optoacoustic tomography, image reconstruction is often performed with incomplete or noisy data, leading to reconstruction errors. Significant improvement in reconstruction accuracy may be achieved in such cases by using nonlinear regularization schemes, such as total-variation minimization and L 1-based sparsity-preserving schemes. In this paper, we introduce a new framework for optoacoustic image reconstruction based on adaptive anisotropic total-variation regularization, which is more capable of preserving complex boundaries than conventional total-variation regularization. The new scheme is demonstrated in numerical simulations on blood-vessel images as well as on experimental data and is shown to be more capable than the total-variation-L 1 scheme in enhancing image contrast.
Collapse
|
45
|
Rich LJ, Chamberlain SR, Falcone DR, Bruce R, Heinmiller A, Xia J, Seshadri M. Performance Characteristics of Photoacoustic Imaging Probes with Varying Frequencies and Light-delivery Schemes. ULTRASONIC IMAGING 2019; 41:319-335. [PMID: 31570083 PMCID: PMC7042667 DOI: 10.1177/0161734619879043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that utilizes a combination of light and ultrasound to detect photoabsorbers embedded within tissues. While the clinical utility of PAI has been widely explored for several applications, limitations in light penetration and detector sensitivity have restricted these studies to mostly superficial sites. Given the importance of PA signal generation and detection on light delivery and ultrasound detector frequency, there is an ongoing effort to optimize these parameters to enhance photoabsorber detection at increased depths. With this in mind, in this study we examined performance benchmarks of a commercially available PAI/ultrasound linear array system when using different imaging frequencies and light delivery schemes. A modified light fiber jacket providing focused light delivery (FLD) at the center of the probe was compared with the built-in fiber optics lining the length of the probe. Studies were performed in vitro to compare performance characteristics such as imaging resolution, maximum imaging depth, and sensitivity to varying hematocrit concentration for each frequency and light delivery method. Monte Carlo simulations of each light delivery method revealed increased light penetration with FLD. In tissue-mimicking phantoms, vascular channels used to simulate blood vessels could be visualized at a depth of 2.4 cm when lowering imaging frequency and utilizing FLD. Imaging at lower frequencies with FLD also enabled enhanced detection of varying hematocrit concentration levels at increased depths, although lateral imaging resolution was reduced. Finally, a proof of concept in vivo probe comparison study in a mouse tumor model provided supportive evidence of our in vitro results. Collectively, our findings show that adjusting imaging frequency and applying FLD can be a straightforward approach for improving PAI performance.
Collapse
Affiliation(s)
- Laurie J Rich
- Laboratory for Translational Imaging, Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah R Chamberlain
- Laboratory for Translational Imaging, Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Daniela R Falcone
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Bruce
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA
| | | | - Jun Xia
- Department of Biomedical Engineering, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Mukund Seshadri
- Laboratory for Translational Imaging, Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
46
|
Edgar RH, Cook J, Noel C, Minard A, Sajewski A, Fitzpatrick M, Fernandez R, Hempel JD, Kellum JA, Viator JA. Bacteriophage-mediated identification of bacteria using photoacoustic flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-7. [PMID: 31758676 PMCID: PMC6874036 DOI: 10.1117/1.jbo.24.11.115003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 05/26/2023]
Abstract
Infection with resistant bacteria has become an ever increasing problem in modern medical practice. Currently, broad spectrum antibiotics are prescribed until bacteria can be identified through blood cultures, a process that can take two to three days and is unable to provide quantitative information. To detect and quantify bacteria rapidly in blood samples, we designed a method using labeled bacteriophage in conjunction with photoacoustic flow cytometry (PAFC). PAFC is the generation of ultrasonic waves created by the absorption of laser light in particles under flow. Bacteriophage is a virus that infects bacteria and possesses the ability to discriminate bacterial surface antigens, allowing the bacteriophage to bind only to their target bacteria. Bacteria can be tagged with dyed phage and processed through a photoacoustic flow cytometer where they are detected by the acoustic response. We demonstrate that E. coli; can be detected and discriminated from Salmonella; using this method. Our goal is to develop a method to determine bacterial content in blood samples. We hope to develop this technology into future clinical use and decrease the time required to identify bacterial species from 3 to 4 days to less than 1 hour.
Collapse
Affiliation(s)
- Robert H. Edgar
- University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
| | - Justin Cook
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Cierra Noel
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Austin Minard
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Andrea Sajewski
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | | | | | - John D. Hempel
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | - John A. Kellum
- University of Pittsburgh, Center for Critical Care Nephrology, Department of Critical Care Medicine, Pittsburgh, Pennsylvania, United States
| | - John A. Viator
- University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
- Duquesne University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
47
|
Poudel J, Lou Y, Anastasio MA. A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography. Phys Med Biol 2019; 64:14TR01. [PMID: 31067527 DOI: 10.1088/1361-6560/ab2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photoacoustic computed tomography (PACT), also known as optoacoustic tomography, is an emerging imaging technique that holds great promise for biomedical imaging. PACT is a hybrid imaging method that can exploit the strong endogenous contrast of optical methods along with the high spatial resolution of ultrasound methods. In its canonical form that is addressed in this article, PACT seeks to estimate the photoacoustically-induced initial pressure distribution within the object. Image reconstruction methods are employed to solve the acoustic inverse problem associated with the image formation process. When an idealized imaging scenario is considered, analytic solutions to the PACT inverse problem are available; however, in practice, numerous challenges exist that are more readily addressed within an optimization-based, or iterative, image reconstruction framework. In this article, the PACT image reconstruction problem is reviewed within the context of modern optimization-based image reconstruction methodologies. Imaging models that relate the measured photoacoustic wavefields to the sought-after object function are described in their continuous and discrete forms. The basic principles of optimization-based image reconstruction from discrete PACT measurement data are presented, which includes a review of methods for modeling the PACT measurement system response and other important physical factors. Non-conventional formulations of the PACT image reconstruction problem, in which acoustic parameters of the medium are concurrently estimated along with the PACT image, are also introduced and reviewed.
Collapse
Affiliation(s)
- Joemini Poudel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | | | | |
Collapse
|
48
|
Karlas A, Fasoula NA, Paul-Yuan K, Reber J, Kallmayer M, Bozhko D, Seeger M, Eckstein HH, Wildgruber M, Ntziachristos V. Cardiovascular optoacoustics: From mice to men - A review. PHOTOACOUSTICS 2019; 14:19-30. [PMID: 31024796 PMCID: PMC6476795 DOI: 10.1016/j.pacs.2019.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
Imaging has become an indispensable tool in the research and clinical management of cardiovascular disease (CVD). An array of imaging technologies is considered for CVD diagnostics and therapeutic assessment, ranging from ultrasonography, X-ray computed tomography and magnetic resonance imaging to nuclear and optical imaging methods. Each method has different operational characteristics and assesses different aspects of CVD pathophysiology; nevertheless, more information is desirable for achieving a comprehensive view of the disease. Optoacoustic (photoacoustic) imaging is an emerging modality promising to offer novel information on CVD parameters by allowing high-resolution imaging of optical contrast several centimeters deep inside tissue. Implemented with illumination at several wavelengths, multi-spectral optoacoustic tomography (MSOT) in particular, is sensitive to oxygenated and deoxygenated hemoglobin, water and lipids allowing imaging of the vasculature, tissue oxygen saturation and metabolic or inflammatory parameters. Progress with fast-tuning lasers, parallel detection and advanced image reconstruction and data-processing algorithms have recently transformed optoacoustics from a laboratory tool to a promising modality for small animal and clinical imaging. We review progress with optoacoustic CVD imaging, highlight the research and diagnostic potential and current applications and discuss the advantages, limitations and possibilities for integration into clinical routine.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Korbinian Paul-Yuan
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dmitry Bozhko
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Seeger
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Moritz Wildgruber
- Institute for Diagnostic and Interventional Radiology, University Hospital rechts der Isar, Munich, Germany
- Institute for Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
49
|
3D Photoacoustic Tomography System Based on Full-View Illumination and Ultrasound Detection. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A 3D photoacoustic computed tomography (3D-PACT) system based on full-view illumination and ultrasound detection was developed and applied to 3D photoacoustic imaging of several phantoms. The system utilized an optics cage design to achieve full-view uniform laser illumination and completed 3D scanning with the rotation of a dual-element transducer (5 MHz) and the vertical motion of imaging target, which obtains the best solution in the mutual restriction relation between cost and performance. The 3D-PACT system exhibits a spatial resolution on the order of 300 μm, and the imaging area can be up to 52 mm in diameter. The transducers used in the system provides tomography imaging with large fields of view. In addition, the coplanar uniform illumination and acoustic detection configuration based on a quartz bowl greatly enhances the efficiency of laser illumination and signal detection, making it available for use on samples with irregular surfaces. Performance testing and 3D photoacoustic experiments on various phantoms verify that the system can perform 3D photoacoustic imaging on targets with complex surfaces or large sizes. In future, efforts will be made to achieve full-body 3D tomography of small animals and a multimodal 3D imaging system.
Collapse
|
50
|
Ai M, Youn JI, Salcudean SE, Rohling R, Abolmaesumi P, Tang S. Photoacoustic tomography for imaging the prostate: a transurethral illumination probe design and application. BIOMEDICAL OPTICS EXPRESS 2019; 10:2588-2605. [PMID: 31143504 PMCID: PMC6524588 DOI: 10.1364/boe.10.002588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 05/05/2023]
Abstract
In vivo imaging of prostate cancer with photoacoustic tomography is currently limited by the lack of sufficient local fluence for deep tissue penetration and the risk of over-irradiation near the laser-tissue contact surface. We propose the design of a transurethral illumination probe that addresses those limitations. A high energy of 50 mJ/pulse is coupled into a 1000-µm-core diameter multimode fiber. A 2 cm diffusing end is fabricated, which delivers light in radial illumination. The radial illumination is then reflected and reshaped by a parabolic cylindrical mirror to obtain nearly parallel side illumination with a doubled fluence. The fiber assembly is housed in a 25 Fr cystoscope sheath to provide protection of the fiber and maintain a minimal laser-tissue contact distance of 5 mm. A large laser-tissue contact surface area of 4 cm2 is obtained and the fluence on the tissue surface is kept below the maximum permissible exposure. By imaging a prostate mimicking phantom, a penetration depth of 3.5 cm at 10 mJ/cm2 fluence and 700 nm wavelength is demonstrated. The results indicate that photoacoustic tomography with the proposed transurethral probe has the potential to image the entire prostate while satisfying the fluence maximum permissible exposure and delivering a high power to the tissue.
Collapse
Affiliation(s)
- Min Ai
- University of British Columbia, Faculty of Applied Science, Department of Electrical and Computer Engineering, 2332 Main Mall, Vancouver, V6T 1Z4, Canada
| | - Jong-in Youn
- Daegu Catholic University, College of Bio and Medical Sciences, Department of Biomedical Engineering, Gyeongsan-si, Gyeongbuk, 712702, South Korea
| | - Septimiu E. Salcudean
- University of British Columbia, Faculty of Applied Science, Department of Electrical and Computer Engineering, 2332 Main Mall, Vancouver, V6T 1Z4, Canada
| | - Robert Rohling
- University of British Columbia, Faculty of Applied Science, Department of Electrical and Computer Engineering, 2332 Main Mall, Vancouver, V6T 1Z4, Canada
| | - Purang Abolmaesumi
- University of British Columbia, Faculty of Applied Science, Department of Electrical and Computer Engineering, 2332 Main Mall, Vancouver, V6T 1Z4, Canada
| | - Shuo Tang
- University of British Columbia, Faculty of Applied Science, Department of Electrical and Computer Engineering, 2332 Main Mall, Vancouver, V6T 1Z4, Canada
| |
Collapse
|